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Abstract: A citric acid ligand assisted self-assembly method is used for the synthesis of ternary
mesoporous cerium lanthanum solid solution doped with metal elements (Co, Zr, Mg). Their textural
property was characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-
desorption, X-ray photoelectron spectroscopy and TPD techniques, and so on. The results of catalytic
testing for synthesis of dimethyl carbonate (DMC) from CH3OH and CO2 indicated that the DMC
yield reached 316 mmol/g on Ce-La-Co solid solution when the reaction temperature was 413 K
and the reaction pressure was 8.0 MPa. It was found that Co had synergistic effect with La and Ce,
doping of Co on the mesoporous Ce-La solid solution was helpful to increase the surface area of
the catalyst, promote CO2 adsorption and activation, and improve the redox performance of solid
solution catalyst. The conversion of Co2+ to Co3+ resulted in the continuous redox cycle between
Ce4+ and Ce3+, and the oxygen vacancy content of the catalyst was increased. Studies have shown
that the catalytic performance of Ce-La-Co solid solution is positively correlated with oxygen vacancy
content. On this basis, the reaction mechanism of DMC synthesis from CO2 and CH3OH on the
catalyst was speculated.

Keywords: solid solution; catalyst; cobalt; dimethyl carbonate; oxygen vacancy

1. Introduction

Dimethyl carbonate (DMC) is an important green chemical intermediate that is widely
used in electronic chemicals, medicine, dyes, synthetic materials, and other fields [1,2],
known as the “new base” of organic synthesis in the 21st century [3]. In 2020, China
promoted the policy of carbon neutralization and carbon peak, solved the “double carbon”
problem from a global perspective and at the height of building ecological civilization,
putting forward new requirements for green sustainable development. Up to now, domestic
DMC production capacity has exceeded one million tons per year and is still in a growing
trend. Among the synthetic methods of DMC, the direct synthesis of DMC from CH3OH
and CO2 is a promising pathway, because CO2 conforms the principles of “green chemistry”
and the high atom efficiency, water is the only by-product. However, CO2 is a fully oxidized,
thermodynamically stable, and chemically inert molecule, so how to activate CO2 is a great
challenge. To solve these difficulties, different catalysts have been applied for this reaction
to activate CO2 and improve the yield of DMC. Compared with homogeneous catalysts,
heterogeneous catalysts have been widely studied due to its easy separation and low
toxicity. Metal oxides are ideal catalysts for the synthesis of DMC from CO2 and CH3OH
because of simple preparation methods and high selectivity of DMC. Among them, CeO2
has become a research hotspot in recent years.
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CeO2, a cubic fluorite structure oxide, is widely used in catalysts, solid oxide fuel
cells, oxygen sensors and sewage treatment [4–7] due to its remarkable redox ability and
abundant oxygen vacancy. Compared with bulk CeO2, mesoporous CeO2 has abounds and
ordered pore structure, which has higher specific surface area, so it can effectively improve
performance in practical application. However, pure CeO2 has many defects in application,
such as poor redox performance at low temperature and easy sintering. Therefore, the
current research is to combine CeO2 with other metal elements to form solid solutions in
order to obtain better properties. The doping of metal ions (La [8–10], Zn [11], Mg [12], Zr
and Y [13]) on CeO2 to replace some Ce ions leads to structural defects and certain amount
of oxygen vacancies on its surface. It is found that the oxygen vacancy on CeO2 surface can
enhance the adsorption and activation of CO2, which is beneficial to improve the reactivity
of CO2 and CH3OH to DMC [14]. Adding appropriate amount of metal ion on CeO2 can
improve the surface acidity and oxygen vacancy content [15]. The doping of metal ions
into CeO2 lattice can replace part of Ce4+ in the lattice, resulting in charge loss, promoting
the formation of oxygen vacancies, thereby enhancing the absorption and release of oxygen
in solid solutions, and show better catalytic activity.

Atribak and Buenolopez [16] prepared a series of Ce-Zr composite oxides by coprecip-
itation method and studied their catalytic properties. It was found that with the calcination
temperature increase, the thermal stability specific surface area and the catalytic perfor-
mance decreased. However, the citric acid complexation method can prepare nano-sized
oxide grains at lower calcination temperature, which helps to increase the specific surface
area of the catalyst. It was found that doping La as structural aids on CeO2 to form Ce-La
solid solution could increase the desorption of oxygen vacancies and lattice oxygen, which
improved the redox performance of the catalyst [17].

In this experiment, ternary mesoporous cerium lanthanum solid solution with high spe-
cific surface area was synthesized by ligand assisted self-assembly method. In the presence
of 2-cyanopyridine, the effect of metal ions doping on surface oxygen vacancy of Ce-La solid
solution was investigated, which are directly related to the resulting reaction performance.

2. Results and Discussion
2.1. XRD Analysis

The XRD results are shown in Figure 1, which revealed the structural properties of
Ce-La-M (M is Co, Zr, Mg) solid solution. Cerium lanthanum solid solution retains the
cubic fluorite structure of pure cerium oxide (JCPDS34-039-4). The Ce-La-M exhibited
different diffraction peaks at 28.6◦, 33.0◦, 47.1◦, 56.7◦, 59.1◦, and 69.3◦ were assigned to
(111), (200), (220), (311), (222), and (400), which showed similar diffraction peaks to pure
CeO2 (PDF#34-039436) [18], which indicated that a good ternary solid solution was formed.
Figure 1 also showed that Ce-La-Co appears with weak peaks at the positions of 2θ of
32.88◦ and 58.96◦. The positions of these diffraction angles are consistent with the three
strong peaks (32.58◦, 47.48◦, 58.98◦) of LaCoO3 perovskite, and it may be a trace amount of
LaCoO3 perovskite [19]. Comparing the diffraction peaks of Ce-La solid solution before
doping, it was found that the diffraction peaks (111) and (200) of partial crystal planes
of the prepared solid solution samples shifted to high angles, indicated Mn+ ions were
embedded in the fluorite structure of Ce-La solid solution [20].

The lattice parameters and interplanar spacing of Ce-La-M solid solution were an-
alyzed by Jade. The results are listed in Table 1. It is shown that the lattice parameters
and interplanar spacing of (111) crystal plane of Ce-La-M catalysts decreased when Mn+

entering the lattice of Ce-La solid solution, which is due to that the ionic radiuses of Mg2+

(0.72 Å), Zr4+ (0.84 Å), Co2+ (0.75 Å) are smaller than those of Ce4+ (0.87 Å) and La3+

(1.03 Å), which caused the lattice contraction of Ce-La-M solid solution [21–23]. This also
proves that doped metal element enter the lattice of Ce-La to form solid solution.
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Figure 1. XRD patterns of metal ions doped on cerium lanthanum solid solution. 
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Figure 1. XRD patterns of metal ions doped on cerium lanthanum solid solution.

Table 1. Structural and textural properties of Ce-La-M solid solution.

Sample
(111) Plane Lattice Parameter Particle Size

2θ (◦) D (nm) (nm) (nm)

Ce-La 28.46 0.3132 0.54255 9.036
Ce-La-Mg 28.49 0.3129 0.54199 7.437
Ce-La-Co 28.56 0.3121 0.54069 8.718
Ce-La-Zr 28.61 0.3116 0.53977 9.111

2.2. TEM Images

TEM images of the prepared solid solution are shown in Figure 2. Ce-La solid solution
doped with different metal elements exhibited irregular nanoparticles. Ce-La solid solution
presented high particle dispersion and regular particles. Ce-La-Zr solid solution displayed
a certain degree of agglomeration. Ce-La-Co and Ce-La-Mg solid solution showed low
particle dispersion, small particle diameter, and dense particle distribution.

The particle size distribution and average particle size of nanoparticles were analyzed
through the statistical measurement of nanostructures. The results showed that the particle
size distribution of the solid solution is between 10 and 12 nm, and Ce-La, Ce-La-Co,
Ce-La-Zr, Ce-La-Mg are 10.1, 11.2, 10.8, and 11.0 nm, respectively. The result indicated that
doped metal elements on Ce-La solid solution did not significantly affect the particle size
and particle size distribution.

HRTEM images have identified the crystallographic features of the Ce-La solid solution
as shown in Figure 2. All solid solutions had regular crystal structure. The lattice fringes of
0.31 and 0.27 nm are attributed to the (111) and (200) planes of CeO2 (JCPDS 34-0394 [24]),
respectively. In addition, the lattice fringe spacing (0.19 nm) corresponding to the (110)
crystal plane of CeO2 was not found, which may be due to the conversion of exposed
crystal plane to (111) crystal plane of CeO2 annealed at high temperature. The main reason
is that among all the crystal planes of CeO2, (111) crystal plane has the lowest formation
energy and the most stable structure, and the number of (111) crystal planes exposed is
the largest among all crystal planes [25], which is consistent with the XRD characterization
results. The lattice fringes of MxOy were not found in the HRTEM images, indicating that
MxOy entered the CeO2 lattice to form a solid solution [26,27].
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Figure 2. TEM and HRTEM images of metal ion doped cerium lanthanum solid solution. Figure 2. TEM and HRTEM images of metal ion doped cerium lanthanum solid solution.
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2.3. N2 Adsorption-Desorption

The N2 adsorption-desorption isotherms of the Ce-La-M solid solution are shown in
Figure 3. All the isotherms in the range of P/P0 = 0.5~1.0 exhibited a similar type IV shape
with a H2 hysteresis loop, revealing typical of mesoporous nature of the materials. The
Brunauer–Emmett–Teller (BET) surface area of all the Ce-La catalysts were summarized in
Table 2. It can be seen the specific surface areas of the solid solution catalyst Ce-La-M is
about 70 m2/g. The pore volume and pore size of catalyst increased slightly after M doping.
However, M doping does not significantly affect the texture properties of the Ce-La solid
solution. Combined with TEM images, the texture properties of catalysts changed little by
doping metal elements.
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Figure 3. N2 adsorption–desorption isotherms of metal elements doped cerium lanthanum
solid solution.

Table 2. Textural parameters of solid solution.

Sample BET Surface Area/(m2/g) Pore Size/(nm) Pore Volume/(cm3/g)

Ce-La 71 9.1 0.08
Ce-La-Zr 72 9.6 0.11
Ce-La-Mg 74 9.8 0.09
Ce-La-Co 77 9.9 0.13

2.4. CO2-TPD

Figure 4 shows the nature of the solid solution surface by CO2-TPD. It was found that
there were the same adsorption sites on the surface of Ce-La solid solution doped with
different metal elements. The CO2 desorption peaks appeared in the range of 323–473 K,
473–673 K, and 671–873 K, which can be assigned to weak, medium-strength, and strong
adsorption, respectively [28]. The weak base sites mainly come from bicarbonate formed by
the combination of CO2 and hydroxyl groups on the solid solution surface. The medium-
strength base sites are mainly derived from the carbonate species in the double-tooth
adsorption state and the bridge adsorption state formed by CO2 and Ce-O in the solid
solution. The formation of strong base sites is mainly due to the formation of monodentate
carbonate species by the low coordination between CO2 and O2− on the solid solution
surface [29].
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The total CO2 adsorption capacity of different solid solution were 0.66 mmol/g (Ce-
La), 0.79 mmol/g (Ce-La-Co), 0.70 mmol/g (Ce-La-Zr), and 0.75 mmol/g (Ce-La-Mg),
which are displayed in Table 3. According to the measured CO2 adsorption amount, after
doped with metal elements, the CO2 adsorption amount on the Ce-La-M surface changed,
and the CO2 adsorption amount on the Ce-La-M surface is increased compared with that
on the Ce-La surface. The CO2 adsorption amount on the solid solution surface was in the
order of Ce-La-Co > Ce-La-Mg > Ce-La-Zr > Ce-La, and the CO2 adsorption amount of
Ce-La-Co solid solution was higher than that of other solid solutions.

Table 3. Adsorption capacity of CO2 of cerium lanthanum solid solution.

Sample
CO2 Adsorption (mmol/g)

Weak < 473 K Medium-strength (473~673 K) Strong > 673 K Total

Ce-La 0.56 0.06 0.04 0.66
Ce-La-Mg 0.44 0.16 0.15 0.75
Ce-La-Zr 0.45 0.13 0.12 0.70
Ce-La-Co 0.55 0.17 0.07 0.79

It was found from Table 3 that after Ce-La solid solution was doped with other
elements, the number of weak adsorption sites on the surface of Ce-La-Zr and Ce-La-
Mg solid solution decreased, and the number of medium-strength adsorption sites on
the surface of solid solution increased. The number of strong base sites on the surface
of Ce-La-Co solid solution was slightly lower than that on the surface of Ce-La-Mg and
Ce-La-Zr solid solution, and the number of strong base sites on the surface of Ce-La-Mg
solid solution was the highest.

2.5. Concentration of the Surface Oxygen Vacancies and Chemical States of the Catalysts

Figure 5a is the XPS broad spectra of Ce-La solid solution doped with different metal
elements. It can be seen from Figure 5a that each solid solution showed the peaks of
C 1s (~284.8 eV), Ce 3d (880.0~920.0 eV), La 3d (830~860 eV), and O 1s (519.0~540 eV).
Compared with the characteristic peaks of Ce4+ and Ce3+ in Ce 3d spectra of Figure 5c, the
characteristic peaks of Ce4+ and Ce3+ in Ce-La-M shift to the large binding energy, and the
doping of metal increases the binding energy of Ce4+ and Ce3+ in Ce-La-M. It indicated that
a special solid solution structure is formed between doped metal and Ce-La solid solution.
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Figure 5c shows the XPS spectra of Ce 3d. According to the literature [30], the Ce
3d spectra can be deconvoluted into eight peaks: U′ ′ ′ (∼916.8 eV), U′′ (∼907.4 eV), U′

(∼903.4 eV), U (∼900.9 eV) represent the spin-orbit splitting peaks of Ce 3d3/2, and V′ ′ ′

(∼898.3 eV), V′′ (∼888.9 eV), V′ (∼884.9 eV), and V (∼882.4 eV) represent the spin-orbit
splitting peaks of Ce 3d5/2. Six peaks of U′ ′ ′, U′′, U, V′ ′ ′, V′′, and V represent the electronic
state of Ce4+ at 3d104f0, and U′ and V′ represent the electronic state of Ce3+ at 3d104f1. By
calculating the ratio of the area of V′ and U′ peaks to the total area of V, V′, V′′, V′ ′ ′, U, U′,
U′′ and U′ ′ ′ peaks, the concentration ratio of Ce3+ can be quantitatively estimated base the
following equation. The results are listed in Table 4.

C [Ce3+] % =

(
A Ce3+

A Ce3+ + A Ce4+

)
ACe3+ = Av′ + AU′

ACe4+ = Av + Av′′ + Av′ ′ ′ + AU+ AU′′+ AU′ ′ ′

ACe3+ and ACe4+ donate Photoelectron peaks areas of Ce3+ and Ce4+
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Table 4. Surface concentrations of Ce and O estimated by XPS.

Sample
Molar Fraction (%)

Ce3+ (%) Ce4+ (%) OV (%)

Ce-La 15.32 84.68 9.47
Ce-La-Mg 15.43 84.57 9.94
Ce-La-Zr 15.74 84.26 10.28
Ce-La-Co 16.73 83.27 12.26

It can be seen from Table 4 that with the doping of metal elements, the content of Ce3+ on
the solid solution surface is increased compared with that of Ce-La solid solution. The order
of Ce3+ content on the solid solution surface is Ce-La-Co > Ce-La-Zr > Ce-La-Mg > Ce-La,
which indicates that the doping of metal elements in the solid solution can promote the
partial reduction of Ce4+ on the catalyst surface. Combined with XRD characterization,
due to the Mn+ (Zr4+ 0.84 Å, Co2+ 0.75 Å, and Mg2+ 0.72 Å) is smaller than that of Ce4+

(0.97 Å). The substitution of Mn+ for some Ce ions in the crystal structure of CeO2 will
lead to the lattice contraction of CeO2. When this occurs, Ce4+ (0.87 Å) with smaller ionic
radius spontaneously transforms to Ce3+ (1.1 Å) with larger ion radius to compensate for
the lattice contraction, resulting in the increase of Ce3+ ratio [31].

The O 1s spectra of the solid solution in Figure 5b showed three peaks: The peak at the
binding energy of 529.0 eV is attributed to the lattice oxygen (OL); The peak at the binding
energy of 530.5 eV is attributed to the oxygen vacancy (OV); The peak at the binding energy
of 532.5 eV is attributed to chemisorbed oxygen (OC) [32]. The concentration of OV on the
catalyst surface can be estimated by the integrated peak areas base the following equation.
The results are listed in Table 4.

C [OV%] =

(
A OV

A OL + A OC + A OV

)
×100%

AOV, AOL and AOC stand for the photoelectron peak areas of surface oxygen vacan-
cies, chemisorbed and lattice oxygens.

The content of surface oxygen vacancies of solid solutions was estimated according
to the area of each peak fitted by the O 1s spectra. The results are shown in Table 4. The
content of oxygen vacancies on the solid solutions surface was increased after doping
with metal elements, and the order of the content of oxygen vacancies on the catalyst
surface was Ce-La-Co > Ce-La-Zr > Ce-La-Mg > Ce-La. The change trend was consistent
with the change of Ce3+ content, which also indicated that increasing the Ce3+ content
on the solid solution surface could lead to more surface oxygen vacancies on the solid
solution. In general, the chemical valence of Ce ions is 3 or 4, while the valence state of
M ions is low. Therefore, some vacancies are generated during substitution to maintain
the charge neutrality of ionic crystals and these vacancies are conducive to heterogeneous
catalysis [33,34]. Combined with CO2-TPD, after doping with metal elements, the change
trend of CO2 adsorption on the surface of Ce-La solid solution is consistent with the oxygen
vacancy content on the solid solution surface, which proves that the oxygen vacancy on the
surface has an important influence on the CO2 adsorption [35].

In order to further verify the reason for the change of oxygen vacancies on the solid
solution surface, the XPS spectra of Co 2p3/2 were analyzed, the results are shown in
Figure 5e. Two peaks appear near the binding energy of 778.0 eV and 796.0 eV belong to the
characteristic peaks of Co3+. A weak peak between 785.0 and 788.0 eV is the characteristic
peak of Co2+ [36], indicating that Co is mainly dispersed on the solid solution surface in
the form of Co3O4 [37]. The characteristic peak of pure Co2O3 is at the binding energy of
779.2 eV, while the characteristic peak of CoO is 780.4 eV. When Co is doped on Ce-La solid
solution, Co ions are easily enriched on the surface of the catalyst, which is easily oxidized
to Co3+ during calcination in oxidizing atmosphere, and the increasing of Co3+ will lead to
a lower binding energy. The binding energy of Co on the XPS spectra of Ce-La-Co shifted



Molecules 2022, 27, 270 9 of 14

from 782.2 eV to 778.8 eV, indicating that Co2+ had a tendency to transform into Co3+ in a
higher valence state [38]. The above results showed that the doping of Co was conducive
to the reaction of Ce4+ + Co2+ → Ce3+ + Co3+, thereby promoting the formation of oxygen
vacancies on the catalyst surface.

2.6. Catalytic Activity of the Catalysts for DMC Synthesis

The catalytic performance of the solid solutions was evaluated by synthesis DMC from
CH3OH and CO2, the result as shown in Figure 6. The results showed that the activity of
the catalysts increased with doped Co and Zr, and the Co-Ce-La solid solution was the best
activity. Under certain reaction condition, the yield of DMC reached 316 mmol/g, which
was 52% higher than that of Ce-La solid solution (200 mmol/g). The reason is when Co
doped in the CeO2 lattice, the electron transfer effect between Co2+ and Ce4+/Ce3+ leads
to the change of Ce3+ content in the catalyst and affects the oxygen vacancy content on
the catalyst surface. The increase of oxygen vacancy content enhances the activation of
catalyst for CO2, which is conducive to improve catalyst activity. Combined with XRD,
BET, and TEM results, the MxOy doping on Ce-La solid solution did not significantly affect
the crystal structure, texture properties, or morphology of the catalyst. It was believed that
the number of acid-base sites and the content of oxygen vacancies on the catalyst surface
would significantly affect the reaction activity of CH3OH and CO2 for the synthesis of
DMC [39].
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It can be seen from Table 4 that the catalytic activity of Ce-La-M catalyst increased
with the increase of Ce3+ content on the catalyst surface. Among these catalysts, the Ce-La-
Co catalyst with the highest Ce3+ concentration on the surface showed the best catalytic
performance. When doped metal ions in the CeO2 lattice, to maintain the overall electrical
neutrality of Ce-La solid solution, more Ce3+ was produced, which resulted in an increase
content of oxygen vacancies, as shown in Table 4, which revealed the change trend of Ce3+

is consistent with oxygen vacancy. According to the previous DFT studies, CO2 could be
activated at defective oxygen vacancies, but not on a perfect surface [40]. So, the increased
content of oxygen vacancies on Ce-La solid solution surface can enhance the adsorption
of CO2.

It was found that there was a linear relationship between the activity of Ce-La solid
solution catalyst and the surface oxygen vacancy content. Research showed that the
oxygen vacancy as Lewis basic site on the active surface of the catalyst could promote
the adsorption, activation, and dissociation of CO2 [41]. CO2 as Lewis acid could form a
two-tooth adsorption state at the medium-strength basic sites. The two-tooth adsorption
state of CO2 reacted with CH3O* dissociated by methanol to form methyl carbonate active
intermediates, while other adsorption modes of CO2 such as bicarbonate, single-tooth
adsorption state, and bridge adsorption state could not complete the above process [42].
Combined with CO2-TPD, when Co and Zr were added, the increase in the number of
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medium-strength bases on the catalyst surface is conducive to the improvement of catalytic
activity. When Mg was added, the number of strong bases gradually increased with the
increase in the number of medium-strength bases. The adsorption of CO2 at strong bases
sites will form a stable CO3

2− structure, which is difficult to combine with methanol to
generate active intermediates, resulting in the decrease of catalyst activity [29]. The acidic
sites on the surface of the catalyst mainly act as the activation of methanol molecules.
Methanol molecules can be dissociated at the acidic sites to form hydroxyl and methyl
and adsorbed on the surface of the catalyst. The latter can react with methyl carbonate
intermediates to form DMC [43]. Therefore, the catalytic activity of Co and Zr is better than
that of Mg.

According to the experimental results, the reaction mechanism of CO2 and CH3OH to
DMC was speculated, as shown in Figure 7. Taking Co doped Ce-La solid solution as an
example. Firstly, part of Ce ion was replaced by Co ion in Ce-La solid solution, then electron
transfer between Ce4+ and Co2+ occurred in the lattice of Co2+ doped solid solution, and
the concentration of Ce3+ increased to maintain the electrical neutrality of the solid solution.
Combined with XPS characterization and above research, the higher the content of Ce3+

is, the higher surface oxygen vacancies content [44], so Ce-La-Co catalyst formed many
oxygen vacancies as Lewis base sites, which CO2 molecules could adsorb on the oxygen
vacancies of the catalyst by oxygen atoms. Then the methanol molecules are adsorbed on
the metal ions adjacent to the oxygen vacancy of the catalyst by oxygen atoms and H2O
is desorbed, then another methanol molecule is adsorbed on another adjacent metal ion
at the oxygen vacancy to form an intermediate. Finally, the intermediate is converted to
dimethyl carbonate and releases oxygen vacancies through surface reaction.
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Combined with XPS and CO2-TPD, Co doping helps to increase the specific surface
area of the catalyst, promoting CO2 adsorption and enhancing the redox performance,
which formed amount of oxygen vacancies on the surface of the catalyst. In the process of
catalyst reaction, Co ions with different valence states on the surface of the catalyst, Co2+

changes into Co3+, resulting in the redox cycle between Ce4+ and Ce3+. The valence change
between ions is conducive to electron transfer, which benefits to increase the proportion
of Ce3+. The presence of large number of Ce3+ helps to generate more oxygen vacancies,
while oxygen vacancies are Lewis sites, and more oxygen vacancies are conducive to the
adsorption of CO2. In addition, a small amount of LaCoO3 perovskite structure formed by
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doping Co on Ce-La also contributes to the formation of oxygen vacancies, which greatly
improves the catalytic performance of the catalyst for CO2 oxidation.

3. Materials and Methods
3.1. Materials

Cerium (III) nitrate hexahydrate (99%, AR); methanol (99.5%, AR) 2-cyanopyridine
(98%, AR); 1-Butanol (99%, AR) and P123 were purchased from Ron company (Shanghai,
China). Cobalt nitrate (99%, AR); lanthanum nitrate (99%, AR); magnesium nitrate (99%,
AR); zirconium oxychloride (99%, AR); citric acid (99.5%, AR) were purchased from Feng
Chuan Chemical Reagent Co., Ltd. (Tianjin, China). Nitric acid (67%) was purchased from
Lasvit Co., Ltd. (Tianjin, China).

3.2. Catalyst Preparation

First, 1.36 × 10−4 mmol P123, 5 mmol citric acid and 16 mmol HNO3 were dissolved
in 70 mmol 1-butanol under magnetic stirring, then a certain amount of Ce(NO3)3·6H2O
and La(NO3)3·6H2O were added. The molar ratio of Ce and La in the mixture was 9:1.
The mixture was stirred for 2 h at room temperature until transparent sol was formed.
Volatilize solvent in oven at 393 K for 4 h. The yellow powder was calcined at 823 K for 4 h
(heating rate 2 K/min). Finally, Cerium lanthanum solid solution product was obtained,
named Ce-La.

Then, 1.36 × 10−4 mmol P123, 5 mmol citric acid, and 16 mmol HNO3 were dissolved
in 70 mmol 1-butanol under magnetic stirring, then a certain amount of Ce(NO3)3·6H2O,
La(NO3)3·6H2O, Mg(NO3)2·4H2O, ZrOCl2·8H2O and Co(NO3)2·6H2O were added. The
molar ratio of Ce, La, M (Zr, Co, Mg) in the mixture was 9:1:1, and the molar ratio of
metal salt to citric acid was 1:2. The mixture was stirred for 2 h at room temperature until
transparent sol was formed. Volatilize solvent in oven at 393 K for 4 h. The yellow powder
was calcined at 823 K for 4 h (heating rate 2 K/min). Finally, ternary cerium lanthanum
solid solution product was obtained, named Ce-La-M.

3.3. Physical Characterization

D8 FOCUS powder X-ray diffractometer test catalyst crystal results, Cu Kα ray, tube
voltage 40 kV, tube current 40 mA, sample scanning range 5–90◦, scanning rate 6◦/min.
(German Brook AXS Company, Karlsruhe, German); ASAP 2020 specific surface area
and porosity analyzer to determine the specific surface area of the material, pore vol-
ume and pore size, test conditions: 363 K, vacuum degassing 8 h, adsorbate N2, carrier
gas He (Micromeritics company, Norcross, GA, USA); Talos F200S field emission high-
resolution transmission electron microscope. Acceleration voltage: 20–200 KV (FEI com-
pany, Hillsboro, USA); micromeritics Auto Chem 2920 automatic programmed temperature
chemical adsorption instrument (Micromeritics, Norcross, GA, USA); ESCALAB 250xi
X-ray photoelectron spectrometer was used to characterize the elemental composition
and valence state of the catalyst surface, and the excitation source was Al Kα (1486.6 eV).
Vacuum 5 × 10−7 Pa, voltage: 15 KV, beam: 15 mA (Thermo Fisher Scientific Company,
Waltham, MA, USA).

3.4. Catalytic Performance Evaluation

So, 0.1 g catalyst, 15 mL methanol and 5 g 2-cyanopyridine were placed in a high-
pressure reactor with PTFE lining. Firstly, 0.5 MPa N2 gas was filled into the reactor, and
0.5 MPa N2 gas was filled again after emptying. The air in the reactor was blown out of the
reactor three times repeatedly. Then, 4 MPa CO2 was slowly filled into the reactor, and then
the temperature began to rise. When the reaction temperature reached 413 K, the reaction
was kept at constant temperature for 5 h. After the reaction, 3 g supernatant was taken,
and 0.03 g 1-butanol was dropped into the supernatant as the internal standard. After
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shaken well, the supernatant was standing, and the internal standard method was used for
analysis. In this work, the DMC yield was defined as follows.

DMC yield =

(
n DMC(mmol)
m catalyst(g)

)
4. Conclusions

The citric acid coordinated rare earth metal lanthanum cerium solid solution doped
with transition metal Co, alkali metal Mg, and Zr ternary solid solutions was prepared by
ligand assisted self-assembly method, and the catalytic performance for direct synthesis of
dimethyl carbonate from CH3OH and CO2 was investigated. The experimental results show
that the activity of the catalyst is Ce-La-Co > Ce-La-Zr > Ce-La > Ce-La-Mg. The addition
of Co is beneficial to the decrease of the number of weak base sites on the catalyst surface
and increase the number of medium-strength base sites, which improve CO2 adsorption
and the fluidity of lattice oxygen to generate more oxygen vacancies, which promote the
redox performance. The reaction mechanism of CO2 and CH3OH to dimethyl carbonate
catalyzed by cerium lanthanum solid solution catalyst was speculated.
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