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Introduction
Transcriptional regulatory networks are networks of regulatory 
proteins, such as transcription factors (TFs) and signaling 
proteins, and target genes that control the context-specific 
expression profiles of genes. Many human diseases, includ-
ing cancer, are the result of perturbations to transcriptional 

regulatory networks.1 Through advances in genomics and 
efforts of many consortia such as The Cancer Genome Atlas 
(TCGA)2 and Encyclopedia of DNA Elements (ENCODE) 
Project,3 we now have a comprehensive molecular character-
ization of dozens of cancers at the genomic, transcriptomic, 
and proteomic levels. However, a major challenge is the lack of 
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systematic ways to compare multiple cancers that can provide 
deeper insight into the aberrant network patterns in disease 
cell types.

Network-based characterization4 of complex diseases, 
including cancer, has been invaluable to integrate and inter-
pret functional genomics data sets and identify new bio-
markers that can be used to better classify patients into 
subtypes, and such approaches are much more powerful than 
approaches that examine a single gene5–10 at a time. However, 
most of these approaches have relied on known and curated 
pathways and single-reference interaction maps. Due to our 
limited understanding of regulator target relationships in 
mammalian systems, the role of transcriptional regulatory 
networks has not been examined as extensively as the role 
the protein–protein interaction networks has. On the other 
hand, module-based methods that characterize complex 
transcriptional programs using sets of genes that are coher-
ently changing have been remarkably useful to identify can-
cer-specific signatures that are often correlated with clinical 
traits.10,11 Because these approaches have been applied to one 
cancer type in isolation, they cannot inform us of the regu-
latory network–level connections that are perturbed in mul-
tiple cancers. Recent approaches to pan-cancer studies enable 
comparisons of multiple cancers; however, these approaches 
have focused primarily on genomic sequence mutations.7 
Such methods have revealed that despite the heterogeneity 
in mutations across tumor samples, many of these mutations 
are in genes that represent a common pathway or process. For 
example, the approach by Ciriello et  al.7 performed a pan-
cancer analysis by examining genomic alterations across 12 
different cancers. It was found that cancers can be grouped 
into those driven by copy number variations and those driven 
by somatic mutations. Genes harboring these mutations were 
found to represent a few processes, including those associated 
with transcriptional regulation such as TFs and chromatin 
remodelers.12

We recently developed a new approach, called modu-
lar regulatory network learning with per gene information 
(MERLIN).13 This method reconstructs regulatory networks 
from expression data predicting regulators for individual genes 
as well as for sets of genes (modules), providing insight into 
the fine-grained gene-level and modular organization of tran-
scriptional networks. In this paper, we describe a pan-disease 
network analysis approach of six different cancers: (1) breast 
invasive carcinoma (BRCA), (2) ovarian serous cystadeno-
carcinoma (OV), (3) lung squamous cell carcinoma (LUSC),  
(4) kidney renal clear cell carcinoma (KIRC), (5) colon ade-
nocarcinoma (COAD), and (6) uterine corpus and endome-
trial carcinoma (UCEC). We computationally validated these 
regulatory networks by examining the inferred modules for 
statistical enrichment of curated pathways and processes. In 
addition, we tested these modules for enrichment of DNase 
I–filtered motif instances of sequence-specific TFs using 
DNase I footprints from the ENCODE consortium.14 We 

performed gene-, module-, and pathway-level comparisons 
across different cancers to find the common and cancer-specific 
regulatory network components such as shared and common 
network hubs.

Our regulatory network–based characterization of these 
data identified several shared biological processes, including 
cell cycle and immune-related processes. The cancers are sig-
nificantly different from each other at the regulatory network 
level, but share a common regulatory network that includes 
histones and regulators of the cell cycle and immune response. 
Network topology analysis revealed conserved and differ-
entially wired network hubs among the cancers, several of 
which are highly mutated in different cancers.12 Our regula-
tory network–based pan-cancer analysis provides a systematic 
approach for examining network-level differences and com-
monalities across multiple cancers that can provide insight 
into targeted therapies for these diseases.

Methods
Description of data sets. For each cancer analysis 

(BRCA, COAD, KIRC, LUSC, OV, and UCEC) the Level 
3 (per-gene) sample data sets for the Agilent 244K microarray 
gene expression platform were obtained from the TCGA data 
portal (https://tcga-data.nci.nih.gov/tcga/). A corresponding 
data matrix with rows representing genes and columns rep-
resenting patient samples was then generated for each cancer 
data set. These data values were Lowess-normalized, log 
2–transformed ratio values comparing expression in the 
respective patient samples to measurements of the Stratagene 
Universal Human Reference. These data values were used ver-
batim in the input for the MERLIN analyses.

The genes selected for this analysis satisfied two criteria. 
The first criterion was to select genes that exhibited a fold-
change of two or higher relative to the reference standard 
(meaning a log 2 ratio data value greater in magnitude than 1) 
for 5% of the data samples in all six cancer data sets. This cri-
terion identified genes exhibiting the greatest variation in all 
cancers and provided 7212 genes as a base gene set. The second 
criterion was to include all genes covered in the National 
Cancer Institute (NCI) cancer pathways annotation,15 regard-
less of the variability of expression for those genes across patient 
samples. This increased the selected gene set to 8499 genes, 
which was the set used for the analysis of all six cancer data 
sets. Of those 8499 genes, 1050 were known TFs and kinases 
as curated by Ravasi et al.16 and Uniprot.17

MERLIN and stability selection. To infer the regula-
tory program and module assignment for each cancer data set, 
we used a stability selection scheme.18 For each cancer data 
set, we generated 50  subsamples by randomly selecting m/2 
random patient samples, where m is the total number of sam-
ples in that data set. We ran the MERLIN algorithm on each 
respective subsample data set on the HTCondor computing 
grid (http://chtc.cs.wisc.edu), using the same parameter set-
tings for each run. MERLIN takes three parameters as input, 
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p to control for the network sparsity, r for controlling the 
network modularity, and finally, the parameter h that defines 
the partitioning of gene modules based on coexpression and 
the inferred regulatory network. For our analysis, the set-
tings of these parameters were p = −5 for the sparsity, r = 4 
for the modularity prior, and h  =  0.6. These parameter set-
tings were empirically determined to provide the best results 
on simulated data with known ground truths.13 The input set 
of regulators to MERLIN for these subsample analyses was 
the above-mentioned list of 1050 curated16,17 regulatory genes 
identified within our chosen set of 8499 genes. We then com-
bined the resulting networks and modules from the respective 
subsample analyses to generate a consensus network and con-
sensus modules for each cancer type as we describe below.

Consensus network. To define the consensus network 
for each cancer data set, we first calculated the frequency with 
which we observed each edge in the associated 50 subsample 
network results. The consensus network then consisted of the 
edges appearing in the subsample network results with a fre-
quency higher than 0.3, which also corresponds to an false 
discovery rate (FDR) threshold if ,0.1.

To calculate FDR values and validate the consensus net-
work, we randomly shuffled the per-sample expression val-
ues for each gene within each cancer data set and generated 
50 subsample data sets from these shuffled data in the same 
manner described above. We then applied MERLIN to these 
randomized subsets of the data with the same settings as were 
used for the actual data analysis. We then counted the num-
ber of edges, NR, that appeared with a frequency $t across all 
50 shuffled subsample results, where t was a chosen threshold 
frequency. We calculate the FDR as a ratio of the number of 
edges with a frequency that was $t in the randomized results, 
NR, and the number of edges with frequency $t in the results 
from original data, NE, such that FDR = NR/NE. To select 
the appropriate frequency threshold, t, we tested different 
threshold values and calculated the resulting FDR statistics. 
We choose the threshold of t = 0.3 to maximize the number 
of edges in the consensus networks, while keeping the FDR 
value ,0.1.

Consensus clustering. The modules inferred by the 
MERLIN analysis of the respective sets of 50 subsamples were 
combined into consensus cluster sets for each separate cancer 
analysis. Consensus clustering determined modules of genes 
that were coclustered in multiple subsample cluster assignment 
sets with a certain frequency. We implemented this with a hier-
archical, agglomerative consensus clustering method. With the 
module assignments generated for each of the 50  subsample 
data sets, we generated a similarity matrix S between all pairs 
of genes, where the value of element S(i,     j) was the percent-
age of the time gene i and gene j were clustered together in 
the respective subsample clusterings. We applied hierarchical 
clustering on the similarity matrix and used a consensus fre-
quency threshold, t, of 0.3 to define the partitioning of clusters. 
To select this threshold value, we considered t = 0.3, 0.4, 0.5, 

and 0.6. We selected a value for t that resulted in a reasonable 
numbers of modules with 10 or more genes, maximized the 
gene set covered by the selected module sets, and provided an 
acceptable FDR statistic for the resulting consensus modules 
for each cancer analysis. Here the FDR statistics were obtained 
in a similar way as for the consensus networks. Briefly, the FDR 
was defined as the ratio, FDR = PR/PE, where PR is the number 
of coclustered pairs of genes that appeared with a frequency $t 
in the shuffled subsampled data results and PE is the number 
of coclustered pairs of genes from the original data subsamples. 
The choice of threshold t = 0.3 resulted in FDR values for the 
consensus module sets that were ,0.01 and module sets that 
covered ∼20% of the total input set of 8499 genes, in the analy-
sis of each cancer data set.

Finally, for each set of consensus modules, we then 
selected only those modules with 10 or more genes for path-
way, motif, and other enrichment analyses. This approach 
defined high confidence modules of genes that are less 
sensitive to random noise than the direct results from the 
MERLIN program.

Pathway and motif enrichment. The consensus modules
obtained from each study were further analyzed for statistical 
enrichment of genes associated with specific biological pro-
cesses and pathways annotated in KEGG, REACTOME 
gene sets,19–21 as well as NCI cancer pathway annotations.15 
To assess statistical enrichment, we used an FDR-corrected 
hyper-geometric test P-value for the overlap of genes between 
the curated gene set and the genes in a module. Lastly, we 
examined modules for statistical enrichments of genes asso-
ciated with TF binding in evolutionary-conserved motif 
instances from MSigDB,21 and open chromatin, measured by 
DNase I hypersensitivity assays and known binding motifs of 
TFs (see below).

DNase I-filtered motif enrichment. DNase I data for 
seven human cell lines were used to generate motif instances 
for sequence-specific TFs based on motif instance presence 
in the peak regions of DNase I hypersensitivity data sets. 
Publicly available DNase I peaks sets were obtained from 
Maurano et al.14 and Thurman et al.22 The selected data are for 
the H1 cell line and the following cancer cell lines: CACO2 
and HCT116 (colon cancer), A549 (lung cancer), MCF7 
(breast cancer), and finally the Ishikawa_E and Ishikawa_T 
(endometrial uterine cancer) cell lines. These cancer cell lines 
correspond to four of the cancers in our study of TCGA gene 
expression data, BRCA, COAD, LUSC, and UCEC. The 
DNase I data sets used here were all generated by Maurano 
et al.14, except the data for the uterine endometrial cancer cell 
lines, which were obtained from Thurman et al.22

These DNase I data were processed as follows. The peak 
regions were used to generate DNA sequences for the open 
chromatin regions in each cell line, using the hg19 genome 
assembly. Known motif position weight matrices from the 
JASPAR23 database and from Kheradpour and Kellis24 were 
used to find TF-binding sites using the Find Individual Motif 
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Occurrences (FIMO) algorithm.25 Target gene sets were 
then defined for each TF using the following criteria. If a 
motif instance for a TF was found in a DNase I peak and 
that peak was within 2000 bp of the TSS of a gene, that gene 
was considered a target of the TF. In this way, we inferred 
387,446 (Ishikawa_E) – 797,137 (H1) TF target gene edges 
for 199 TFs from the DNase I footprints of each cell line. 
The target gene sets of individual TFs in these DNase I  
accessibility networks were subsequently used to study the 
associations of these TFs with the genes in the consensus 
modules of the MERLIN analysis.

Cross-validation study of the consensus networks. We 
used a five-fold cross-validation scheme to assess the expres-
sion predictive power of the consensus networks. For each 
cancer study, we took the consensus network, and for each 
target gene in that network, we predicted its expression profile 
using the expression of its regulators in the network. In this 
cross-validation scheme, we split the expression data into five 
test data sets. The training data set for each test set was the 
remaining four-fifths of the data. We then learned a regres-
sion model on each of the training data sets, and then for each 
gene we predicted its expression in the test samples. We com-
puted the correlation of the predicted expression profile to the 
actual expression profile in the corresponding test data set. 
The average correlation from all five test data sets was taken 
as a measure of the predictive power of the consensus network 
for each target gene.

To assess the significance of the correlations of the 
true and predicted expression levels, we repeated the above 
cross-validation procedure for random networks. To gener-
ate a random network from a given consensus network, we 
took the in-degree, k, of each target gene, in that consensus 
network and added edges between that gene and k randomly 
selected regulators. For each of the cancer studies, we gen-
erated 10 random networks and repeated the five-fold cross- 
validation procedure with each random network. For each tar-
get gene, we then took the average of the correlation values 
estimated for each of the 10 random networks.

Network comparison analysis. To estimate the similar-
ity of two networks, we calculated the number of edges that 
are present in both networks (common edges) and defined 
precision as the ratio of the number of common edges to the 
number of edges in the first network and defined recall as the 
ratio of the number of common edges to the number of edges 
in the second network. Using the precision and recall, we cal-
culated F-score, defined as the harmonic mean of precision 
and recall. F-score of a pair of networks was calculated using 
only the edges between the common set of TFs and targets 
between two consensus networks.

Analysis of hubs. We estimated the degree distribution of the 
regulators and selected the regulators that were ranked among 
the top 1% of the TFs sorted by degree. We found 53  such 
regulators and we called them hubs. We split these hubs into 
three categories: (1) Specific hubs: the regulators that are hubs 

in only one network; (2) Differential hubs: the regulators that 
are hubs in more than one network but their neighborhoods 
change between different networks; and (3) Common hubs: the 
regulators that are hubs in more than one network and their 
neighborhoods are similar in different networks.

To define the first category, we selected the regulators 
that were ranked in top 1% in at least one network, but were 
not ranked in top 10% in any other networks. To define the 
second and third categories, we analyzed the similarity of 
neighborhood of these regulators between pairs of networks. 
We defined the neighborhood of each regulator in each cancer 
data set as the targets of that regulator in the consensus regu-
latory network for that data set. For each pair of networks, 
we calculated the “Jaccard index”, which for a pair of sets is 
defined as the ratio between the size of the intersection and 
the size of the union of two sets. If the Jaccard index of a 
regulator is higher than 0.3 in at least one pair of networks, we 
added that regulator to the third category, otherwise we added 
that TF to second category.

Regulatory hub and pathway association. To associate a reg-
ulatory hub with a pathway, we first identified the consensus 
modules containing target genes that a given regulatory hub 
was predicted by MERLIN to regulate. Next, we identified 
the NCI cancer pathways that each module was associated 
with in the enrichment analysis. A regulator was associated 
with a pathway P if it regulated a module m, and module m 
was enriched for the pathway P. To compare the regulator–
pathway associations between a pair of inferred networks, we 
used an F-score measure of similarity between the regulator–
pathway associations derived for each type of cancer.

Results
A regulatory module network–based characterization 

of different cancers. A transcriptional regulatory network 
specifies the connections between regulatory proteins and the 
genes that they target. There are two parts to describing the 
regulatory network: (1) the wiring of the network that speci-
fies who regulates whom and (2) the parameters specifying 
how different sets of regulators interact to regulate the expres-
sion of a given gene. Computational regulatory network infer-
ence from genomewide expression levels is a popular approach 
to predict regulatory relationships between regulators and tar-
get genes.26–29 We recently developed a new network recon-
struction method, MERLIN,13 that uses a probabilistic graph 
prior to predict regulators for individual genes and modules. 
MERLIN combines the strengths of two popular network 
inference strategies, “per-gene”, which infers regulators for 
each gene individually, and “per-module”, which infers a com-
mon set of regulators for an entire module. Per-gene meth-
ods can predict precise regulatory programs of each gene but 
do not inform us of the modular organization of regulatory 
networks. Per-module methods can inform us of the modu-
lar organization of the regulatory network, but do not capture 
gene-specific regulatory information. MERLIN’s graph 
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structure–based algorithm imposes a module constraint that 
genes in the same module have similar, but not necessarily the 
same, sets of regulators. MERLIN takes as input genomewide 
expression patterns, an initial set of module assignments and 
candidate regulators, and gives as output an inferred regula-
tory network and module assignment for each gene. MERLIN 
outperforms state-of-the-art per-gene and per-module meth-
ods, successfully combining the strengths of both classes of 
methods.13

In this paper, we applied MERLIN within a stability 
selection framework18 that uses a subsampling-based approach 
to additionally provide confidence estimates for the inferred 
regulatory network structures and modules (see Methods). 
Briefly, we draw random subsamples of the data set (same 
number of genes, but different samples) and learn multiple 
MERLIN models (Fig.  1). Then a consensus network and 
consensus modules are obtained using the inferred networks 
and modules from each subsample (Methods).

We applied the MERLIN method within the stability 
selection framework to Level 3 Agilent G4502A micro-array 
expression data from TCGA for six cancers. These cancers 
are: (1) BRCA, (2) COAD, (3) KIRC, (4) LUSC, (5) OV, 
and (6) UCEC. These data were Lowess-normalized expres-
sion values with a log 2 ratio transformation taken relative to 
data taken for the Stratagene Universal Human Reference. 
Each input data set to MERLIN represented 7449 target 
and 1050 regulator genes, where the regulators were known 
TFs or signaling proteins such as kinases and phosphatases. 
All genes (regulatory and target genes) represented in each 
analysis had to satisfy one of two criteria: (1) a gene had to 
either vary in expression by a magnitude of 1 relative to the 
reference for 5% of the patient samples in each cancer data 
set or (2) a gene had to be annotated with a known role in 
NCI cancer pathways.15

The application of MERLIN to these data within the sta-
bility selection framework identified between 9 (UCEC) and 
55 (COAD) consensus modules in each cancer study (Fig. 2A). 
The modules each exhibited a unique but complex pattern of 
expression. In the majority of the modules, we found that 
samples can be grouped into induced and repressed patterns of 
expression of genes in a module. The maximum module size 
from each study ranged from 129 (UCEC) to 302 (KIRC) 
genes, as shown in Figure 2B. These module sets included on 
average ∼20% of the genes (∼7% [UCEC] to ∼22% [BRCA]) 
selected in this work (see Methods), emphasizing the need to 
identify both module-level and gene-level regulatory network 
connections.

Pathway analysis reveals immune-related processes to 
be shared among different cancers. To interpret our modules 
in the context of known pathways, we examined the consensus 
modules for enrichment of NCI cancer signaling pathways,15 
REACTOME pathways,30–32 Gene ontology processes,33 and 
KEGG pathways.19 On average, at an FDR ,0.05 thresh-
old, 56% of the consensus modules were enriched for one of 

the REACTOME annotation terms, 74% for a gene ontology 
process, 49% for an NCI cancer signaling pathway, 42% for 
an annotated KEGG pathway, and 53% of the modules were 
enriched for open chromatin (DNase I-accessible) targets of 
TFs (Fig. 3A).

A common theme that emerged from our module enrich-
ment analysis was the association of immune system–related 
processes, such as interleukin (IL), cytokine, and T cell sig-
naling pathways, with all six cancers (Fig. 3B, NCI pathways 
of TCR signaling in CD8+ and CD4+ T cells; Supplementary 
Fig.  1, REACTOME pathways of cytokine signaling, the 
immune system and the adaptive immune system). The genes 
in modules associated with the REACTOME immune sys-
tem annotation also exhibited induced gene expression relative 
to genes in other modules, which indicates enhanced immune 
system activity in all six cancers (Supplementary Fig. 2). The 
KEGG annotation for systemic lupus erythematosus (Fig. 3B) 
was even associated with at least one consensus module from 
each cancer studied. These observations suggest that the rep-
resented cancers have a common feature of aberrant immune 
system function.

Our observation of the enhanced immune system activity 
is consistent with the findings of Apetoh et al.34, which showed  
that the effectiveness of anticancer therapy (such as chemo-
therapy and radiation treatment) depends on the response 
of the immune system, and additional studies that have impli-
cated the immune system in cancer.35,36 Studies have also 
shown that in a state of inflammatory response (in which IL6 
production is abundant) “cross-talk” between the IL6 and the 
signal transducer and activator of transcription (STAT) 3 sig-
naling pathways leads to an overabundance of STAT3 expres-
sion. This is a mechanism that is potentially central to the 
genesis and proliferation of cancer.37,38 In considering these 
findings reported for the IL6 and STAT3 pathways,37,38 the 
presence of IL pathways in the module enrichment results of 
five of the six cancers may also be related to the observation of 
immune system activation.

Another conserved pathway found in all cancers studied 
is the Aurora B pathway. This pathway was associated with at 
least one consensus module from each cancer analysis, rep-
resenting a common feature of all six of these cancers. The 
Aurora B kinase is associated with regulation of microtubule 
organization for chromosome movement, and the overex-
pression of it is associated with aneuploidy cells with aber-
rant chromosome numbers.39 Although this pathway has been 
previously implicated in cancer, the finding that it is uniformly 
implicated in a pan-cancer context is noteworthy. Other com-
mon biological processes enriched in the consensus modules 
of all six cancer analyses were related to the cell cycle, includ-
ing DNA replication, telomere maintenance, and packaging, 
as well as chromosome maintenance. These processes are asso-
ciated with known hallmarks of cancer.40

On the backdrop of shared immune response and cell 
cycle processes across cancers, we next examined the inferred 
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Figure 1. Overview of using MERLIN with stability selection for pan-cancer module network analysis. Shown is a diagram presenting the pipeline for 
applying the MERLIN stability selection framework to N cancer gene expression data sets. For each cancer data set, multiple subsamples are generated. 
The MERLIN algorithm is then applied to each subsample data set to infer module assignments and regulatory networks. The individual modules and 
networks are combined to estimate a consensus network and consensus module set for each type of cancer. The selected consensus modules are 
analyzed for enrichment of curated gene sets for KEGG pathways, REACTOME annotations, NCI cancer signaling pathways, and DNase I–filtered targets 
of TFs. The consensus networks are analyzed based on network degree distributions and identifying unique and common regulatory edges.

modules for pathways and processes that are uniquely associated 
with each cancer type. In addition to immune response, the 
modules identified for OV were enriched for two integrin 
cell surface signaling pathways (Fig.  3B), implicating aber-
rant cell–cell communication in that specific disease. The p53, 
Toll-Like Receptor (TLR), TNF-related apoptosis-inducing 

ligand (TRAIL), E2F, and FOXM1  signaling pathways 
(Fig. 3B) were identified uniquely among the COAD analysis 
modules, and each of these pathways are known to regulate 
to cell cycle processes. The modules identified in the analysis 
of the KIRC data set were enriched for the fewest number of 
pathways of any of the six cancers (Fig. 3B). Those pathways 
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that were identified in the KIRC results include the Aurora B,  
IL27, and the PLK1  signaling pathways. This finding for 
the KIRC module enrichments may suggest this cancer is 
associated with fewer known pathways than the other cancers 
or that there are many more pathways that are significantly 
perturbed in other cancers compared to KIRC. Overall these 
findings in the OV, COAD, and KIRC consensus module 
enrichments identify distinguishing features of these diseases, 
yet are still consistent with the general theme of immune sys-
tem and cell cycle involvement in cancer.

Integration of transcriptional modules with DNase I  
footprints identifies key immune response regulators associ-
ated with multiple cancers. We next focused on the enrichment 
of consensus modules for motif instances of sequence-specific 
TFs in cell line–specific DNase I footprints14,22 from six cancer 
cell lines and the H1 embryonic stem cell line (Supplementary 

Figs. 3 and 4, Methods). These six cancer cell lines were spe-
cifically selected to match the tissue of origin of the cancer.  
We found cell lines that matched four of the six cancers stud-
ied. While not perfect, this can provide insight into tissue-
specific changes in regulatory networks that are associated 
uniquely with each cancer type. Among the consensus mod-
ules of each cancer analysis, 46% (BRCA)–58% (COAD) 
were enriched for DNase I–filtered targets of a TF (Fig. 3A). 
For all cancers, we found modules enriched for target genes 
of known regulators of immune response, such as the inter-
feron regulatory factor (IRF; IRF1, IRF2, IRF3, IRF5, IRF7, 
IRF8, and IRF9) and STAT family of TFs (STAT1, STAT3, 
and STAT5B). Nevertheless, the modules for KIRC were less 
uniformly enriched for targets of these regulators than those 
of the other cancers. The IRF and STAT-enriched modules 
(Fig.  4) were also enriched for immune system processes, 
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consistent with the common enrichment of immune-related 
processes.

STAT1  in particular has been associated with breast,41 
ovarian,42 lung,43 kidney,44 and colon45 cancers (BRCA, OV, 
LUSC, and COAD) (see www.genecards.com).39,46 We addi-
tionally identified this regulator to be associated with uterine 
endometrial cancer (UCEC), an association that has already 
been suggested in the literature.47 The IRF family of TFs 
relates generically to immune system function and has been 
connected to various leukemic conditions as well as ovarian, 
breast, endometrial, kidney, colon, and lung cancers.46

Two other TFs appeared to have similarly conserved 
patterns of module enrichment across five or more cancers 

(Supplementary Fig.  3): Nuclear Transcription Factor Y - 
Alpha (NFYA) and TRIM63. NFYA has widely known 
associations39,46 with breast,48,49 colon,50 and lung51 cancer, 
and module enrichments for targets of the TF are found in the 
present analyses of each of these cancers. We also found target 
genes of NFYA to be enriched in modules identified for kid-
ney, endometrial uterine, and ovarian cancer. There are, more-
over, experimental studies implicating NFYA in ovarian,52 
kidney,53 and uterine cancers.54 The TRIM63 TF has a less 
established connection to cancer, leukemia being one noted 
exception, but it has particularly been implicated in viral and 
immune system–related diseases.39,46 Experimental work has 
demonstrated a role for this regulator in soft-tissue sarcoma.55 
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Figure 4. Modules from different cancers associated with immune response processes and regulators. Shown here are example modules, one from each 
cancer studied, with significant associations with immune response processes and regulators. For each module, the expression profile of the target genes 
(right) and the associated regulators (left) are shown. Each module is examined for two types of support for regulatory relationships: the edges of target 
genes to inferred expression regulators from the MERLIN analysis (cyan) and curated TF-binding motifs from MSigDB (purple). Instances where a target 
gene is not annotated in a particular category are noted in gray. On the right, are shown three red-blue heat maps for each module. The topmost shows the 
zero-meaned profile of expression for target genes. The middle heat map shows the expression profiles of the inferred expression regulators from MERLIN. 
The bottom heat map shows the expression profiles of regulators with motif instances from MSigDB that are significantly enriched in the module.

Previous computational analysis has also implicated this gene 
in two soft-tissue cancers.56 The enrichment results suggest a 
potentially novel role of TRIM63 in five of the cancers stud-
ied in this work (BRCA, COAD, LUSC, OV, and UCEC).

The DNase I–filtered binding enrichment results also 
demonstrated an association of several cancers (BRCA, 
KIRC, OV, and UCEC) with the RFX5 TF (Supplementary 
Fig.  3 and 4). RFX5 has little established association with 

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10


Knaack et al

78 Cancer Informatics 2014:13(S5)

cancers,39,46 but it does to several immunological disorders.39,57 
The RFX TF complex – which includes RFX5 – is known 
to coordinate with NLRC5 to induce class I58 major histo-
compatibility complex (MHC) gene expression and also to 
induce expression of class II59 MHC genes. The MHC genes 
are a family of genes that mediate leukocyte interactions with 
other cells and which are generally integral to immune system 
function.60 In the context of cancer, upregulation of class I 
MHC genes has been observed in renal carcinoma.61 In con-
trast to that example, a novel mutation in RFX-AP (another 
member of the RFX complex) has been connected to the loss 
of expression for MHC class II genes in diffuse large–B-cell 
lymphoma,62 which is also a known biomarker for decreased 
patient survival of that disease.62

RFX1 and RFX4 are TFs that are related to the RFX 
complex and which are also known to control the expres-
sion of MHC class II genes.59,63 Enrichment for DNase 
I–filtered target genes of RFX1 and RFX4 were also found 
in modules from the BRCA, LUSC, OV, and UCEC analy-
ses (Supplementary Figs. 3 and 4). In fact, splice variants of 
the RFX4  gene that are specifically associated with glioma 
cancer cells have been identified,64 and RFX 1 has itself been 
identified as a tumor suppressor gene in glioblastoma.65 Given 
the regulatory role of the RFX complex and related TFs in 
controlling MHC gene expression, these module enrichment 
results suggest the RFX regulators play an important role in 
immune-related processes in the context of cancer.

Another regulator to highlight in the context of the DNase I  
accessibility network enrichments is PBX3 (Supplementary 
Figs. 3 and 4), which was associated with modules from breast, 
kidney, ovarian, and endometrial uterine cancer analyses. This 
gene is widely associated with leukemia and the onset of that 
disease66 and has also been implicated in gastric cancer.67 Our 
results predict that PBX3 is likely also involved in BRCA, 
KIRC, OV, and UCEC.

Finally, we investigated the consensus modules for 
enrichments of TF target genes from the H1 embryonic stem 
cell line DNase I accessibility network (Supplementary Fig. 4), 
because several pluripotency regulators are also identified as 
oncogenes, such as MYC68,69 and KLF4.70 In our module sets 
we found enrichments for targets of several master regulators 
of pluripotency, including MYC, NANOG, and KLF4 (Sup-
plementary Fig. 4). In addition, we also found enrichment for 
targets of EP300, a transcriptional coactivator, in modules 
for BRCA, COAD, KIRC, OV, and UCEC. Mutations in 
the EP300 protein have been associated with several cancers, 
including colon and breast cancer.71

Network-level comparison of cancers reveals a core 
shared regulatory network. We next examined the networks 
inferred in each of the cancer types to quantify the extent of 
shared and cancer-specific network components. At an FDR 
,0.1 threshold, each network had between 2,900 (UCEC) 
and 56,546 (OV) edges connecting 770 (UCEC) and 1495 
(OV) regulators to 2163 (UCEC) and 8350 (OV) target genes 
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(Fig.  5A, Methods). The smallest network corresponded 
to uterine and endometrial (UCEC) cancer and the largest 
network corresponded to COAD. We tested the predictive 
power of the network models with a cross-validation scheme 
(Methods). The distributions of correlation values of predicted 
and observed expression profiles for target genes were obtained 
for each study, and the median of the per-gene correlation val-
ues ranged from 0.63 (LUSC) to 0.73 (KIRC) (Supplementary 
Fig. 5). These results demonstrate that the consensus networks 
are highly predictive of expression levels of previously unseen 
experiments.

A key question to address is to what extent the networks 
are similar across the cancers. The number of common nodes 
that were present in all cancer networks included 558 regulators 
and 1168 target genes, and spanned ∼11 (OV) to 55% (UCEC) 
of the original inferred networks (Fig. 5A). We obtained the 
set of regulatory edges that were among these common sets 
of regulators and targets and assessed the similarity between 
networks for each pair of cancer using two measures (Meth-
ods): an F-score measure and the hyper-geometric test P-value 
to assess the significance of overlap of edge sets between each 
pair of networks. We found that the similarity among all 
pairs of networks was highly significant (hyper-geometric test  
P-value ,10-100), and hence we focused on the F-score as 
this was a more sensitive measure for comparisons. Based on 
F-score, we find that each cancer network varies in similarity 
to other cancer networks and revealed both known and new 
relationships among these cancers. For example, as expected, 
we found that the breast cancer (BRCA) and the ovarian cancer 
(OV) network share the largest proportion of edges (F-score 
0.44, Fig. 5B). The next greatest similarity was found between 
the networks for lung carcinoma (LUSC) and colon cancer 
(COAD) (F-score 0.39, Fig. 5B). In this network comparison, 
UCEC and the kidney renal carcinoma (KIRC) were indi-
cated to be the most distinct among the six cancers, although 
some of these differences could be due to the smaller number  
of samples in the data sets for these two cancers.

To identify the biological processes and molecular path-
ways that are associated with these shared edges, we examined 
the MERLIN module assignments of the targets and regu-
lators of the common network components. We found that 
these modules were enriched for immune-related processes 
as well as cell cycle, consistent with our previous observation 
from our module enrichment analysis that these are shared 
processes among the different cancers.

Finally, we examined the inferred networks to identify 
regulator target edges that were found in all types of cancer. 
We identified a conserved regulatory network that was com-
mon to all cancers connecting 75 regulatory proteins to 156 
target genes (Fig. 6). This network involved TF proteins and 
signaling proteins from the histone complex (HIST1H2BB, 
HIST1H2BD, HIST1H2BE, and HIST1H2BG), chro-
mosome stability (RAD51), cell cycle (BUB1B, CDC25C, 
PPP2R1A, PPP2R2A, and PTTG1  in addition to the 

histone complex), and immune-related processes (IFNG, 
NCKAP1L, PTPRC, and RIPK2). These regulators were 
enriched for functional interactions (Z-score 2.13) from the 
STRING database,72 indicating a “cross-talk” between these 
processes. This common regulatory network represents a core 
set of processes that are likely perturbed in multiple cancers. 
Cell cycle aberrations have been known to be associated in 
cancers, while the roles of histones are emerging from recent 
cancer genomic studies.7 The association of these processes 
with immune response processes in the conserved regulatory 
network is particularly striking.

Differential network analysis reveals conserved and 
rewired network hubs in each cancer type. We next investi-
gated the network topology to identify cancer-specific network 
components. The “out degree” distribution, defined as number 
of targets for any regulator, was highly nonuniform (Fig. 5C). 
For example, in the inferred regulatory network for BRCA, 
the average out degree was 33, but there were several regu-
lators that connected many more target genes (eg, TRIM29, 
which connected 117 targets, and PPAPDC1A, which con-
nected .200 target genes). We defined a “regulator hub” as 
a regulator with an out degree in the top 1% of all regulators 
in a network. Several of these hub regulators in the top 1% of 
one cancer network were also in the top 1% in another can-
cer network (eg, PTPRC was in the top 1% of OV, UCEC, 
COAD, and LUSC (Fig. 7). In all, there were 53 regulatory 
hubs identified across all six networks, and these included TFs 
and signaling proteins.

To systematically assess the extent to which these hubs 
were shared among the different cancer-specific regula-
tory networks, we grouped these hubs into three categories 
(Methods): (1) Common hubs: those that were connecting 
similar sets of targets between different cancers; (2) Differen-
tial hubs: those that were hubs in networks from two cancers 
but targeted different genes; and (3) Cancer-specific Hubs: those 
that were hubs in only one cancer network.

There were 13 common hubs, four of which were in 
the core regulatory network described in the previous sec-
tion (Fig. 7A). These regulators included genes known to be 
involved in immune processes (PTPRC: T and B cell signal-
ing, and CSF1R), cell cycle (NEK10, BUB1), and develop-
ment (HES7, AEBP1), which is consistent with the shared 
enrichment of these processes across multiple cancers. Several 
of these genes have known roles in multiple types of cancers, 
such as NEK10  in breast cancer,73 and BUB1  in colorectal 
cancer.74 Additionally, CSF1R signaling has been implicated 
as important in successful radiation treatment of prostate 
cancer,75 and AEBP1 has been identified in a biomarker signa-
ture for poor prognosis in ovarian cancer.76 These genes might 
influence the cancerous state in different cancers through the 
same mechanisms.

The differential hubs constituted the largest proportion of 
the hubs (Fig. 7C). These 29 genes included LRRK2, ELF3, 
and FOXA1, which were also found to have among the largest 
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number of somatic mutations in a recent comprehensive study 
of mutational distributions in 12 different cancers.12 To exam-
ine whether these differential hubs were targeting different 
cancer signaling pathways in each cancer type, we associ-
ated each regulator with an NCI cancer signaling pathway 
by using the MERLIN-predicted regulators and pathway 
enrichments of a module (Methods). The extent of similar-
ity of regulator–pathway associations between the differen-
tial hubs was significantly smaller than these associations 
between the common hubs (T-test P-value ,1E-7), but also 
depended upon the specific type of cancer. For example, we 
found that the differential hubs targeted different pathways in 

OV, whereas the differential hubs targeted similar pathways 
in KIRC and LUSC. One interesting example was G6PC, 
which was in the top 1% of hubs in the BRCA network and in 
the top 10% of hubs in the COAD and OV networks. G6PC 
was found in an OV consensus cluster associated with FOXA 
signaling pathways, but was not found in the consensus clus-
ters of BRCA, and COAD that were associated with FOXA 
signaling. Overall, these results suggest that the association 
of a hub to a pathway in any cancer type is complex and likely 
very specific to each cancer.

Finally, 11 regulators were identif ied as hubs exclusively 
in the regulatory network of a specif ic cancer (Fig.  7C). 

Figure 6. The core regulatory network conserved in all six cancers. (A) Shown are the expression profiles of 75 regulatory genes that are common to 
the MERLIN-inferred network from the six cancer data sets. The data are zero-meaned across all samples from all six studies, where the color map is 
presented at the bottom of the figure. (B) Shown are known protein–protein interactions of these regulators from the STRING database. The shape of 
the node shows whether the regulator is a signaling protein or TF. The color of the node indicates the biological process (cell cycle, immune response, 
chromatin remodeling, chromosome stability) associated with each node. (C) Shown are the expression profiles of the 156 target genes that are common 
to the networks of each cancer study in the same way as in panel A.
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Several of these cancer-specif ic hubs have specif ic roles 
in the type of cancer that they were uniquely identif ied 
with. For example, NFE2L3, a hub in COAD, has been 
associated with colorectal cancer37 and was also among one 
of the highly mutated cancer genes.12 FOXC1, which was 
found to be a unique hub in the BRCA regulatory network, 
has been implicated as a prognostic biomarker for breast 
cancer.77 Other regulators in this category included WT1, 
SOST, PIB5PA, and ENPP3, of which some have estab-
lished roles in other types of cancer or other diseases. For 
example, PIB5PA is implicated in skin cancer,78 WT1 in 
ovarian and other cancers,79,80 and SOST has been studied 
in connection to bone diseases.81,82 Overall, these results 
suggest that some of the cancer-specif ic hubs have known 
roles in the relevant cancer type, while hubs are associ-
ated with multiple disease states. A more detailed study 
of these hubs coupled with functional validation studies 
can reveal previously uncharacterized pathways for these 
cancer types.

Discussion
A major challenge in cancer genomics is to identify aberra-
tions in molecular networks in different cancer types that can 
be therapeutically targeted. Different cancers with different 
tissues of origin might be driven by the same underlying 
mechanisms. With the efforts of consortia such as TCGA, 
we can now characterize different cancers on a genomewide 
scale. However, a challenge is the lack of computational 
methods that can effectively mine these data to find conserved 
and unique network components among many cancers. In 
this paper, we applied a regulatory module network–based 
approach.13 To interpret the predicted regulatory networks, 
we developed and applied network-based measures to identify 
regulatory network components, such as modules and regula-
tory hubs that are associated with different types of cancers.

While the role of transcriptional regulators, such as TFs, 
chromatin remodelers and upstream signaling regulators in 
disease states is widely accepted,1 a systematic analysis of the 
role of these genes in cancer in research is difficult due to the 
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Figure 7. Common and differential regulatory network hubs. Shown are the Jaccard coefficients of different types of regulatory hubs from the consensus 
networks of each of the six cancers. Columns of each heatmap correspond to one of the cancers, and the rows correspond to a specific regulatory hub. 
The ith row and jth column show the average similarity of the edges of the ith hub from the jth cancer-specific network across all other cancer-specific 
networks. The white-red color map corresponds to the hub being present in the top 1% of an inferred cancer network (column). The white-gray color map 
is for regulators that are not in the top 1%. The plots presented are for (A) common hubs, (B) cancer-specific hubs and (C) differential hubs. (D) Shown 
are the degree distributions of the out degree of regulators in the consensus networks of each cancer. The red line indicates the mean out degree, and 
black line shows the degree threshold for the top 1% hubs.
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limited understanding of mammalian regulatory networks. 
To address this, we used a two-pronged approach: (1) using 
a recently developed regulatory network inference approach 
called MERLIN, that predicts regulators for individual genes 
and modules, we inferred regulatory networks for each of six 
cancer types and (2) performing a systematic comparison of 
modules and networks by integrating curated pathways from 
multiple sources such as Gene Ontology, KEGG, and REAC-
TOME, as well as DNase I hypersensitivity footprints. Our 
analysis approach builds on the idea that both module- and 
network-based characterization of complex transcriptional 
programs are important and have been shown to be useful 
in studies of other complex systems, such as development83 
and immune responses.84 Our analysis revealed several com-
mon and cancer-specific network components. Module-based 
analysis enabled us to describe gene expression across multiple 
tumor samples through a few major patterns of expression. 
We found that in almost all cancer types, there was an over-
representation of immune-related processes, and importantly, 
these were induced. This suggests that the immune system 
is playing an active role in these cancer types. Our findings 
are particularly interesting with respect to the known role of 
the immune system in response to chemotherapy.34–36,85 The 
immune system in general plays an important role both in the 
ability of cancers to develop or not86–88 and in the success of 
therapeutic treatment of cancer.89

Comparison of the networks across different cancer types 
identified a core regulatory network common to all cancers. 
This network included histone proteins, cell cycle regulators, 
as well as immune response regulators predicting a connection 
between these processes in the context of multiple cancers. 
The regulators of the core network were further enriched for 
functional interactions suggesting that the predicted signaling 
and TFs participate in common pathways to regulate down-
stream gene expression patterns in a single framework.

Using the inferred regulatory networks, we were able 
to identify regulatory hub nodes that had a disproportion-
ately higher number of targeted genes than other regulators. 
Among the identified hubs, we found most were “differential 
hubs” that seemed to target a different set of genes in differ-
ent cancers. Several of these differential hubs have already 
been implicated in specific cancer types or are among genes 
that tend to have the largest number of sequence mutations 
in cancers.12 An interesting question is whether these differ-
ential hubs regulate genes in the same processes or whether 
they target different processes and pathways in different can-
cers. We examined this question using the available cancer 
signaling pathways and observed both of these scenarios. It 
is possible that the current set of curated pathways does not 
provide the necessary resolution to specifically identify path-
ways that are differentially modified. Moreover, despite the 
utility of curated gene sets and pathways, they are nevertheless 
incomplete. Thus, a next step would be to couple our observa-
tions with experiments that test the functional significance of 

some of our hubs in the context of different cancer cell lines 
and to identify the mechanisms by which these hubs act on 
their downstream genes.

Our work can be extended in several ways. We have thus 
far examined only gene expression data. Our approach can be 
applied to other functional data that are becoming increas-
ingly available in cancer genomic studies, such as protein and 
phosphoprotein levels. Another direction for future work is 
the integration of small RNA molecules in these networks, 
in order to more comprehensively study both transcriptional 
and posttranscriptional levels of regulation that control cel-
lular states. Finally, we have not integrated somatic mutations 
in our present analysis, and an important next step would be 
to test whether our modules are enriched for mutations in spe-
cific classes of genes.

In summary, we have described a regulatory module 
network–based pan-cancer analysis that enabled us to recover 
known aspects of cancer biology as well as predict novel regu-
lators of cancer-specific transcriptional behavior. As more 
molecular data sets for many different cancer types become 
available, approaches such as ours can be used to identify com-
mon and unique vulnerabilities and can help prioritize net-
work nodes for therapeutic interventions.
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Supplementary Data
Supplementary Figure S1. Summary of consensus mod-

ule enrichments for REACTOME annotations. Shown here 
is a summary of the enrichments of the consensus modules 
of each cancer study for the REACTOME annotations. The 
enrichments summarized here are selected to satisfy two cri-
teria: an FDR ,0.001 and the number of annotated genes 
had to represent 20% of the number of genes in the respec-
tive module. Each heat map shows the number of consensus 
modules (on a scale of 0 to 4 modules) from each cancer study 
(column) associated with each annotation (row).

Supplementary Figure S2. Relative gene expression in 
modules associated with immune system processes. Shown 
here are box plots for each cancer study of the per-sample 
expression values for genes in consensus modules associated 
with immune system processes (REACTOME “Immune 
System” annotation) in red, and for genes in modules not asso-
ciated with the immune system in blue. The median, 25%, and 
75% percentile expression values are shown with each box. 
The average expression values for genes in consensus modules 
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associated with the immune system are mentioned below each 
box plot. Genes in modules associated with immune system 
function (red) have induced gene expression relative to genes 
in the other consensus modules (blue).

Supplementary Figure S3. Summary of consensus mod-
ule enrichments for regulators from DNase I–filtered motif 
instances for six cancer cell lines. Shown here is the pattern 
of enrichments for TF binding in open chromatin regions 
assayed by DNase I footprinting from six cancer cell lines, 
A549, CACO2, HCT116, Ishikawa_E, Ishikawa_T, and 
MCF7. The figure follows the same legend as Figure S1 
replacing the annotation terms with the name of the TF with 
DNase I–filtered motif instances. Each panel corresponds to 
one of the cancers studied in this paper. The rows are ordered 
using optimal leaf order clustering using the number of mod-
ules enriched across all cancers as a distance measure.

Supplementary Figure S4. Summary of consensus 
module enrichments for regulators from DNase I–filtered 
motif instances from the H1 ES cell line. Enrichments for 
TF binding in open chromatin regions from the H1 ES cell 
line. This figure follows the legend of Figure S1, replacing 
the annotation terms with the name of the TF with DNase 
I–filtered motif instances. The enrichments are ordered by 
TF name in alphabetical order from top to bottom shown 
in three panels for clarity. Several developmental and pluri-
potency regulators appear here, notably NANOG, KLF4, 
EP300, and MYC.

Supplementary Figure S5. Five-fold cross-validation 
study of predictive power of consensus networks. Shown 
are the distributions of average correlation values between 
observed and predicted expression levels from five-fold cross-
validation on the consensus network (red) and random net-
works (blue) for each of the cancer studies.
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