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Abstract

Motivation: Identifying mechanism of actions (MoA) of novel compounds is crucial in drug discovery. Careful under-
standing of MoA can avoid potential side effects of drug candidates. Efforts have been made to identify MoA using
the transcriptomic signatures induced by compounds. However, these approaches fail to reveal MoAs in the ab-
sence of actual compound signatures.

Results: We present MoAble, which predicts MoAs without requiring compound signatures. We train a deep learn-
ing-based coembedding model to map compound signatures and compound structure into the same embedding
space. The model generates low-dimensional compound signature representation from the compound structures.
To predict MoAs, pathway enrichment analysis is performed based on the connectivity between embedding vectors
of compounds and those of genetic perturbation. Results show that MoAble is comparable to the methods that use
actual compound signatures. We demonstrate that MoAble can be used to reveal MoAs of novel compounds with-
out measuring compound signatures with the same prediction accuracy as that with measuring them.

Availability and implementation: MoAble is available at https://github.com/dmis-lab/moable

Contact: : sungjoonpark@korea.ac.kr or kangj@korea.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Elucidating mechanism of actions (MoA) of compounds is import-
ant in drug discovery process. Predicting accurate MoAs of com-
pounds can not only improve on-target efficacy but also avoid
potential side effects caused by off-target effects. Without the proper
understanding of MoAs, the success rate of clinical trials of drug
candidates can decrease (Bantscheff et al., 2007; Editorial, 2010;
Wehling, 2009).

One approach to identify MoA of compounds is to conduct
binding affinity assays. This approach can help to identify target
proteins that physically bind to compounds (Davis et al., 2011).
However, experimental assays are usually expensive and time-con-
suming. As an alternative, computational approaches such as mo-
lecular docking or machine learning methods can be used (Li et al.,
2020; Öztürk et al., 2018; Trott and Olson, 2010). However, MoAs
based on binding affinity only focus on the physical interaction be-
tween compounds and target proteins, which neglects the impact of
compounds on cellular phenotype (e.g. transcriptomic signatures).

To date, Connectivity Map (CMap) and Library of Integrated
Network-based Cellular Signatures (LINCS) have provided large-
scale transcriptomic signature datasets, where the transcriptomic
signatures represent differential gene expression profiles in response
to cellular perturbation (Lamb et al. 2006; Subramanian et al.,
2017). The LINCS/L1000 dataset includes 473 647 transcriptomic
signatures corresponding to 25 200 perturbagens (e.g. chemical
compounds, gene knock-down) (Subramanian et al., 2017). This
large-scale transcriptomic signature dataset has provided opportuni-
ties to identify MoAs of compounds reflecting the transcriptomic
cellular phenotype (Keenan et al., 2019; Musa et al., 2018; Pilarczyk
et al., 2019). To reveal MoAs using transcriptomic signatures, one
major approach is to identify pathways whose activities are signifi-
cantly affected by compound treatment. Gene set enrichment ana-
lysis (GSEA) can be applied to infer pathway activity scores by
computing enrichment scores. The enrichment score indicates over-
representation of pathway genes in highly differentially expressed
genes (Khatri et al., 2012; Reimand et al., 2019; Subramanian et al.,
2005).
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Recently, several works (Dugourd and Saez-Rodriguez, 2019;
Ren et al., 2020; Schubert et al., 2018) have claimed the limitation
of computing pathway activity scores using the transcriptomic sig-
natures of pathway genes. This is because gene expression is the con-
sequence of pathway activity and an altered pathway activity is
rarely represented in transcriptomic signatures of pathway genes.
Rather, the pathway activity is usually determined by posttransla-
tion modification (e.g. phosphorylation, acetylation) of signaling
proteins constituting the pathway. Thus, mapping transcriptomic
signatures of pathway genes to compute pathway activities can pro-
duce misleading target pathway hypotheses (Szalai and Saez-
Rodriguez, 2020).

To overcome the challenge, several efforts have been made to util-
ize the transcriptomic signatures of genetic perturbation (GP) such as
gene knock-down and gene knock-out to infer pathway activity
(Pilarczyk et al., 2019; Ren et al., 2020). In the iLINCS study
(Pilarczyk et al., 2019), MoA pathways were identified based on the
connectivity between compound signatures (i.e. transcriptomic signa-
tures of a compound) and GP signatures (i.e. transcriptomic signa-
tures of GP). Genes whose GP signatures are similar to a given
compound signature were selected. Frequently selected genes can be
viewed as potential targets of compounds. To predict MoAs, pathway
enrichment analysis was performed based on the connected GP genes.
Another recent work from Ren et al. (2020) also showed the effective-
ness of using GP signatures in identifying pathway-level MoAs of
compounds. The method computes pathway activity scores by com-
bining the GP signatures of pathway genes. Both studies demon-
strated that the connected GP signatures are more useful to identify
pathway-level MoA of compounds than compound signatures.

Although the aforementioned studies opened a new avenue for
predicting MoAs, these methods have a common limitation. They
fail to predict MoAs when the compound signatures are absent. To
address this limitation, we propose a novel method named MoAble
that can identify MoAs of compounds without requiring actual com-
pound signatures. We applied a coembedding technique to jointly
encode chemical structures of compounds (referred to as compound
structure) and compound signatures into the same latent embedding
space. The coembedding enables generating embedding vectors from
a compound structure where the embedding vector contains com-
pressed representation of the compound signature. To predict path-
way-level MoA using the embedding vectors, we perform pathway
enrichment analysis based on the genes whose GP signature embed-
dings are highly connected with the compound structure embedding,
where the GP signature embedding and compound structure embed-
ding indicate the embedding vector of the GP signature and com-
pound structure, respectively. Pathways that are over-represented
with highly connected GP genes are interpreted as MoAs of com-
pounds. First, using MoAble, we assess whether the coembedding
model can generate reliable embedding vectors that can be used to
predict MoAs. We quantitatively evaluate the prediction perform-
ance of MoAble by comparing with baseline methods that use actual
compound signatures. We demonstrate that MoAble can achieve a
similar prediction performance without using actual compound sig-
natures as the baseline methods.

2 Materials and methods

MoAble aims to predict the MoAs for novel compounds when the
actual compound signatures are not available. Figure 1 illustrates
the overview of MoAble. We trained a deep metric learning-based
coembedding model that jointly encodes the compound structures
and signatures induced by the compounds into the same embedding
space (Fig. 1A). Subsequently, the coembedding model takes a new
compound structure as an input and generates an embedding vector
that represents the compressed representation of the signature
induced by the compound. MoAble then predicts MoAs of the com-
pound based on the connectivity between the compound and GP sig-
natures in the embedding space (Fig. 1B).

2.1 Dataset
We obtained signatures of compounds and GP from the L1000 data-
set provided by the LINCS project (Subramanian et al., 2017). The
L1000 dataset provides gene expression profiles at various normal-
ization levels (levels 1–5). We used level 5 data that represents tran-
scriptomic signatures for 978 landmark genes (i.e. differential gene
expression in response to perturbation). Here, we denote transcrip-
tomic signature as signature for brevity. We selected 282 038 com-
pound signatures corresponding to 20 902 compounds and 192 068
GP signatures corresponding to 8741 genes. The types of GP include
gene knock-down, gene knock-out and over-expression. Compound
signatures were downloaded from Gene Expression Omnibus
(accession number: GEO70138 and GEO92742) (Edgar et al.,
2002). GP signatures were downloaded from https://clue.io/data/
CMap2020\#LINCS2020. For the chemical structure representation
of compounds, we used 2048-bit extended-connectivity fingerprints
(ECFP), which represents topological fingerprints of chemical com-
pounds. Each bit in ECFP indicates the presence of a chemical sub-
structure. We obtained the simplified molecular-input line-entry
system (SMILES) representation of compounds provided in the
L1000 dataset. We used RDKit (http://www.rdkit.org), an open-
source cheminformatics software, to convert the SMILES represen-
tation to ECFP. For evaluation, we split the compound signatures as
follows: 70% for training, 15% for validation and 15% for testing,
with no overlapping compounds in each split dataset. We summar-
ize the statistics of the dataset in Table 1.

2.2 Coembedding of compound structure and signature
Jeon et al. (2019) and Finlayson et al. (2020) have shown the effect-
iveness of deep metric learning to learn similarities between com-
pounds (and between compounds and transcriptomic signatures) in
the embedding space. Inspired by these works, we trained a deep
metric learning-based coembedding model that can map compound
structures and signatures induced by the compound into the same
embedding space. Our method exploits the similarities between
embedding vectors of GPs and those of compounds, so we choose a
deep metric learning-based model which is specialized to measure
the similarity relationship among embedding vectors. After training,
it can generate embedding vectors that represent compressed signa-
ture information induced by the compound. Figure 1A illustrates an
overview of the coembedding model. The coembedding model con-
sists of two neural network encoders. The first encoder network, fstr,
maps input compound structure (ECFP) Xstr 2 R

2048 to latent
embedding vector Zstr 2 R

256. The second encoder network, fsig,
maps input signature Xsig 2 R

978 to latent embedding vector
Zsig 2 R

256. Each encoder consists of four multilayer perceptron
(MLP) layers with a rectified linear unit activation layers between
the MLP layers. We set the number of hidden layer units for fstr and
fsig to 2048–512–256–256 and 512–512–256–256, respectively. To
effectively encode compound structures and signatures simultan-
eously, encoders are optimized with triplet loss (Schroff et al.,
2015). To optimize embedding vectors with triple loss, three class of
embedding vectors are required: anchor, positive and negative.
Here, the compound signature embedding (Zs) is set to anchor, the
compound structure embedding corresponding to the compound of
anchor (Zp

c ) is set to positive and the compound structure embed-
ding of any other compound (Zn

c ) is set to negative. Subsequently,
we optimized the encoders as follows:

max
/;w

XN

i¼1

minðsimðZsigi
;Zstr

p
i
Þ � simðZsigi

;Zstrn
i
Þ � a; 0Þ (1)

where / and w are the parameters of the two encoders and a denotes
a margin indicating distance between positive and negative pairs.
We define the distance between two embeddings as cosine similarity,
and it is given as follows:

simðu; vÞ ¼ u � v
jjujjjjvjj (2)

.
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The optimization procedure allows embedding vectors to be
located close to each other in the embedding space if their signatures
are similar. Also, the compound structures and signatures can be
mapped into the same embedding space. This enables the generation
of embedding vectors that contain signature information induced by
the compound using its structure information alone.

We trained the coembedding model with the Adam optimizer
(Kingma and Ba, 2014) using a learning rate of 0.0001. The mini-
batch size was set to 512. The hyperparameters were optimized
using the validation compounds.

2.3 MoA identification
Figure 1B illustrates the MoA prediction procedure in MoAble.
First, GP signatures are mapped to the coembedding space. Then,
the connectivity between a compound embedding and GP embed-
dings are computed. Genes whose GP embeddings are highly

connected with compound embedding can be viewed as potential
targets for the corresponding compound. For each compound, path-
way enrichment analysis is performed based on the connectivity
scores of GP genes. Highly enriched pathways are considered as po-
tential MoAs of the compound.

2.3.1 Generating GP embedding

After training the coembedding model, we generate embedding vec-
tors of GP signatures. GP signatures indicate signatures after per-
turbation of gene knock-down, gene knock-out and over-expression
experiments. The GP signature is a 978-dimensional vector
Xg 2 R978, that has the same dimension as the compound signature.
We used signature encoder fs to generate the GP signature embed-
ding vectors Zg 2 R256.

2.3.2 Connecting compound and GP

We computed the connectivity score between a given compound
structure and GP signatures using their embedding vectors. Herein,
we define connectivity as the cosine similarity between a compound
structure embedding and a GP embedding vector. The range of co-
sine similarity is [�1, 1], where a higher score indicates that two
embedding vectors represent similar signatures. There can be mul-
tiple GP signatures targeting the same gene. For example, in the
L1000 dataset, knock-down experiments of mTOR were conducted
in diverse cell lines. To connect a compound with GP signatures at a
gene level, we only select the highest connected GP embedding for
each gene. Connectivity score between compound c and GP gene g is
defined as follows:

Sc;g ¼ maxfsimðZc;Z
i
gÞg

N

i¼1
(3)

where N is the number of GP signatures targeting the gene g.
Finally, we could obtain the connectivity scores corresponding to
8741 genes for each compound.

Fig. 1. Overview of MoAble. (A) Coembedding model. The coembedding model takes a compound structure (as ECFP representation) and a compound signature as input. The

coembedding model uses deep metric learning to jointly encode compound structures and signatures into the same embedding space. fstr and fsig indicate the neural network

encoders of a compound structure and a signature, respectively. (B) MoA prediction. MoAs of a given compound are identified based on the connectivity between compound

structure embedding and GP signature embedding. GP signatures are mapped into the coembedding space using the signature encoder (fsig). KD and KO denote knock-down

and knock-out, respectively. Pathway enrichment analysis is performed on the connected genes, and highly enriched pathways are considered to be MoAs of the compound

Table 1. Statistics of compounds and GP signatures used in this

work

Compounds Signatures

Compounds

Training 14 631 201 286

Validation 3135 41 290

Test 3136 39 462

Total 20 902 282 038

Target genes Signatures

GP

Gene knock-down 4345 36 720

Gene knock-out 5157 121 177

Over-expression 4040 34 171

Total 8741 192 068

i378 G.Jang et al.



2.3.3 MoA pathway prediction

In this study, we define MoAs as pathways whose activity is highly
affected by the compound treatment. For each compound, we rank
GP genes based on the connectivity scores with the corresponding
compound structure embedding. Pathway enrichment analysis was
performed with the ranked GP genes. Highly enriched pathways
with statistical significance [e.g. false discovery rate (FDR)<0.1]
are considered as MoAs of a given compound. We used a conven-
tional GSEA method (Subramanian et al., 2005) for pathway enrich-
ment analysis and used KEGG_2019 as pathway gene set. However,
various GSEA methods (Kuleshov et al., 2016; Reimand et al.,
2016) and pathway gene sets (Fabregat et al., 2018; Martens et al.,
2021) can be applied.

3 Results

3.1 Assessment of coembedding model for MoA

identification
We assessed whether connectivity associations between compound
signatures and GP signatures can be reproduced in the coembedding
space (R256). We calculated connectivity scores (i.e. cosine
similarities) between compound signatures and GP signatures, which
produced 8741 connectivity scores for each compound. We also
measured connectivity scores between compound structure embed-
dings and GP signature embeddings. We calculated the correlations
between the connectivity scores of actual signatures and the connect-
ivity scores of embeddings. Figure 2A illustrates the correlation dis-
tributions across 20 902 compounds in L1000 (Pearson correlation,
mean: 0.3988, std: 0.0898, P-value: 1.098e�30) which highlights
the strong correlation between actual signature and embeddings.
Our results show that connectivity associations between compounds
and GP can be retained in the embedding vector space.

We also evaluated whether the coembedding model could gener-
ate embedding vectors that are informative for MoA identification.
After training the coembedding model, we obtained compound
structure embedding vectors of 20 902 compounds provided in
L1000 dataset. UMAP (McInnes et al., 2018) was used to visualize
compound structure embeddings in a low-dimensional vector space
(Fig. 2C). Each point indicates a two-dimensional representation of
compound structure embedding. We investigated whether clusters
observed in the UMAP plot share similar MoAs. We obtained MoA

labels for 5552 compounds from clue.io (https://clue.io/). Examples
of MoA labels are ‘AKT inhibitor’, ‘mTOR inhibitor’ and ‘EGFR in-
hibitor’. We can observe that compounds with similar MoAs are
aligned close to each other. For example, mTOR inhibitors, PI3K
inhibitors and AKT inhibitors are clustered in the embedding space.
Interestingly, mTOR, AKT and PI3K are topologically related to
each other in signaling pathways. Overall, our analysis shows the
coembedding model’s ability to generate compound embedding vec-
tors useful for MoA identification.

3.2 Evaluation of MoA prediction
3.2.1 Baseline methods

MoAble uses compound structures and generates embedding vectors
that contain compressed information of compound-induced signa-
tures. It predicts MoAs based on the compound structure embed-
ding. Thus, our proposed method does not require actual signature
of compounds. We compare MoAble with methods that use actual
signature when predicting MoAs. We use three baseline methods:
TS-978, TS-12328 and TS-connectivity. TS-978 and TS-12328 dir-
ectly use signature values to perform pathway enrichment analysis.
TS-978 and TS-12328 use the signature values of 978 landmark
genes and 12 328 genes, respectively. Note that, in the L1000 data-
set, signatures corresponding to 978 landmark genes are only experi-
mentally measured. From 978 genes, 12 328 signatures are
mathematically inferred. TS-connectivity is similar to the iLINCS
method (Pilarczyk et al., 2019) where pathway enrichment analysis
is performed based on connected GP signatures. We use cosine simi-
larity to compute the connectivity between a compound and a GP
signature. The difference between TS-connectivity and our method
is that TS-connectivity uses actual signatures to compute connectiv-
ity scores between a compound and GP signatures whereas our
method uses embedding vectors of a compound structure and GP
signatures.

3.2.2 Quantitative evaluation

In order to quantitatively evaluate the performance of MoA predic-
tion, MoA labels of compounds were required. We obtained the
MoA labels from KEGG Drug database (Kanehisa et al., 2017).
KEGG Drug database provides target pathways of compounds and
we used the target pathways as true MoA labels. We could obtain
true MoA labels for 4412 compounds. Of the 4412 compounds, 940

Fig. 2. Assessment of coembedding model for MoA identification. (A) Distribution of correlation between connectivity scores of actual signatures and those of embeddings.

The mean and std of correlations are 0.3988 and 0.0898, respectively. (B) Regression plots of four compounds with high correlation, BTNX, I-606051, BRD-K96041907 and

BRD-K66884694. The x axis and y axis indicate the connectivity score of embeddings and that of actual signatures. (C) Two-dimensional representation of compound struc-

ture embedding vectors. The compounds targeting the same or similar MoA are circled
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compounds were overlapped with L1000 compounds. As transcrip-
tomic signatures for 940 compounds were available, we could use
the 940 compounds to quantitatively compare our method with the
baseline methods. We provide the list of compounds and MoA labels
used in this study in Supplementary Data.

To quantitatively evaluate the performance of MoA prediction,
we followed the evaluation criteria described in Nguyen et al.
(2019). We evaluated the ability of MoA prediction models to iden-
tify true MoA pathways of compounds. Each MoA prediction model
predicted MoA pathways with P-values, where pathways with low
P-values are considered to be the candidates of MoAs.

Figure 3A shows violin plots indicating the distribution of
P-values of true MoA pathways across 940 evaluation compounds.
MoAble (median P-value¼0.03) achieved much lower median
P-value than TS-978 (median P-value¼0.381), TS-12328 (median
P-value¼0.113), and was comparable to TS-connectivity (median
P-value¼0.01). We observed that the connectivity-based methods
(MoAble, TS-connectivity) are more effective than methods using
compound signature directly in terms of identifying MoA pathways.
Although we did not use actual signatures to predict MoAs, we
found MoAble to show predictive power similar to that of TS-con-
nectivity that used actual signatures.

To evaluate MoAble’s performance on novel compound struc-
tures, we validated MoAble using 283 compounds that were previ-
ously excluded from the training set. We defined the 283
compounds as ‘unseen’ compounds. When we examined the struc-
tural similarities between training compounds and unseen com-
pounds, most of the unseen compounds showed low similarities to
training compounds (mean¼0.1418, SD¼0.0721, Supplementary
Fig. S1). Tanimoto similarity was used to measure the structural
similarity. We further defined ‘unseen-hard’ as the compound set in
the unseen compounds with the similarity <0.3 to training com-
pounds. It was highly selective to obtain the ‘unseen-hard’ com-
pounds since the compounds with the similarity <0.3 to every
training compound were only about 10% of the unseen compounds
(n¼28). Figure 3B and C shows the violin plots representing the dis-
tribution of P-values of true MoA pathways across 283 unseen com-
pounds and 28 unseen-hard compounds respectively. According to
Figure 3B and C, MoAble outperformed TS-978 and TS-12328 and
showed performance comparable to TS-connectivity. We found
MoAble was able to accurately predict the MoAs of even for the un-
seen compounds without using actual signatures.

We further investigated the effectiveness of MoAble on anti-
cancer compounds as signaling pathways are usually misregulated in
various cancers. Compounds with anatomical therapeutic chemical
code (ATC) of ‘L01’ were selected as anticancer compounds. Eighty-
eight out of 940 evaluation compounds were selected. Figure 3D
shows the violin plots for the P-values of true MoA pathways across
the anticancer compounds. We observed that a median P-value of 0
was achieved for both MoAble and TS-connectivity and a median P-
value of 0.439 and 0.227 was achieved for TS-978 and TS-12328,

respectively. These results highlight a distinctive improvement of
connectivity-based methods (MoAble and TS-connectivity) com-
pared to compound signature-based methods (TS-978 and TS-
12328).

We validated MoAble for an additional 2674 compounds. We
obtained the compounds from KEGG drug database. These com-
pounds have MoA labels but without signatures in the L1000 dataset.
Thus, only MoAble was able to predict MoAs for these compounds.
Figure 3D illustrates the P-values of true MoA pathways for 2674
compounds (left) and for 94 anticancer compounds (right). Median
P-value of 0.03 and 0 were achieved for 2674 compounds and anti-
cancer compounds respectively. We highlight that MoAble consist-
ently achieved low P-values for unseen compounds and showed
improved prediction performance on anticancer compounds. Table 2
provides the median P-values of MoAble and baseline methods for
each evaluation compound set.

We further validated MoAble with expanded MoA labels.
Following a similar approach as Ren et al. (2020) and Nguyen et al.
(2019), we expanded MoA labels by including pathways that con-
tain target proteins of compounds. Target proteins of compounds
were downloaded from clue.io. After expanding MoA labels, we
obtained a total of 1153 compounds for evaluation. We computed
area under the receiver operating characteristic curve (AUROC) for
each compound. AUROC is computed by calculating the true posi-
tive rate (TPR) against the false positive rate (FPR) with various
FDR thresholds.

Figure 4A illustrates box plots for the AUROC of 1153 com-
pounds. MoAble (median AUROC¼0.642) achieved the highest
AUROC scores, followed by TS-connectivity (median
AUROC¼0.61), TS-978 (median AUROC¼0.507) and TS-12328
(median AUROC¼0.485). Also, MoAble achieved lower standard
deviation than TS-connectivity (MoAble SD¼0.203, TS-connectiv-
ity SD¼0.213).

When we evaluated using only 343 unseen compounds, similar
results were observed (Fig. 4B). MoAble (median AUROC¼0.62)

Fig. 3. P-value distribution of true MoA pathways. For each method, resulting P-values of true MoA pathways are illustrated in violin plots. We compared MoAble with the

three baseline methods: TS-connectivity, TS-978, TS-12328. (A) P-value distribution of true MoA pathways across 940 evaluation compounds. (B) P-value distribution across

283 unseen compounds. (C) P-value distribution across 28 unseen-hard compounds. (D) P-value distribution across 88 anticancer compounds. (E) P-value distribution across

2674 novel compounds and 94 novel anticancer compounds

Table 2. Median P-value of the MoAble and baseline models across

compounds sets

MoAble TS-connectivity TS-978 TS-12328

Evaluation (#:940) 0.03 0.01 0.381 0.113

Unseen (#:283) 0.03 0.01 0.375 0.113

Unseen-hard (#:28) 0.017 0.01 0.406 0.106

Anticancer (#:88) 0.0 0.0 0.439 0.227

Novel (#:2674) 0.03 — — —

Novel anticancer (#:94) 0 — — —

Note: The lowest P-value for each evaluation compound set is high-

lighted in bold.
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achieved highest median AUROC, followed by TS-connectivity (me-
dian AUROC¼0.597), TS-978 (median AUROC¼0.516) and TS-
12328 (median AUROC¼0.476). Moreover, MoAble (median
AUROC¼0.677) achieved highest AUROC scores, followed by TS-
connectivity (median AUROC¼0.646), TS-978 (median
AUROC¼0.484) and TS-12328 (median AUROC¼0.496) on the
31 unseen-hard compounds (Fig. 4C). For 55 anticancer compounds
out of 1153 compounds, MoAble significantly outperformed TS-
978 and TS-12328. Moreover, MoAble was able to achieve similar
accuracy with TS-connectivity, despite not using actual signatures.
Table 3 provides the median AUROC scores of MoAble and base-
line methods for each evaluation compound set.

3.2.3 Case study: identifying MoAs of SOS1-KRAS inhibitor

We conduct a case study with a drug candidate named BI-3406. It is
designed for pan-KRAS inhibitor (Hofmann et al., 2021). BI-3406
binds to SOS1, which is an upstream molecule of KRAS and inhibits
KRAS activity by blocking the interaction between SOS1 and
KRAS. Combined with MEK inhibitor (trametinib), BI-3406
showed effectiveness in KRAS-driven cancers (Hofmann et al.,
2021). The study provided compound signatures of BI-3406 (cell
line: MIA-PaCa-2, timepoint: 4, 10 and 24 h, GEO accession num-
ber: GSE128385). Thus, we were able to compare MoA results
obtained from MoAble with the ones obtained from actual signa-
tures of BI-3406.

We examined whether MoAble was able to identify the RAS sig-
naling pathway as a significant pathway. As shown in Table 4,
MoAble successfully identified RAS signaling as a significant path-
way at FDR<0.1 (NES: 1.508, FDR: 0.0534). However, when we
performed pathway enrichment analysis directly with the actual sig-
nature of BI-3406 (referred to as TS), it failed to identify RAS signal-
ing as a significant pathway (NES: 1.208, P-value, FDR: 5309). In
addition, MoAble was able to identify MAPK pathway, ERBB path-
way (a downstream and an upstream pathway of KRAS, respective-
ly) as significant pathways whereas prediction with TS failed to
reveal these pathways. The case study shows MoAble accurately
identified BI-3406 related MoAs whereas it fails when performing
pathway enrichment analysis directly with actual signatures of BI-
3406.

4 Discussion

CMap and LINCS-L1000 studies provide huge opportunities to re-
veal the MoAs of compounds. The large-scale signatures from
CMap and LINCS-L1000 studies are useful resources to identify
MoAs; the signatures consider the impact of compounds on tran-
scriptomic phenotype. However, for the compounds whose signa-
tures do not exist in CMap, LINCS-L1000 or other resources such
as GEO repository, researchers are required to measure the signa-
ture experimentally, which is expensive and time-consuming. With
the development of virtual screening, it can be utilized to screen

more than 10 billion compounds in the early stage of drug discovery.
However, it is almost impossible to experimentally measure the
transcriptomic signatures of these compounds to reveal the MoA.

In this study, we present MoAble, a novel framework to identify
MoAs of compounds without requiring actual signatures while tak-
ing into account the effect of compounds in transcriptional response.
We used a coembedding model to jointly encode compound struc-
tures and signatures into the same latent embedding space. This
allows the use of compound structures to generate embedding vec-
tors representing the signature induced by the compound. To predict
MoAs of a compound, GP signatures were mapped into the coem-
bedding space. We computed the connectivity scores between com-
pound structure embedding and GP signature embeddings. For a
given compound, genes whose GP embeddings are highly connected
to the compound structure embedding are considered to be potential
targets of the compounds. We performed pathway enrichment ana-
lysis based on the connected GP genes to identify MoAs of
compounds.

We first confirmed that the embedding vectors of compounds are
predictive features for MoA prediction. We observed that the associ-
ation between compounds and GP signatures was retained in the
coembedding space. UMAP visualization showed that compounds
with similar MoAs can be clustered in the coembedding space. To
quantitatively evaluate the performance of MoA prediction, we
compared MoAble to the three baseline methods that use actual sig-
natures. We demonstrated that MoAble can predict MoAs with the

Fig. 4. Area under the receiver operating characteristic (AUROC) of expanded MoA labels. The x axis represents each MoA prediction methods. (A) AUROC across 1153

evaluation compounds. (B) AUROC across 343 unseen compounds. (C) AUROC across 31 unseen-hard compounds. (D) AUROC across 55 anticancer compounds

Table 4. MoA results of BI-3406 using MoAble and actual com-

pound signature

MoAble TS

Pathway NES FDR NES FDR

Ras signaling pathway 1.508 0.0534 1.208 0.5309

MAPK signaling pathway 1.889 0.0035 �1.546 0.1108

ErbB signaling pathway 2.334 0.00012 1.062 0.7038

Note: The lowest FDR for each pathway is highlighted in bold.

Table 3. Median AUROC of the MoAble and baseline models

MoAble TS-connectivity TS-978 TS-12328

Evaluation (#1153) 0.642 0.610 0.507 0.485

Unseen (#343) 0.620 0.597 0.516 0.476

Unseen-hard (#31) 0.677 0.646 0.484 0.496

Anticancer (#55) 0.712 0.725 0.479 0.484

Note: The highest AUROC score for each evaluation compound set is

highlighted in bold.
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same accuracy as that of using the actual signatures. Similar results
were observed when we expanded MoA labels and used AUROC as
the evaluation metric. We confirmed that predicting MoAs with the
connected GP signature is more effective than using the compound
signature directly. We also observed that connectivity-based meth-
ods are specifically more effective in anticancer compounds, than
compound signature-based methods. Further studies are needed to
establish the generalizability of connectivity-based MoA prediction
for other diseases.

Future research can improve MoAble by utilizing more GP signa-
tures. Increasing GP signatures can yield more robust pathway en-
richment analysis by increasing the number of matched genes with
pathway gene sets. In addition, MoAble can be improved by identi-
fying MoAs a in cell-specific manner. This can be done by training
the coembedding model to learn compound structure embeddings in
a cell-type specific way. We expect MoAble to be useful in generat-
ing mechanistic hypotheses for novel compounds whose MoAs are
unknown.
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