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Objectives: Microsatellite instability (MSI) status is an important hallmark for prognosis
prediction and treatment recommendation of colorectal cancer (CRC). To address issues
due to the invasiveness of clinical preoperative evaluation of microsatellite status, we
investigated the value of preoperative 18F-FDG PET/CT radiomics with machine learning
for predicting the microsatellite status of colorectal cancer patients.

Methods: A total of 173 patients that underwent 18F-FDG PET/CT scans before
operations were retrospectively analyzed in this study. The microsatellite status for each
patient was identified as microsatellite instability-high (MSI-H) or microsatellite stable
(MSS), according to the test for mismatch repair gene proteins with immunohistochemical
staining methods. There were 2,492 radiomic features in total extracted from 18F-FDG
PET/CT imaging. Then, radiomic features were selected through multivariate random
forest selection and univariate relevancy tests after handling the imbalanced dataset
through the random under-sampling method. Based on the selected features, we
constructed a BalancedBagging model based on Adaboost classifiers to identify the
MSI status in patients with CRC. The model performance was evaluated by the area under
the curve (AUC), sensitivity, specificity, and accuracy on the validation dataset.

Results: The ensemble model was constructed based on two radiomic features and
achieved an 82.8% AUC for predicting the MSI status of colorectal cancer patients. The
sensitivity, specificity, and accuracy were 83.3, 76.3, and 76.8%, respectively. The
significant correlation of the selected two radiomic features with multiple effective
clinical features was identified (p < 0.05).

Conclusion: 18F-FDG PET/CT radiomics analysis with the machine learning model
provided a quantitative, efficient, and non-invasive mechanism for identifying the
microsatellite status of colorectal cancer patients, which optimized the treatment
decision support.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common
malignancies in China and ranks the fifth in terms of cancer
mortality (1). Microsatellite instability (MSI) is an essential
molecular hallmark of hereditary non-polyposis colorectal
cancer (HNPCC) and Lynch syndrome (LS). It also occurs in
15% of sporadic colorectal cancers and is often associated with
the deficiency of the mismatch repair (MMR) system caused by
the failure of one of the primary MMR genes, including MSH2,
MLH1, MSH6, or PMS2 (2). CRCs with high MSI (MSI-H) are
usually located in the right colon, more common in stage II, and
relatively infrequent among metastatic tumors (3).

MSI is an essential factor in predicting the prognostic
response and patient outcome. Retrospective studies
demonstrated that patients with MSI-H CRCs had a better
prognosis than those with stable microsatellite (MSI-L or MSS)
tumors (4, 5), particularly in the cases of locally advanced stage II
and stage III CRCs. However, the patients with MSI-H CRCs had
a poor prognosis for stage IV CRCs, which constituted about 2–
4% of all metastatic CRCs.

MSI contributed to the selection of the treatment strategy in
CRC patients. For the chemotherapy, some randomized
controlled trials showed no benefits from fluorouracil-based
adjuvant chemotherapy in the patients with MSI-H CRCs,
while adjuvant chemotherapy improved overall survival in
patients with MSI-L or MSS tumors (6–8). Therefore, patients
with stage II CRCs were recommended not to receive adjuvant
chemotherapy in MSI status. Besides, MSI status also played a
significant role in the selection of immunotherapy since MSI
CRCs revealed highly upregulated expression of multiple
immune checkpoints, including programmed death-1 (PD-1),
programmed death-ligand 1 (PD-L1), and cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), which caused
tumors infiltrated by immune cells, primarily CD8+ tumor-
infiltrating lymphocytes (TILs), T helper 1 (Th1) CD4+ TILs,
and macrophages. Based on the principle involving the blockade
Abbreviations: AUC, area under the curve; CEA, carcinoembryonic antigen;
CRC, colorectal cancer; CT, computed tomography; CTLA-4, cytotoxic T
lymphocyte-associated antigen 4; dMMR, mismatch repair-deficient; FBW, fixed
bin width; FDA, Food and Drug Administration; FDG, fluorodeoxyglucose; FN,
false negative; FP, false positive; GLCM, gray-level co-occurrence matrix; GLRLM,
gray-level size zone matrix; Hb, hemoglobin; HHL, high, high, and low frequency;
HNPCC, hereditary non-polyposis colorectal cancer; IHC, immunohistochemical
staining; LHH, low, low, and high frequency; LIME, Local Interpretable Model-
Agnostic Explanations model; LoG, Laplacian of Gaussian; LS, lynch syndrome;
MMR, mismatch repair; MSI, microsatellite instability; MSI-H, microsatellite
instability-high; MSI-L, microsatellite instability-low; MSS, microsatellite stable;
MTV, metabolic volume; NGS, next-generation sequencing; NPV, negative
predicted value; PCR, polymerase chain reaction; PD-1, programmed death-1;
PD-L1, programmed death-ligand 1; PET, positron emission tomography; pMMR,
proficient mismatch repair; PPV, positive predicted value; RF, random forest; ROI,
region of interest; sklearn, scikit-learn; SUV, standardized uptake value; SUVmax,
the maximum standardized uptake value; SUVmean, the mean standardized
uptake value; T2WI, T2 weighted images; Th1, T helper 1; TIL, tumor-
infiltrating lymphocyte; TLG, total lesion glycolysis; TN, true negative; TP, true
positive; TRIPOD, transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis; VOI, volume of interest.
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of the immunoregulatory mechanisms, a trial of anti-PD-1
therapy called pembrolizumab showed that the immune-
related objective response rate and immune-related
progression-free survival rate were 40 and 78%, respectively,
for mismatch repair-deficient (dMMR) CRCs (9). This trial was
granted approval by the U.S. Food and Drug Administration
(FDA) for patients with unresected or metastatic, MSI-H or
dMMR solid tumors, including CRCs, in May 2017 (10).

Since MSI serves as a marker for predicting patient prognosis
and responding to chemotherapy and immunotherapy, the
identification of MSI status is critical for CRC patients. So far,
various forms of testing methods have been applied in screening
tumors for MSI or dMMR, including polymerase chain reaction
(PCR) testing, immunohistochemical staining (IHC), and next-
generation sequencing (NGS) (11). Testing for five DNA
sequences by PCR and screening for loss of four MMR
proteins (MLH1, PMS2, MSH2, and MSH6) expression by
IHC are two standard reference methods recommended for
detecting the MSI in CRC, both of which are complementary
(12). MMR protein expression by IHC is performed to detect the
absence or loss of a particular protein within the nucleus of the
tumor cells, which can help identify the gene mutations resulting
in truncation or increased degradation of the protein. However,
in IHC, false negatives caused by missense mutation, and
neoadjuvant chemoradiation in rectal cancer will reduce the
staining intensity for MSH6. Moreover, compared with PCR
testing, IHC results might be more affected by tissue fixation
conditions. As for the PCR testing, it evaluates tumors by testing
the repetitiveness of five DNA sequences, consisting of two
mononucleotide loci (BAT25 and BAT26) and three
dinucleotide loci (D2S123, D5S346, and D17S250). At least two
unstable markers can define tumors as MSI-H. Compared with
IHC, PCR requires normal tissue in addition to tumor tissue for
comparison, and tumor microdissection, which makes the entire
approach more expensive and complicated. Since those methods
are all based on tumor tissues, the invasive biopsy is the only
method for preoperative evaluation of MSI status for now.
Therefore, the development of a non-invasive and objective
method for assessing the MSI status will provide more
diagnostic information for the precise treatment of CRCs.

Radiomics is considered a promising research field due to its
potential to unveil disease characteristics through a non-invasive
manner that fails to be appreciated by the naked eyes (13–15). It
mines visual and subvisual quantitative imaging markers from
high-throughput quantitative imaging features through machine
learning and statistical modeling, followed by further
quantitative analysis and analyzing the correlation with the
clinical features. Furthermore, since radiomic features could
reflect the underlying pathophysiology, and objectively and
comprehensively evaluate the tumor heterogeneity, radiomics
analysis has been applied within the clinical decision support
system to improve the diagnostic, prognostic, and predictive
accuracy (16).

Due to the non-invasive and low-cost properties of radiomics, it
has been widely studied in various oncological fields with
promising results. For example, radiomics has been reported to
July 2021 | Volume 11 | Article 702055
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be able to predict the disease-free survival in early-stage lung cancer
(17), prospectively measure the risk of breast cancer recurrence
(18), and assess the treatment response after neoadjuvant therapy
for rectal cancer (19). However, the prediction of MSI status in
CRCs based on PET/CT-based radiomics is yet to be investigated.
Thus, in this study, we aimed to investigate the efficiency of
combining the preoperative 18F-FDG PET/CT radiomics with a
machine learning model for predicting the microsatellite status of
patients with colorectal cancer.

MATERIALS AND METHODS

Patients Inclusion Criteria
We retrospectively investigated 262 patients with colorectal
cancer in our hospital who underwent 18F-FDG PET/CT for
initial staging before surgery, including 243 CRC patients
obtained from January 2010 to July 2018 and 19 CRC patients
recruited from February 2018 to March 2020. The surgery type
(radical or palliative) was defined according to the tumor
location and the stage of patients within 1 week after the PET/
CT examination. Moreover, there were two exclusion criteria of
the patients, namely, (1) the patients received neoadjuvant
chemotherapy or radiotherapy due to clinically local advanced
colorectal cancer and (2) the pathological results lacked IHC for
MMR protein even though the patients received the operation.
Therefore, for the patients within the 2010–2018 period, only 154
patients out of 243 patients diagnosed with colorectal cancer
were enrolled in the present study, 141 of whom were MSS
patients and 13 were MSI-H patients, while for the 2018–2020
period patients, they were all with stable microsatellite status and
participated in the study. All patients were given written and
informed consent for PET/CT procedures. This study was
approved by the Ethics Committee of Fudan University
Shanghai Cancer Center (No. 1909207-14-1910), and the data
were anonymously analyzed.

Assessment of MSI Status
The pathological results were all evaluated by professional
pathologists, while the tumor stage was defined according to
the fourth edition of the World Health Organization
classification of tumors of the digestive system (20). The test
for MMR gene proteins (MLH1, MSH2, MSH6, and PMS2) with
IHC methods was used for the evaluation of the presence or
absence of a functional MMR system (21). MSI-H CRCs were
identified indirectly as tumors with loss of an MMR protein,
while the tumors with intact MMR proteins could be considered
as proficient MMR (pMMR) and were classified as MSS or MSI-
low (MSI-L). If the result of testing was still in doubt, it was
confirmed by the number of unstable microsatellite markers
among five microsatellite markers within the PCR test. MSI-H
status was identified if the number was above two.

Medical Image Acquisition and
Reconstruction Parameters
All the patients were fasted for 4–6 h before PET/CT to make
blood glucose level under 11.1 mmol/L at the time of FDG
Frontiers in Oncology | www.frontiersin.org 3
injection. The examination was initiated 1 h after intravenous
injection of 18F-FDG (7.4 MBq/kg (0.2 mCi/kg) of body weight).
18F-FDG PET/CT scanning was performed on a Siemens
biograph 16HR PET/CT scanner (Knoxville, TN, USA), with
4.1 mm transaxial intrinsic spatial resolution (full width at half
maximum) and 16.2 cm axial field width. Firstly, an unenhanced
low-dose CT scan using a 120 kV automatic mA modulation
range of 130–370 mA was acquired. Immediately after the CT
scan, a PET scan was acquired in a three-dimensional mode. PET
acquisition time was 3–4 min per bed position. The PET data
were reconstructed iteratively by applying the CT data for
attenuation correction, and the co-registered images were
displayed on a workstation. The images were reviewed and
manipulated in a multi-modality computer platform (Syngo,
Siemens, Knoxville, TN, USA). Two experienced nuclear
medicine physicians, unaware of clinical information, evaluated
the images independently. The reviewers reached a consensus in
cases of discrepancy. The region of interest was delineated on the
primary tumor site. The maximum standardized uptake
(SUVmax), mean standardized uptake (SUVmean), and
metabolic volume (MTV) were measured from 3D isocontour
at 40% of maximal pixel value, while total lesion glycolysis (TLG)
was calculated by the multiplication among SUVmean
and MTV.

Medical Image Delineation
ITP-SNAP software (Version 3.6, USA) (22) was used for
delineating the ROIs on PET images independently by two
attending physicians from the department of nuclear medicine,
who were blinded to the pathologic and MSI status results. The
delineation was conducted on PET axial images layer by layer
and corresponded to CT images based on the coordinate
transformation and interpolation. Only the primary colorectal
tumors were marked, and the ROIs were confirmed through
discussion of two physicians when facing the controversy,
especially for the tumors of which the contours were adjacent
to the bladder and normal guts.

PET/CT Radiomics Analysis With
Machine Learning
Three principal stages of radiomics analysis were illustrated in
Figure 1, namely, (1), feature extraction, (2) predictive
modeling for imbalanced data, and (3) evaluation and
statistical analysis. Firstly, after the manual delineation of the
volumes of interest (VOIs) from PET images and mapping
the VOIs to CT images, the feature extraction methods would
be applied to automatically extract the quantitative imaging
features from both PET and CT VOIs. The second stage was to
select more representative and discriminative features through
the multivariant and univariant approach, respectively, after
handling the imbalanced dataset. A machine learning predictive
model was then constructed based on the selected features to
classify the MSI status of colorectal cancer patients. In the last
stage, we emphasized the significance of the selected features
by analyzing their correlations with clinical features and
conducting case studies.
July 2021 | Volume 11 | Article 702055
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Radiomic Feature Extraction
The first principal stage was extracting the high-quantitative
imaging features from the input PET/CT VOIs. The specific
radiomic feature extraction process was summarized in
Supplementary Material Figure S1. Before the extraction of
these high-quantitative features, we applied different
preprocessing settings to PET and CT images, respectively, to
adapt to different image characteristics of these two modalities.
PET images were discretized using a fixed bin width (FBW) of
0.25 (23–25) after applying the SUV normalization based on the
body weights and the injection dose of the patients. Furthermore,
other common parameters were applied as suggested in (23, 24,
26) to ensure the reproducibility of this process. As for CT
images, the feature computation was performed at resampled
voxel dimensions of 2 × 2 × 2 mm3 (26) and a bin width of 25
Hounsfield units (27, 28). We also shifted 1,000 voxel arrays for
CT images to prevent negative values from being squared and
add 10 extra paddings for large sigma-valued LoG-filtered CT
images. Besides, the standard parameters for CT images were
applied as suggested in (29).

There were 2,492 quantitative features extracted from PET/
CT VOIs in total, of which 1,246 features were from PET VOIs
and 1,246 features were from CT VOIs, through the open-source
PyRadiomics package (29). The feature extraction procedure is
compliant with the Imaging biomarker standardization initiative
(30). The quantitative imaging features extracted from PET and
CT VOIs are categorized into four subgroups. (1) Shape features
are used to describe the shape of the focused region of interest
(ROI) and its corresponding geometry properties such as
volume, maximum surface. (2) First-order statistics features are
used to describe the distribution of individual voxel values
Frontiers in Oncology | www.frontiersin.org 4
without considering the spatial relationships, such as
the maximum, minimum value of the voxel intensities on the
images (31). (3) Texture features are used to describe the
statistical inter-relationships between neighboring voxels (32),
which provide a spatial arrangement, such as gray-level co-
occurrence matrix (GLCM), gray-level size zone matrix
(GLRLM). (4) Higher-order statistics features are obtained
through the statistical methods after applying filters or
mathematical transforms to the images, which aims to identify
the repetitive or non-repetitive patterns, or highlighting the
details, such as wavelet transform and Laplacian of Gaussian
(LoG) that can extract areas with increasingly coarse texture
patterns (31).

Feature Selection
The second stage started with handling the imbalanced training
dataset and then followed by selecting representative and
discriminative features through the multivariant and univariant
approach sequentially. The entire 2010–2018 period CRC
patients (n = 154) were stratified randomly split into training
and independent validation cohorts according to the ratio of 6:4,
which defines the study as a type 2a in the TRIPOD statement
(33). The 19 additional 2018–2020 period patients with CRC
were further used to enlarge the independent validation cohorts.

As illustrated in Figure 2, firstly, we applied the random
under-sampling method (34) for handling the imbalanced
dataset and obtained k sub-datasets with the same sample size
of different target classes. This procedure ensured the selected
features were equally significant to different prediction targets.
Then, in multivariant feature selection, we exploited the
ensemble paradigm (35, 36) to improve the robustness and the
FIGURE 1 | The overall flowchart of predicting the microsatellite instability status of the colorectal cancer patients.
July 2021 | Volume 11 | Article 702055
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reproducibility of the selection process through the following
steps: (1) We applied the random forest feature selection method
(RF) with feature importance >0.01 to each sub-dataset and
obtained k sub-feature sets. (2) We set a cut-off threshold to
remove the contingency among these k sub-feature sets and the
feature with less significance to both target classes. Only the
feature that occurred among these feature sets multiple times
(>5) was chosen and formed an ensemble feature set.

The univariant feature selection was deployed to remove the
remaining redundant features from the internal properties and
form the output feature set based on the ensemble feature set.
Firstly, the relevancy-based analysis was conducted by evaluating
the performance of each feature based on the BalancedBagging
classifier incorporated with Adaboost as the base classifier. Then,
the non-redundancy-based analysis was conducted based on the
results from the Pearson correlation analysis among the selected
radiomic features within the ensemble feature set.

Modeling and Validation
The third stage was constructing the machine learning predicted
model and validating its performance. The machine learning
model was constructed based on the selected feature set using
the BalancedBagging algorithm incorporated with Adaboost
as the base classifier and trained on the training dataset. To
validate the robustness and stability of the machine learning
Frontiers in Oncology | www.frontiersin.org 5
model, we only evaluated the model performance on the
independent validation cohort due to the imbalanced nature of
the dataset. The performance of the model was primarily evaluated
by the AUC, while other metrics, including the sensitivity,
specificity, positive predicted value (PPV), and negative
predicted value (NPV), were used to detect the bias in the model.

Statistical Analysis
Statistical analysis included result interpretation of the
machine learning model and correlation analysis of selected
radiomic with clinical features. To aid feature interpretations
in both feature analysis and case studies, the Local Interpretable
Model-Agnostic Explanations model (LIME) (37) was applied
using its derived weight coefficients. It explains the contribution
of each selected feature, thus gaining insights into the prediction
model and assisting clinicians with trustworthy decisions. The
LIME model assigned the higher weight coefficients to the
features that the prediction results were more sensitive to
through observing the changes of the results after eliminating
several interpretable components.

To evaluate the correlation between the selected radiomic and
clinical features, we applied the Pearson correlation method to
measure the association between two continuous variables, while
the Point-Biserial correlation was used for the measurement
between one continuous variable and one categorical variable.
FIGURE 2 | The flowchart of feature selection for selecting representative non-redundant and relevant features, as well as handling imbalanced data.
July 2021 | Volume 11 | Article 702055
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All statistical analyses were implemented using the scikit-learn
(sklearn) package (38) under Python version 3.6.4, and a two-
sided P-value < 0.05 was considered statistically significant.
RESULTS

Demographics of Patients
A total of 173 patients were finally enrolled in the study, of whom
160 were with MSI-L or MSS status and 13 were with MSI-H
status. The middle age of the population was 61, ranging from 24
to 85 years old. According to the pathological results of the
patients, about 38% of patients had extramural vascular invasion
or perineural invasion. Besides, almost half of the population had
a higher carcinoembryonic antigen (CEA) than the normal level
(5.2 ng/ml). The clinicopathologic characteristics of the patients
(n = 173) are summarized in Table 1, and the P-value was
derived from the univariable correlation analysis between each
characteristic and MSI status.

Results of Feature Selection
The result for each step of feature selection was illustrated in
Figure 3. The entire feature selection was applied on 2,518
features, including 2,492 radiomic features and 26 clinical
features. There were four features selected during the
Frontiers in Oncology | www.frontiersin.org 6
multivariant feature selection process, including one clinical
feature, one feature obtained from the PET images that applied
the wavelet filter, and two features obtained from wavelet
decomposed CT images. The output feature set was composed
of one CT feature and one PET feature after conducting the
relevancy-based analysis and non-redundancy-based
analysis sequentially.

Performance of the Radiomics Signature
Since the original dataset was imbalanced, conducting the cross-
validation method on the training group would cause a
significant increase in the imbalanced ratio of the dataset.
Therefore, the machine learning model was evaluated only
with the independent validation method. During this
procedure, the model correctly predicted the MSI status for 63
patients with 58 TN and 5 TP and incorrectly predicted the MSI
status for 19 patients (18 FN and 1 FP). The machine learning
model achieved a successful diagnosis in 76.8% (63/82) of
patients’ MSI status, and the AUC of the model reached 82.8%
with only two selected radiomic features. Its sensitivity and
specificity were 83.3 and 76.3%, respectively, which stood for
that the model did not show a trend of bias. The detailed
radiomics signature performance is shown in Table 2, while
the detailed parameter settings for each step were summarized in
Supplementary Table S1 for replication studies.
TABLE 1 | Demographic and clinical characteristics of study subjects.

Characteristics Total Population (n = 173) MSI-H (n = 13) MSS (n = 160) P-value

Age, median (range) 61 (24~85) 61 (32~70) 61 (24~85) 0.454
Gender, n (%) 173 13 160 0.157
Stage, n (%) Male 99 (57.2) 5 (38.5) 94 (58.8)

Female 74 (42.8) 8 (61.5) 66 (41.2) <0.001
I 11 (6.4) 3 (23.1) 8 (5.0)
II 46 (26.6) 7 (53.8) 39 (24.4)
III 65 (37.6) 3 (23.1) 62 (38.8)
IV 51 (29.4) 0 (0.0) 51 (31.8)

CEA (ng/ml), n (%) 0.286
≥5.2ng 83 (48.0) 11 (84.6) 72 (45.0)
<5.2ng 90 (52.0) 2 (15.4) 88 (55.0)

Location, n (%) 0.022
Ascending 18 (10.4) 2 (15.4) 16 (10.0)
Descending 21 (12.1) 3 (23.1) 18 (11.2)
Ileocecum 12 (6.9) 3 (23.1) 9 (5.6)
Rectum 63 (36.4) 4 (30.7) 59 (36.9)
Sigmoid 48 (27.8) 1 (7.7) 47 (29.4)
Transverse 11 (6.4) 0 (0.0) 11 (6.9)

Extramural vascular invasion, n (%) 0.189
+ 55 (31.8) 2 (15.4) 53 (33.1)
− 118 (68.2) 11 (84.6) 107 (66.9)

Perineural invasion, n (%) 0.034
+ 75 (43.4) 2 (15.4) 73 (45.6)
− 98 (56.6) 11 (84.6) 87 (54.4)

40% MTV, mean (std) 20.64 (16.85) 25.75 (15.66) 20.22 (16.88) 0.258
SUVmax, mean (std) 14.65 (5.84) 15.25 (6.21) 14.60 (5.81) 0.699
SUVmean, mean (std) 8.80 (3.40) 8.99 (3.35) 8.79 (3.40) 0.839
TLG, mean (std) 188.74 (188.21) 254.79 (201.13) 183.37 (186.09) 0.190
Lymph nodes, mean (std) 2.60 (3.49) 0.38 (0.84) 2.78 (3.56) 0.017
July 2
021 | Volume 11 | Article
The bold value means the value is smaller than 0.05 (< 0.05), and the corresponding feature is statistical correlated to the MSI status.
702055

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Radiomics for MSI Status Prediction
Feature Analysis and Interpretation
There were two features identified by the sequentially combined
multivariant and univariant feature selection process, namele,
one PET feature (wavelet-LHH_firstorder_Skewness_PET) and
one CT feature (wavelet-HHL_firstorder_RootMeanSquared_
CT). The details of these two selected features are shown in
Table 3. It was relatively straightforward to observe that the two
selected features were all from the wavelet decomposed images,
which indicated that they were more predictive in comparison
Frontiers in Oncology | www.frontiersin.org 7
with the features obtained from the original images. The CT
feature (HHL) captured the image texture information with
high-pass filters along the first two dimensions, then filtered
along the z-dimension with a low-pass filter, while the PET
feature (LHH) captured the texture information through filtering
along the x-dimension with a low-pass filter, followed by filtering
the last two dimensions with high-pass filters.

Furthermore, the contribution of each feature to the model was
illustrated in Figure 4, which indicated the normalized importance
TABLE 3 | The definitions for the features selected for the predictive model construction.

Feature name Feature definition and meaning

Formula
wavelet-
HHL_firstorder_RootMeanSquared_CT Fstat,rms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNv
k=1(X

2
gl,k )

Nv

s

where Nv represents the number of voxels,Xd represents the set of intensities of the Nv voxels included in the ROI intensity
mask, which could be denoted as Xgl = fXgl,1,Xgl,2 … Xgl,Nv

g :
Root mean square is the square-root of the mean of all the squared intensity values, which is a measure of the magnitude
of the image values.
Formula

wavelet-
LHH_firstorder_Skewness_PET Fih,skew =

1
Nv
SNv
k=1(Xd,k − m)3

( 1Nv
SNv
k=1Nv (Xd,k − m)2)32

where Nv represents the number of voxels, Xd is the set of discretized intensities of the voxels in the ROI intensity mask,
which could be denoted as Xd = fXd,1,Xd,2,…Xd,Nv

g and m is the average discretized intensity of Nv voxels in the ROI
intensity mask. Skewness is a measure of the asymmetry of the distribution of values about its mean by applying a wavelet
filter, and its value could be positive or negative depending on the position that its tail is elongated and the position that the
mass of the distribution is concentrated.
A B C D

FIGURE 3 | The results of feature selection in different stages, namely, (A) feature extraction, (B) multivariant feature selection, (C) relevancy-based feature selection,
and (D) non-redundancy-based feature selection stage.
TABLE 2 | Evaluation results with different output feature sets on independent validation dataset.

Feature Accuracy AUC Sensitivity Specificity

CEA (0–5.2 ng/ml) 0.610 0.692 0.5 0.618
CT feature only 0.817 0.832 0.5 0.842
PET feature only 0.439 0.684 0.667 0.421
CT + PET 0.768 0.828 0.833 0.763
CEA + CT + PET 0.744 0.803 0.667 0.750
July 2021 | Volume 11 | Art
The bold feature value represented the combined radiomic features that achieved high prediction accuracy for both target classes, while the bold numerical value represented the highest
value of each column.
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of each feature in three different situations, namely, (1) for all cases
in the validation dataset, (2) for all MSS status cases in the
validation dataset, and (3) for all MSI-H cases in the validation
dataset. It was pretty evident that the PET_Skewness feature had a
higher contribution than the CT_RootMeanSquared feature in all
situations with contributions of 56.1, 55.3, and 61.8%, respectively,
and it contributed most while predicting the MSI-H status in
patients with CRC.

Case Study
We selected two CRC patients with different MSI statuses from
the independent validation dataset to demonstrate the
performance of the predictive model. The visual analysis and
the machine learning model for the two selected cases were
illustrated in Figure 5, including the 3D model of each patient
constructed by the input PET/CT images, the value of the
selected features, and the weight coefficients derived by the
LIME model for each feature. The specific feature values for
each case were indicated in the table on the top right corner of
each panel in Figure 5, while the specific numbers near the bar
chart were the weight coefficients applied in the prediction of
these two typical clinical cases, whose linear combination with
the corresponding feature values provided the prediction results.
The value of the orange bar indicated the increase of the
corresponding features was supporting the decision of MSI-H
status, while the value of the blue bar was the opposite. The
prediction results were determined by the side with a higher
value. The model quantitatively combined the selected features
with their diverse weight coefficients for the final prediction and
correctly predicted for both cases.

Correlation Analysis Between Selected
Radiomic Features and Clinical Features
Figure 6 indicates the selected two radiomic features were
statistically correlated to nine clinical features. The blue figures
show that the PET_Skewness feature correlated to five clinical
features, while the yellow figures indicate the CT_RootMean
Squared feature was statistically correlated to the remaining four
Frontiers in Oncology | www.frontiersin.org 8
clinical features. Since most of the statistically correlated clinical
features were medically defaulted to be effective in diagnosing
microsatellite statuses such as location and CEA (0–5.2 ng/ml), it
could well explain the low number of the selected features and the
significance of the selected features.
DISCUSSION

This study aimed to investigate the value of preoperative 18F-
FDG PET/CT radiomics signature with the machine learning
model to predict MSI status in CRC patients. Our main findings
were indicated as follows: (1) We provided an efficient, objective,
and non-invasive mechanism by establishing and validating a
radiomics predictive model (AUC 82.8%) using preoperative 18F-
FDG PET/CT to identify MSI status in patients with CRC before
surgery. (2) Two selected radiomic features were used for
constructing the predictive model, and they were identified to
be significantly correlated with multiple clinical predictive
features that were previously proved to be associated with MSI
status. Our radiomics model established a new method for
testing MSI status, which assisted in predicting prognosis and
choosing a proper treatment strategy in CRC patients.

We firstly investigated the characteristics of the patients with
different MSI statuses in the dataset, with a primary focus on
different CRC stages, and then compared with the other studies to
point out the clinical significance of our study. In colorectal cancer,
MSI status correlates with survival prognosis and the decision-
making in adjuvant chemotherapy and immunotherapy.
Therefore, it is crucial to identify the MSI status for individual
patient to achieve survival benefit through a non-invasive method.
The incidence of MSI-H in sporadic colorectal cancer was about
15% (39), while only 7.5% (13/173) of patients were withMSI-H in
our study, which might be caused by more stage IV patients
(29.4%, 51/173) enrolled. The previous report showed that below
5% of metastatic CRCs were with MSI-H in stage IV CRCs (5),
while no patients were with MSI-H in 51 stage IV patients in our
study. Consistent with the previous finding that MSI-H CRCs
A B C

FIGURE 4 | Feature importance for predicting MSI status of patients with CRCs in different situations. (A) Feature importance for predicting all the patients in the
validation set. (B) Feature importance only for predicting the patients with MSS in the validation set. (C) Feature importance only for predicting the patients with MSI-
H in the validation set.
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were more frequent in stage II (40), the rate of MSI-H in stage II
CRCs (53.8%) was considerably higher compared to that in other
stages. Most of the studies demonstrated that MSI-H CRCs were
more commonly localized in the right colon (2). Moreover, in this
study, more MSI-H lesions were located in the left colon, which
could be caused by the large population of rectal cancer. Our
results also revealed that less perineural invasion occurred in
patients with MSI-H than ones with MSI-L or MSS, which was
pointed out in a study on immune contextures of gastric cancer
that a high level of CD3+ and CD8+ tumor-infiltrating
lymphocytes (TILs) were associated with perineural invasion
and MSI-H (41).
Frontiers in Oncology | www.frontiersin.org 9
Our proposed radiomic model based on 18F-FDG PET/CT is
non-invasive and objective when compared with two
conventional invasive methods recommended for identifying
MSI status, namely, (1) testing the loss of four MMR proteins
expression by IHC and (2) detecting the repetitiveness of DNA
sequence by PCR methods. Immunohistochemistry was a low-
cost technique and was routinely used in the department of
pathology. However, the sensitivity of IHC would be influenced
and reduced by the fixation of tissue samples and neoadjuvant
chemoradiation. While for the PCR method, a panel of five
microsatellite repeats, called Bethesda panel, was widely used for
detecting MSI status. MSI high was defined as the detection of at
A

B

FIGURE 5 | Case studies with two patients: (A) a patient with MSI-H status and (B) a patient with MSI-L or MSS status. Both patients were predicted correctly by
the machine learning model. The top right section for each panel indicated the feature value of the corresponding case and the approximated feature weights
interpreted by LIME. The bottom right section demonstrated the 3D model constructed based on the input CT and PET images from different viewpoints, while the
red section represented the tumor of the patients.
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least two markers while comparing marker length between
normal and tumor tissue. Besides, poor sensitivity of the PCR
method could be caused by tumor samples with low levels of
tumor cells, which were achieved by biopsies, or from mucinous
tumors and tumors after neoadjuvant chemoradiation (42). Since
18F-FDG PET/CT-based radiomics was not influenced by the
treatment approach, routine baseline imaging could provide
additional diagnostic information for the identification of MSI
status through a non-invasive approach.

Since 18F-FDG PET/CT reflected anatomic morphology and
glucose metabolism, which contained lots of information about
prognosis and treatment response, we primarily conducted a
univariant association analysis among metabolic PET parameters
(SUVmax, SUVmean, MTV, and TLG) for different MSI
statuses, and it indicated no significant difference between
MSI-H and MSI-L or MSS (p = 0.374, 0.389, 0.102, 0.141).
However, gastric cancer research exhibited that MSI-H tumors
caused higher SUVmax on 18F-FDG PET/CT imaging (43). The
difference between that research and ours was that gastric cancer
with MSI-H tended to be larger-sized and histologically
heterogeneous, which was different from colorectal cancer (44).
Besides, more early-stage patients were enrolled in that research,
while there were more stage III and IV patients enrolled in our
study. Few reports about the association of PET/CT and MSI
status illustrated the importance and necessity of our study. The
present results indicated that the conventional metabolic PET
parameters were not a significant clinical predictor for
MSI status.

After the excavation of image datum, our study analyzed all
stage I–IV patients, filtered out only two features, one from PET
Frontiers in Oncology | www.frontiersin.org 10
(LHH) and one from CT (HHL), and achieved a successful
diagnostic efficiency using the machine learning model. Its AUC,
accuracy, sensitivity, and specificity were 82.8, 76.8, 83.3, and
76.3%, respectively. Pernicka (45) proposed a radiomics
approach that achieved an AUC of 0.792 through a
combination of clinical and radiomic features, while Fan et al.
(46) combined six radiomic features and 11 clinical features to
establish a model to predict MSI status in stage II CRC and
achieved the AUC, accuracy, sensitivity, and specificity of 0.752,
0.765, 0.663, 0.842. These results showed the value of radiomic
features of preoperative imaging of primary tumors for
predicting microsatellite status.

Even though the radiomics-based model developed by
Pernicka (45) achieved a relatively high AUC (0.792), it
showed an unsatisfactory specificity (0.316) on the
independent validation cohorts, which might be caused by the
high number of features (42 features out of 198 patients)
employed within the model, including 40 intensity-based
radiomic features, and two clinical features (age and tumor
location). According to the theory of Chalkidou et al. (47), the
number of employed features was expected no more than 15% of
the patients involved in the study to reduce the false detection
rates and prevent the model from overfitting. As compared with
17 features employed in Fan et al.’s study, our PET/CT study
selected only two radiomic features and achieved comparable
diagnostic results. Among the six selected radiomic features in
their study (46), consisting of one kurtosis feature (first-order
statistical feature class) and five Gabor filter features (higher-
order statistical features), five shared the same features class as
the two selected features (wavelet filter) in our study. According
FIGURE 6 | Data distribution between the selected radiomic features and their statistically correlated clinical features. Point mark and cross mark indicate the
patients from the 2010–2018 and 2018–2020 periods, respectively. (A) indicates the PET feature, while (B) indicates the CT feature. For gender and location, we
applied the Point-Biserial correlation method, while for the other clinical features, we applied the Pearson correlation method.
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to the feature importance ranking demonstrated within their
study (46), the five higher-order statistical features contributed
more to the prediction of MSI-H status. In addition, to better
support the clinical decision, our framework integrated the
interpretation capacity through (1) gaining insights into each
prediction based on the LIME model (37) to obtain a better
understanding of the radiomics-based model for MSI status
identification, and (2) conducting the statistical analysis with
clinical features and histological characteristics, including tumor
stage, perineural invasion, and extramural vascular invasion.

We emphasized the reliability and the significance of our
selected features through statistical correlation analysis with the
clinical features. According to the results shown in Figure 6, the
Skewness_PET feature was correlated to five predictive clinical
features, namely, gender, CEA, and three PET metabolic
parameters (MTV, SUVmax, and SUVmean); while the
RootMeanSquare_CT feature was correlated to four predictive
clinical features, namely, MTV, TLG, Hb, and location. In
previous researches, colorectal cancer with MSI was associated
with female gender (2, 48), abnormal CEA, and right-side tumor
location. Our results showed that were more female patients with
MSI than male patients. Female patients were more likely to have
MSI, which was found in colorectal cancer and gastric cancer (49).
Carcinoembryonic antigen (CEA) is an important biomarker in
predicting colorectal cancer progression. A prospective study in
Indian populations demonstrated that a strong positive correlation
was found between CEA and MSI status (50), and both could
predict the prognosis of CRC. Our study also found that more
patients with elevated CEA showed MSI-H (Table 1). Although
the single PET metabolic parameter could not predict MSI status
precisely, we observed that our selected radiomic features were
correlated to several PET metabolic parameters. It was obvious
that the filtered features were valuable in clinical prediction.
Through the integration of these clinical features, including the
PET metabolic parameters, our machine learning model realized
the possibility of predicting MSI status by simple two features
from PET and CT, respectively.

CONCLUSION

In conclusion, we established a radiomics predictive model that
incorporated 18F-FDG PET/CT radiomic signatures and clinical
features to provide a non-invasive and objective mechanism to
identify MSI status in patients with CRC preoperatively. The two
selected PET/CT radiomic features, each significantly correlated
with multiple clinical features, achieved high diagnostic
performance, which potentially facilitated the individualized
treatment and prognosis prediction.
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