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Abstract: Climate change is regarded as one of the major factors enhancing the transmission intensity
of dengue fever. In this study, we estimated the threshold effects of temperature on Aedes mosquito
larval index as an early warning tool for dengue prevention. We also investigated the relationship
between dengue vector index and dengue epidemics in Taiwan using weekly panel data for 17 counties
from January 2012 to May 2019. To achieve our goals, we first applied the panel threshold regression
technique to test for threshold effects and determine critical temperature values. Data were then
further decomposed into different sets corresponding to different temperature regimes. Finally,
negative binomial regression models were applied to assess the non-linear relationship between
meteorological factors and Breteau index (BI). At the national level, we found that a 1◦C temperature
increase caused the expected value of BI to increase by 0.09 units when the temperature is less than
27.21 ◦C, and by 0.26 units when the temperature is greater than 27.21 ◦C. At the regional level, the
dengue vector index was more sensitive to temperature changes because double threshold effects
were found in the southern Taiwan model. For southern Taiwan, as the temperature increased by 1◦C,
the expected value of BI increased by 0.29, 0.63, and 1.49 units when the average temperature was less
than 27.27 ◦C, between 27.27 and 30.17 ◦C, and higher than 30.17 ◦C, respectively. In addition, the
effects of precipitation and relative humidity on BI became stronger when the average temperature
exceeded the thresholds. Regarding the impacts of climate change on BI, our results showed that the
potential effects on BI range from 3.5 to 54.42% under alternative temperature scenarios. By combining
threshold regression techniques with count data regression models, this study provides evidence
of threshold effects between climate factors and the dengue vector index. The proposed threshold
of temperature could be incorporated into the implementation of public health measures and risk
prediction to prevent and control dengue fever in the future.
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1. Introduction

Dengue fever is a mosquito-borne communicable disease transmitted through the bite of female
Aedes mosquito infected with dengue virus serotypes (DENVs 1–4) of the Flaviviridae family. The
disease is currently considered the most widely distributed and rapidly spreading mosquito-borne
viral disease in the world. Dengue fever has been now reported in over 124 countries and regions in
the world, with an estimated 390 million DENV infections and 250,000 deaths occurring worldwide
each year [1–3].

Many factors contribute to enhance of the transmission intensity of dengue. For example,
increasing population, international tourism, global trading, and uncontrolled urbanization are
considered important factors that could explain the rapid global spatial spread of dengue [4,5].
Additionally, regional expansion of the disease could be attributed to lack of public health infrastructure
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and inadequate knowledge about dengue fever [6,7]. In the context of these socioeconomic factors, the
interactions between three spheres, namely human, mosquito, and virus factors in a given country,
need to be associated with suitable weather and climate conditions before dengue fever can be
established [8,9]. However, climate conditions do not directly influence the incidence of dengue.
Instead, the larval development time, larval and adult survival, and duration of the gonotrophic cycle
of the major dengue vector, Ae. aegypti, are directly affected by climactic factors such as ambient
temperatures, rainfall, and relative humidity [10,11]. Many previous studies have indicated that
meteorological parameters play an important role in increasing the risk of dengue transmission,
depending on local ecology [12–16]. As there is no effective vaccine against dengue fever, dengue
vector control remains the key measure for the prevention of Ae.-aegypti-transmitted diseases. Currently,
the World Health Organization (WHO) recommends vector surveillance as a routine practice for
predicting dengue outbreaks and evaluating disease control in dengue-endemic countries [17]. Using
different statistical approaches such as regression coefficients, odd ratios, and rate ratios, many previous
studies have provided evidence for positive correlations between vector indices (e.g., Breteau (BI),
container (CI), and house indices (HI)) and human dengue cases [18–20]. However, some studies have
concluded that there is no significant correlation between vector indices and dengue [21–23].

The relationship between dengue incidence and climate change has been extensively studied, but
so far little attention has been paid to the threshold effects of climate on dengue vector indices. For
policy purposes, it is important to construct a reliable alert system for checking and tracing whether a
threshold effect of temperature on vector index exists in order to effectively reduce dengue risk. By
monitoring the average temperature to see whether it has reached the threshold temperature or not,
dengue fever prevention plans could be better prepared to avoid disease outbreaks. Therefore, in this
study, we aimed to estimate the threshold effects of temperature on the Breteau index and to explore
how this entomological index and the incidence of dengue fever are related in Taiwan. Our findings
can provide valuable information for policy-makers in the implementation of public health measures
to prevent and control dengue fever in the future. To fulfill our research goals, the specific objectives of
the study were defined as (1) to examine the threshold effects of meteorological factors on a dengue
vector index (BI); (2) to investigate the relationship between BI and the number of confirmed dengue
cases; and (3) to explore the potential impacts of temperature on the BI dengue vector index under
future climate change scenarios.

Evidence has shown that climate–dengue associations may vary within-country/-region or even
within-province [9,13,24]. Therefore, our empirical models included a nationwide model and a
southern Taiwan model, including Tainan, Kaohsiung, and Pingtung counties, for comparison purpose.
By combining the panel threshold regression technique with count data models, we estimated the
non-linear relationship between temperature and mosquito larval index (BI). To proceed, we first
employed Hansen’s panel threshold model [25] to test for threshold effects and determine critical
temperature values. Corresponding to different temperature regimes, data were then decomposed
into different sets and negative binomial regression models were applied to assess the non-linear
relationship between meteorological factors and BI. We also explored how the number of confirmed
cases of dengue fever and vector surveillance data are related in Taiwan. Finally, climate change
scenarios simulated by the Taiwan Climate Change Projection and Information Platform (TCCIP) were
factored into the estimated coefficients to estimate the potential impacts of future climate change on
the BI dengue vector index in Taiwan.

2. Background to Dengue Fever

2.1. Dengue Fever in Taiwan

Dengue fever is geographically distributed in tropical and subtropical regions. To date, most
dengue outbreaks have been reported in countries of the Americas, South-East Asia, and Western
Pacific regions [26]. The highest-risk zones are in Asia, representing about 70% of the total global
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burden of dengue disease, followed by Africa (16%) and the Americas (14%) [2]. In Taiwan, historical
epidemics of dengue were documented in 1902, 1915, and 1922 in Penghu Islet; in 1924, 1927, and
1931 in southern regions; and in 1942–1943, spreading throughout the whole island of Taiwan [27].
As a result of worldwide programs for controlling malaria and dengue in simultaneously endemic
areas after World War II (WWII), dengue fever was absent from Taiwan for some time after 1944 [28].
However, serious dengue outbreaks were recorded again in 1981 (13,000 reported cases) on the islet of
Hsiao-Liu Chiu, Pingtung (Hsieh, 1982; Wu, 1986). After that, a DENV-1 epidemic occurred during the
1987–1988 period in southern Taiwan. Among 10,420 reported cases, the total number of indigenous
cases was 5,336, with 241 cases of dengue hemorrhagic fever, including 19 deaths [27].

According to the computerized database of the surveillance system by Taiwan’s Center for
Disease Control (Taiwan-CDC) [29], in the period of 2006 to 2012, there were 10,094 confirmed cases of
dengue virus infections, or an average of about 1442 cases per year. However, from 2012 to 2018, the
Taiwan-CDC recorded 63,471 confirmed cases of dengue, or an average of about 9067 cases per year.
Thus, the annual average number of dengue cases has increased by 529% in the past seven years
compared with the period from 2006 to 2012.

2.2. Dengue and Climate Change

Climate change is likely to expand the geographical distribution of several vector-borne human
infectious diseases [30]. The risk of dengue transmission is increased by warming climates, as the
growth and development of mosquitoes are significantly influenced by temperature and humidity [2].
Focks et al. [31] found that mosquito egg survival rate varied significantly when temperature is within
the range of 22 to 34 ◦C. In another study conducted by Rowley and Graham [32], Ae. aegypti females
were found to be sustainably able to fly between 15 and 32 ◦C. The optimal flight temperature, in terms
of duration and distance flown, was found to be 21 ◦C, while the maximum flight speed (34.1 m/min)
was recorded at 32 ◦C and 50% humidity. In addition to general activity and host-seeking behavior,
favorable conditions for mosquitoes to initiate probing and blood-feeding have also been studied based
on the difference between average environment temperature and host temperature (37 ◦C). Bishop and
Gilchrist [33] reported a relatively high percentage of Ae. aegypti females imbibing blood at 42 ◦C, when
the difference between average temperature of the environment and the blood meal was 14 ◦C (71%),
than when the temperature of the blood and the environment were the same. The lower temperature
limit at which Ae. aegypti has been found to cease biting is 15 ◦C and temperature at which they are the
most active is 28 ◦C [34].

Ambient temperature and rainfall are also important factors that directly affect the development
of dengue virus in major mosquito vectors Ae. aegypti and Ae. albopictus. Climate change will not
only affect the rate of mosquito development, but also the virus incubation time [35]. In other words,
climatic factors influence dengue ecology both directly and indirectly by affecting mosquito growth
dynamics, virus replication, and mosquito–human interactions [9].

2.3. Quantitative Studies on Climate–Dengue Relationship

Many studies have found associations between climate conditions and the transmission of dengue.
According to their findings, temperature, rainfall, and relative humidity have been identified as the
most important climate variables related to the transmission of dengue. Additionally, mosquito larval
indices have been widely used to predict the transmission of dengue. For example, Hwang [36] explored
the relationship between Aedes mosquitoes and dengue fever epidemics in Taiwan in 1988–1990. The
distribution and density of two different types of Aedes (aegypti and albopictus) were assessed in his
study. The results indicated that the larval and adult density of Aedes aegypti and the larval density of
Ae. albopictus are correlated with temperature, rainfall, and relative humidity. Increases in Aedes density
were positively correlated to increases in temperature and rainfall. The peak of the Aedes density
was also directly related to rainfall. Furthermore, the number of dengue fever cases was significantly
correlated with seasonal population fluctuations and the regional density of Ae. aegypti.
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It was found that the number confirmed cases during the 1987–1988 dengue outbreak in Taiwan
was positively correlated with the Breteau index of Ae. aegypti [37]. Tseng et al. [38] studied how
meteorological variables, Breteau index, and reported cases of dengue fever were related in Taiwan
from January 2000 to February 2006. They tried to investigate how climate conditions influence
mosquito density level at the 1st stage, and then estimated the relationship between dengue fever
cases and density level in the 2nd stage. They found that climate conditions have significant impacts
on dengue. For instance, when the temperature increased by 1%, the number of dengue patients in
Kaohsiung and Pingtung increased by 5.75 and 11.83%, respectively.

Chen et al. [39] used a generalized additive model (GAM) which allowed Poisson regression to
be fitted as a sum of a nonparametric smooth function of predictor variables to estimate the linear
relationship between precipitation and dengue fever in Taiwan during the 1994–2008 period. They
found that time-lagged effects following precipitation up to 350 mm were significantly correlated with
increased risk of dengue.

Fan et al. [40] conducted a meta-analysis of 33 qualified articles to access the dengue risk associated
with temperature change at a global level. Multiple linear regression and multivariate Poisson models
were used in the study. Their results indicated that there is a positive correlation between the
temperature and dengue. They concluded that the dengue incidence will increase by 35% per 1 ◦C
increase while the average temperature is between 23.2 and 27.7 ◦C.

Xiang et al. [15] examined the temperature–dengue relationship in Guangzhou, China during
the 2005–2014 period by using a piecewise linear spline function. The study found that the optimal
temperature for transmission of dengue fever is 21.6–32.9 ◦C. Dengue cases started to increase when
the temperature exceeded 21.6 ◦C, and then dropped dramatically when the temperature exceeded
32.9 ◦C. They also found that relative humidity was negatively correlated with dengue transmission
when the daily relative humidity exceeded 79%.

Some recent studies have also included spatial component in modeling climate-related spread
of dengue. For example, Yu et al. [41] proposed a spatiotemporal dengue fever prediction approach
based on Bayesian maximum entropy analysis to estimate the climatic effects on dengue distribution
in southern Taiwan. Applying a space–time Poisson process based on the surveillance data obtained
for the 2002–2006 period, they found significant positive correlations between rainfall, minimum
temperature, and dengue incidence. The predicted spatiotemporal dengue fever distribution was also
very close to the actual distribution of dengue cases reported for the year 2007.

In addition to climate conditions, population density and urbanization are also considered
important driving factors for dengue transmission. For example, Tseng et al. [38] indicated that
population density has a positive and significant impact on the number of reported dengue cases for
most counties in Taiwan. In addition, Gubler [5] claimed that rapid population growth in tropical
urban areas often provides ideal ecological conditions for Ae. aegypti numbers to increase.

In general, different analytical approaches are applied depending on the distributional assumptions
(e.g., Poisson, normal) and the spatial and/or temporal dynamics of the response. While many previous
studies have assumed that the relationship between climate conditions and dengue transmission is
linear in their models, a few studies, including Wu et al. [16], Descloux et al. [42], Chien and Yu [43],
and Bultó et al. [44], concluded that the relationship between climate and dengue should be non-linear.
Therefore, we also took non-linear relationships between climate and dengue into account when
estimating the potential threshold effects of climate factors on dengue vector index. Our findings
can provide important policy implications for the implementation of public health measures and risk
prediction to prevent and control dengue fever in the future [15,16].
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3. Estimating the Threshold Effects of Temperature on Dengue Vector Index

3.1. Dataset

The panel dataset covered the period from January 2012 to May 2019 for 17 counties and islets,
including surveillance data on dengue case, entomological indices, and data on meteorological and
population density. Below is a brief description of the dataset:

Dengue case surveillance data: In Taiwan, dengue fever is classified as a notifiable infectious disease
and suspected cases must be reported to a clinic for diagnosis within 24 hours. Probable cases are defined
as patients with body temperature above 38 ◦C and with least two of the following dengue-related clinical
symptoms: rash, retro-orbital pain, leukopenia, myalgia, arthralgia, and hemorrhagic manifestations.
In Taiwan, the dengue case surveillance system includes active surveillance (e.g., fever infrared
thermal screening at airports) and passive surveillance (e.g., hospital-based reporting systems) for the
comprehensive and effective surveillance of dengue infection. Epidemiological surveys of confirmed
cases are conducted by local primary health centers. Suspected cases are confirmed by detecting
dengue virus and differentiating virus serotypes using laboratory diagnosis. Nucleic acid identification
of the dengue virus is identified by reverse-transcriptase (RT) polymerase chain reaction (PCM)
(one-step real-time RT-PCR), serological testing on single or paired serum samples by dengue-specific
envelope and membrane specific immunoglobulin M (IgM) and IgG antibody-capture enzyme-linked
immunosorbent assay (with the exclusion of Japanese encephalitis virus infection), or virus isolation [45].
In this study, we used weekly confirmed dengue fever cases, which included indigenous cases and
imported cases, obtained from the web-based National Infectious Disease Statistics System [29] under
the Notifiable Disease Surveillance System (NDSS) of the Taiwan Center for Disease Control.

Entomological surveillance data: Since the Stegomyia indices are considered one of the most important
measurements for the monitoring of dengue vector populations [17], we used the Breteau index (BI),
which is the number of containers positive for Ae. aegypti larvae and pupae per 100 houses, as the
dependent variable in our model. Surveillance of dengue-fever-carrying mosquito populations has
been set up since the dengue outbreak in the southern counties of Taiwan in 1988. For all counties
and cities, vector surveillance activities including mosquito species distinction, mosquito habitat
recognition, and vector sampling are conducted by trained staff following the guidelines recommended
by the World Health Organization [1]. Each community is considered a surveying unit (e.g., one unit
in Kaohsiung County including 50–100 households was randomly selected for inspection [46]). Based
on the household density and the average number of households positive for Ae. aegypti (from
historical entomological data), the risk level of each surveying unit is determined. Furthermore, larval,
pupae, and adult vector surveys for monitoring vector density, distribution, and breeding habitats are
conducted for both indoor and outdoor areas. Depending on whether the surveying unit is classified
as a high-, medium-, or low-risk area, the according inspection frequency will be weekly, monthly, or
bi-monthly, respectively. The relevant surveillance data were retrieved from Taiwan National Infectious
Disease Statistics System, Centers for Disease Control [47]. As the inspection date and time varied
across cities and townships in Taiwan, the data extracted included a huge combination of daily average
BI values. We reorganized the county-level BI dataset and converted daily data into weekly data to
ensure the consistency of start-day and end-day of each week in the dengue surveillance data.

Meteorological data: The meteorological variables included daily mean temperature, daily mean
accumulative rainfall, and daily mean relative humidity. The data were systematically retrieved from
the Central Weather Bureau (CWB), Taiwan [48]. We calculated the average values of available weather
data from different stations in each county. Daily weather data were then aggregated to weekly data.

Others: Other explanatory variables included population density data, regional total population,
and total area data, which were retrieved from the Department of House Registration, Ministry of
Interior (MOI), Taiwan.

Descriptive statistics of these variables are shown in Table 1.
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Table 1. Descriptive statistics of variables used in analyses

Region Dengue Fever
(Cases) BI Temperature (°C) Humidity

(%)
Precipitation

(mm)
Population

Density (per km2)

Nationwide

Mean 9.65 1.51 23.457 77.06 5.59 1225.36
St. Dev 118.81 1.93 4.77 6.78 10.47 2233.55

Max 3416 30.44 32.56 98.86 123.14 9956.10
Min 0 0 0 46.86 0 61.79

Southern

Mean 52.55 3.48 25.44 74.25 5.56 719.15
St. Dev 278.95 3.16 3.77 5.73 12.99 299.13

Max 3416 30.44 31.33 94.43 105.86 995.42
Min 0 0 13.21 55.86 0 296.20

Note: St. Dev denotes standard deviation, Max denotes maximum value, Min denotes minimum value.

3.2. Estimating Temperature Thresholds

Temperature is widely considered the most important climatic factor for dengue incidence
prediction, as it plays a more critical role in dengue transmission than other meteorological
factors [13,39,49]. Therefore, we focused on examining the non-linear relationship between dengue
vector index and temperature in this study. To search for two or more regimes endogenously,
Hansen’s [25] threshold model was employed to test whether or not there exist threshold effects
between BI and temperature.

Following Hansen (1999), the structure of the single-panel threshold model used was as follows:

yit = ui + β′1xitI(qit ≤ γ) + β′2xitI(qit > γ) + eit (1)

where the data are from a balanced panel; i and t denote indices of the individual (1 ≤ i ≤ N) and time
(1 ≤ t ≤ T), respectively; yit and the threshold variable qit are scalars; xit is a k vector of explanatory
variables; I(·) is an indicator function; ui is the fixed effect (or heterogeneity of individuals); and the
error term eit is assumed to be independent and identically distributed, eit ∼ iid

(
0, σ2

)
. Equation (1)

can be rewritten as follows.
yit = ui + β′xit(γ) + eit (2)

where β′xit(γ) =

{
β′1xitI(qit ≤ r)
β′2xitI(qit > r)

.

The data were separated into two regimes, whereby the threshold variable qit was less than
or greater than the threshold value γ. The two regimes had different regression slopes β′1 and
β′2, respectively.

Averaging Equation (2) over time led to

yit = ui + β′xi(γ) + ei (3)

where yi = 1/T
T∑

t=1
yit, xi = 1/T

T∑
t=1

xit, and ei = 1/T
T∑

t=1
eit.

Subtracting Equation (3) from (2) led to

y∗it = β′x∗it(γ) + e∗it (4)

or, in vector form

y∗i =


y∗i2
...

y∗iT

, x∗i (γ) =


x∗i2(γ)

...
x∗iT(γ)

, and e∗i =


e∗i2
...

e∗iT
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We stacked the data over individuals into Y*, X*, and e*, and then derived Equation (5) to estimate
threshold effects.

Y∗ =


y∗1
...

y∗N

, X∗(γ) =


x∗1(γ)

...
x∗N(γ)

, and e∗ =


e∗1
...

e∗N

 (5)

Y∗ = β′X∗(γ) + e∗.

Ordinary least-squares (OLS) method was used to estimate β for a given γ.

β̂(γ) = (X∗(γ)′X∗(γ))−1X∗(γ)′Y∗. (6)

The vector of regression residuals was

ê(γ) = Y∗ −X∗(γ)β̂(γ), (7)

which was minimized for SSE to estimate γ:

SSE1(γ) = ê∗(γ)′ê∗(γ) (8)

where
γ̂ = arg min SSE1(γ) (9)

The estimated slope coefficient was β̂ = β̂(γ̂), the vector of residuals was ê∗ = ê∗(γ̂), and the
estimated variance of the residuals was

σ̂2 =
1

N(T − 1)
ê∗
′

(γ̂)′ê∗(γ̂) =
1

N(T − 1)
SSE1(γ̂). (10)

Supposing a single threshold effect was found between temperature and entomological surveillance
index BI, the empirical panel threshold model was as follows.

BIit = µi + α1Tempit−τI(Tempit−τ ≤ γ) + α2Tempit−τI(Tempit−τ > γ)+α3Precpit−τ + α4Humidityit−τ + εit
(11)

For a balanced panel, i and t denote province and time (week), BIit is entomological surveillance
(Breteau) index, Tempit is average temperature (°C), Precpit is average precipitation (mm), Humidit is
relative humidity (%), τ represents the time lag, and εit is the error term. Since there is about 2 weeks
from laying to hatching of eggs, and eggs will hatch into larvae within 24 to 48 hours, a 2 week lag
(τ = 2) was chosen to estimate the effects of meteorological factors on mosquito larval index BI.

Before estimating Equation (11), we applied panel unit root tests to examine whether the variables
were stationary or not, and the results indicated they were stationary (please refer to Appendix A).
Equation (11) was estimated to see whether there were one, two, or three thresholds. Table 2 displays
the results of the threshold effect tests, including the test statistics F1, F2, F3 and their corresponding
bootstrap p-values.

According to the results of the nationwide model, a single threshold effect F1 was statistically
significant at about the 5% level (p-value = 0.06), while the tests for a double F2 and a triple threshold F3

were not significant. This indicated that a single temperature threshold exists at the nationwide level.
Based on the results of the Southern model, a single threshold F1 was statistically significant at the 1%
level and a double threshold F2 was also statistically significant at the 1% level, while the test result of
triple thresholds F3 was not significant. We concluded that there are two temperature thresholds in the
southern region of Taiwan. The estimates of the temperature thresholds are reported in Table 3.

Table 3 shows that the estimated single threshold was 27.21 ◦C at national level. For the double
threshold effects of temperature in the Southern region, the estimated values were 27.27 and 30.17 ◦C.
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The likelihood ratio (LR) statistics are plotted in Figure 1 to display the confidence interval construction
for the nationwide model (a) and the southern region model (b).

Table 2. Tests for threshold effects.

Nationwide Southern

Test for single threshold
F1 108.48 28.56

p-value 0.060 0.000
Critical values (10%, 5%, 1%) 92.34, 120.63, 153.91 15.83, 15.93, 17.37

Test for double threshold
F2 17.58 9.31

p-value 0.52 0.000
Critical values (10%, 5%, 1%) 34.83, 41.12, 54.98 7.40, 7.74, 8.04

Test for triple threshold
F3 18.76 7.21

p-value 0.45 0.92
Critical values (10%, 5%, 1%) 35.65, 43.37, 64.02 12.62, 12.74, 14.03

Table 3. Temperature threshold estimates.

Region Threshold Effect Estimates 95% Confidence Intervals

Nationwide Single threshold γ̂ = 27.21 [27.09, 27.24]

Southern Double threshold
γ̂r

1 = 27.27 [26.92, 27.29]
γ̂r

2 = 30.17 [29.74, 30.19]Int. J. Environ. Res. Public Health 2020 15 of 22 
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3.3. Estimating Threshold Effects of Meteorological Factors on Breteau Index

After estimation of the temperature thresholds of the BI, this study went one step further to
examine the threshold effects of weather factors on the dengue vector index. In this stage, count
data regression models were employed because the dependent variable (BIit) was a non-negative
integer random variable. Most previous studies have applied Poisson regression models to estimate
the relationship between ecological factors and dengue. However, the Poisson model has a strong
restriction in that the variance and mean are equal, an assumption which is often violated in real datasets.
When the conditional variance exceeds the conditional mean, the count data are over-dispersed. As
a consequence, hypotheses on the Poisson regression parameters may be rejected more often than
they should be [50,51], since the estimation also includes underestimated standard errors of parameter
estimates. To resolve this issue, we first described dengue cases by the corresponding BI, so the means
of dengue cases within each level of BI were lower than the variances within each level. In other words,
the conditional means were lower than the conditional variances. We then fit two regression models
specifically developed for count outcomes, Poisson and negative binomial (NB), and then compared
these two models using the likelihood ratio (LR) test.

The LR test performs a test of the null hypothesis that the parameter vector of a statistical model
satisfies some smooth constraints. To conduct the test, both the unrestricted and the restricted models
must be fit using the maximum likelihood. Let L0 and L1 be the log-likelihood values associated with
the full (NB) and constrained (Poisson) models, respectively. The test statistic of the likelihood ratio
test is LR = −2(L1 -L0). If the constrained model is true, LR is approximately χ2 distributed with
d0 – d1 degrees of freedom, where d0 and d1 are the degrees of freedom associated with the full and
constrained models, respectively [52]. The LR test statistic is approximately distributed as chi-squared,
and was separately established for the nationwide model and the southern region model.

As can be seen in Table 4, the results of the test statistic allowed us to reject the constrained model
hypothesis for both the nationwide model and the southern region model. Table 4 also includes the
model selection indices including Akaike’s information criterion (AIC) and the Bayesian information
criterion (BIC). The results indicated that the NB regression model was favored over the Poisson for
estimation in both the nationwide and southern region models.

Table 4. Likelihood ratio test results.

Assumption: Poisson Nested in NB

Model Test Statistic Observation LL (model) df AIC BIC

Nationwide

Panel Poisson LR-chi2(1) = 37.22
Prob > chi2 = 0.000

6545 −8680.7 5 17,352.55 17,389.49
Panel NB 6545 −8652.2 6 17,316.33 17,357.05

Southern

Panel Poisson LR-chi2(1) = 116.88
Prob > chi2 = 0.000

1155 −2489.1 5 4986.18 5006.39
Panel NB 1155 −2357.9 6 4727.49 4758.29

To estimate the threshold effects of weather factors on BI dengue vector index using panel
NB regression models, we decomposed data into separate sets according to the single temperature
threshold in the nationwide model and double temperature thresholds in the southern region model.
The effects of meteorological factors on BI were estimated as follows.

For the nationwide model:

E(BIit|Xit, εit) = exp (α10 + α11Tempit−τ + α12Precpit−τ + α13Humidit−τ + εit)I(Tempit−τ
≤ 27.21 °C)

(12)
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E(BIit|Xit, εit) = exp(α20 + α21Tempit−τ + α22Precpit−τ + α3Humidit−τ + εit)I(Tempit−τ
> 27.21 °C)

(13)

For the southern region model:

E(BIit|Xit, εit) = exp(β10 + β11Tempit−τ + β12Precpit−τ + β13Humidit−τ + εit)I(Tempit−τ
≤ 27.27 °C)

(14)

E(BIit|Xit, εit) = exp(β20 + β21Tempit−τ + β22Precpit−τ + β23Humidit−τ
+εit)I(27.27 °C < Tempit−τ ≤ 30.17 °C)

(15)

E(BIit|Xit, εit) = exp(β30 + β31Tempit−τ + β32Precpit−τ + β33Humidit−τ + εit)I(Tempit−τ
> 30.17 °C)

(16)

The NB parameter was assumed to follow a Gamma distribution. The NB model was considered
a generalization of Poisson model, since it had the same mean structure as Poisson regression and
it had an extra parameter to model the over-dispersion (i.e., error term εit allowed the conditional
variance of y to exceed the conditional mean). We also computed marginal effects by multiplying
the estimated coefficients with the exponential of expected value of the dependent variable BI. The
estimation results are displayed in Table 5.

Table 5. Estimation results of the effects of weather factors on Breteau index.

Region Temperature
Range Variable Coefficient Marginal

Effect Std. Err 95% CI

Nationwide

Temp ≤ 27.21

Temp. 0.069*** 0.087 0.004 [0.060, 0.075]
Precip. 0.006*** 0.007 0.001 [0.003, 0.008]
Humid. −0.009*** −0.011 0.004 [−0.014, 0.005]

Constant −0.642*** 0.202 [−1.041, −0.243]

Temp > 27.21

Temp. 0.087*** 0.261 0.017 [0.073, 0.143]
Precip. 0.008*** 0.023 0.001 [0.006, 0.010]
Humid. 0.042*** 0.122 0.003 [0.035, 0.047]

Constant −4.762*** 1.023 [−6.783, −2.751]

Southern

Temp ≤ 27.27

Temp. 0.098*** 0.288 0.011 [0.078, 0.119]
Precip. 0.011*** 0.032 0.002 [0.005, 0.016]
Humid. −0.005 −0.147 0.005 [−0.016, 0.006]

Constant −1.191*** 0.455 [−2.085, 0.296]

27.27 <
Temp ≤ 30.17

Temp. 0.112*** 0.625 0.006 [0.096, 0.122]
Precip 0.006*** 0.035 0.001 [0.002, 0.008]

Humid. 0.024*** 0.134 0.004 [0.014, 0.032]
Constant −3.431*** 0.326 [−4.073, −2.789]

Temperature
Range Variable Coefficient Marginal

Effect Std. Err 95% CI

Temp > 30.17

Temp. 0.453** 1.487 0.208 [0.005, 0.801]
Precip. −0.004 −0.013 0.014 [−0.032, 0.024]
Humid. 0.068*** 0.225 0.019 [0.030, 0.106]

Constant −17.565** 7.506 [−32.297, −2.874]

Note: Std. Err. denotes standard errors and *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

At the national level, when the weekly average temperature was less than 27.21 ◦C, a 1 ◦C increase
in average temperature caused the expected value of BI to increase by 0.09 unit. When the weekly
average temperature was higher than 27.21◦C, a 1 ◦C increase in temperature led to a 0.26 unit increase
in the expected value of BI. For the southern regions of Taiwan, the impacts of all weather factors
on dengue vector index were stronger than those at the national level. Specifically, when the weekly
average temperature was less than 27.27 ◦C, a 1 ◦C increase in temperature led to a 0.29 unit increase in
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the expected value of BI. When the weekly average temperature was between 27.27 and 30.17 ◦C, the
expected value of BI increased by 0.63 units for every additional degree Celsius increase. When the
weekly average temperature was above 30.17 ◦C, a 1 ◦C increase in temperature caused the expected
value of BI to increase by 1.49 units.

The empirical results also indicated that the impacts of precipitation and relative humidity on
dengue vector index vary under different regimes of weekly average temperature. At the national
level, relative humidity had a negative effect on BI when weekly average temperature was less than
27.21 ◦C. However, this effect became positive when weekly average temperature exceeded 27.21 ◦C.
For the southern region of Taiwan, the effects of relative humidity on the expected value of BI became
stronger when temperature increased. There were significant positive effects of precipitation on the
expected value of BI when weekly average temperature was below 30.2 ◦C. However, the effects of
precipitation on the expected value of BI became insignificant when the weekly average temperature
rose above 30.2 ◦C.

4. Estimating the Relationship between Entomological Index and Dengue Cases

Because the number of confirmed cases of dengue fever was considered count data, a similar
process of estimating panel count data models was applied as in the previous section. We used LR
tests to examine which regression model was more appropriate for our data set and found that the
negative binomial model was preferred. The results of the LR tests are shown in Table 6.

Table 6. Likelihood ratio test results.

Assumption: Poisson Nested in NB

Model Test Statistic Observation LL (model) df AIC BIC

Nationwide

Panel Poisson LR-chi2(1) = 306,944
Prob > chi2 = 0.000

6511 −160,726.3 4 321,460.7 321,487.8
Panel NB 6511 −7253.8 5 14,517.7 14,551.6

Southern

Panel Poisson LR-chi2(1) = 308,356 1149 −160,726.3 4 132,471.2 132,723.4
Panel NB Prob > chi2 = 0.000 1149 −2986.2 5 5982.3 6007.5

The empirical NB regression model can be writtern as follows:

E(DFit|Xit, εit) = exp(β0 + β1BIit−τ + β2Pop_denit + εit) (17)

For a balance panel, i and t denote county and time (week), DFit is the number of confirmed cases
of dengue fever, BIit is the Breteau index, Pop_denit is the population density, τ represents the time lag,
and εit is the error term. In this study, the lagged effect of BI on dengue cases was also considered.
We employed a 4 week lag to take into account the mosquito life cycle from larvae to adult flying
mosquitoes (2 weeks), and the incubation periods of dengue viruses after mosquito feeding on an
DENV-infected person (2 weeks) [53,54]. The estimated results are displayed in Table 7.

The estimation results showed that a positive relationship existed between the incidence of dengue
and the 4 week lagged BI. We also found a positive relationship between the number of dengue cases
and the population density. The estimated incidence rate ratios (IRR) indicated that both BI and
population density had higher effects on the incidence of dengue in the southern region of Taiwan
than nationwide.
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Table 7. Estimation results for the effects of Breteau index and population density on dengue cases.

Variable Coefficient Std. Err. Marginal Effect IRR 95% CI

Nationwide

BI 0.028*** 0.008 0.013 1.028*** [1.008, 1.047]

Pop._Den. 0.001** 0.000 0.0005 1.000*** [0.999, 1.001]

Constant −2.015*** 0.049

Southern

BI 0.075*** 0.009 0.016 1.077*** [1.056, 1.097]

Pop._Den. 0.001 0.000 0.0002 1.001*** [0.998, 1.002]

Constant −2.515*** 0.174

Note: Std. Err. denotes standard errors and *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

5. Projecting the Effects of Temperature on Entomological Index under Climate Change Scenarios

To investigate the potential effects of future climate change on the dengue vector index, temperature
projections were retrieved from the Taiwan Climate Change Projection Information and Adaptation
Knowledge Platform (TCCIP). This future climate change projection is the simulation of future possible
climate scenarios in Taiwan at a 5 × 5km resolution for the 2021–2100 period with a baseline period of
1886–2005. A a set of four representative concentration pathways (RCPs) was employed in this study:
RCP2.6, RCP4.5, RCP6.0, and RCP8.5, corresponding to radiative forcing levels of 2.6, 4.5, 6.0, and
8.5 watts per square meter, respectively.

The projections for the temperature change associated with the four RCP scenarios are shown
in the first row of Table 8. Projected temperatures are equal to these projected temperature changes
plus the weekly average temperature in 2012–2019. Depending on whether the projected average
temperature exceeded the threshold values (27.21 ◦C for the nationwide and 27.27 ◦C and 30.17 ◦C
for the southern region) or not, we calculated the potential effects of the changes in temperature on
the expected value of BI by multiplying the projected changes in temperature with the corresponding
estimated marginal effects of temperature on BI. The percentage changes of BI were also computed by
multiplying the change in expected value of BI by 100 and then dividing by the average BI.

Table 8. Percentage change in Breteau index under climate change projections.

Scenarios Year
Nationwide Southern

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Temperature
Change

Projection

2021–2040 0.63
(2.69%)

0.67
(2.86%)

0.61
(2.60%)

0.77
(3.28%)

0.62
(2.44%)

0.66
(2.59%)

0.66
(2.59%)

0.76
(2.99%)

2041–2060 0.92
(3.92%)

1.14
(4.86%)

0.93
(3.96%)

1.48
(6.31%)

0.90
(3.54%)

1.13
(4.44%)

0.92
(3.62%)

1.46
(5.74%)

2061–2080 0.87
(3.71%)

1.43
(6.10%)

1.42
(6.05%)

2.30
(9.81%)

0.86
(3.38%)

1.41
(5.54%)

1.40
(5.50%)

2.27
(8.92%)

2081–2100 0.77
(3.28%)

1.54
(6.57%)

1.94
(8.27%)

3.08
(13.1%)

0.76
(2.99%)

1.52
(5.98%)

1.91
(7.51%)

3.03
(11.9%)

Change in
Expected

Value of BI

2021–2040 0.05 0.06 0.05 0.07 0.18 0.19 0.18 0.22
2041–2060 0.08 0.10 0.08 0.13 0.26 0.33 0.26 0.42
2061–2080 0.08 0.12 0.12 0.20 0.25 0.41 0.40 1.42
2081–2100 0.07 0.13 0.17 0.27 0.22 0.44 1.19 1.89

Percentage
Change in BI

2021–2040 3.63 3.86 3.51 4.44 5.13 5.46 5.13 6.29
2041–2060 5.30 6.57 5.36 8.53 7.45 9.35 7.61 12.08
2061–2080 5.01 8.24 8.18 13.25 7.12 11.67 11.59 40.77
2081–2100 4.44 8.87 11.18 17.75 6.29 12.58 34.30 54.42

At the nationwide level, the increase in BI peaked at 5.30% in the 2041-2060 period in the RCP 2.6
scenario. For the RCP 4.5 scenario, the increase in BI peaked at 8.87% in the 2081–2100 period. The BI
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reached a 11.18% increase in the 2081–2100 period in the RCP 6.0 scenario. For the RCP 8.5 scenario,
the BI increase reached 17.75% in the 2081-2100 period. Under future climate change scenarios, average
temperatures in the southern region exceeded the threshold level of 27.27 ◦C in the RCP 6.0 scenario
during the 2081–2100 period (27.35 ◦C). For the RCP 8.5 scenario, average temperatures exceeded
the threshold level of 27.27 ◦C during the periods of 2061–2080 (27.71 ◦C) and 2081–2100 (28.47 ◦C).
Under the RCP 8.5 scenario, values of BI were predicted to increase more dramatically in the southern
region than at the nationwide level, peaking at 40.77% and 54.54% during the periods of 2061–2081
and 2081–2100, respectively.

6. Discussion

It is widely recognized that there exists a positive correlation between the increase of vector
indices and the increasing occurrence of dengue epidemics [18–20]. In this study, we not only obtained
consistent findings in quantifying the relationship between entomological index (BI) and dengue
incidence, but also estimated the non-linear effects of climate factors on an entomological index (BI)
under different threshold regimes of temperature.

In this study, we found one temperature threshold (27.21 ◦C) at the nationwide level and two
temperature thresholds (27.27 ◦C and 30.17 ◦C) in the southern region of Taiwan. Our estimation
result is consistent with previous findings regarding the ideal climate conditions for mosquito growth
dynamics. Specifically, female mosquitoes will survive better than the male mosquitoes when the
temperature rises to 25 ◦C [14] and the maximum female mosquito survival rate is about 88–93%
between 20 and 30 ◦C [55]. Moreover, the estimated temperature threshold of about 27 ◦C was
close to Connor’s finding [34] that Ae. aegypti was most active around 28 ◦C. A recent study by
Wu et al. [16] also examined the non-linear effect of temperature on dengue incidence and identified
a single temperature at 28 ◦C. All the temperature thresholds found in this study also fell within
the range of optimal temperature for the mosquito egg to survive (22–34◦C) [31] and the range of
temperature at which mosquitoes can best fly (15–32◦C) [32].

In addition to estimating the threshold effect of temperature on a dengue vector index (BI), we also
investigated the relationship between BI and dengue incidence. For every additional BI increase with
4 week lagged time, the number of confirmed dengue cases was found to increase correspondingly,
with a roughly equivalent degree of the effects at the national level and the southern regional level.
The coefficient estimates of BI were positive and significant at both national and southern regional
levels. Therefore, our findings were consistent with previous studies and can provide evidence to
support using this vector index to predict the risk of dengue in practice [13,20,46].

7. Conclusions

7.1. Contributions of the Study

Although the interactions between climate factors, dengue vector indices, and dengue cases have
been extensively studied, the potential threshold effects of climate factors on dengue vector indices had
not previously been estimated in Taiwan. Our empirical results indicated that the effects of temperature
on dengue vector index (BI) will differ depending on the temperature levels. At the national level,
when the weekly average temperature was less than 27.21 ◦C, an increase of 1 ◦C in temperature caused
a 0.09 unit increase in the expected value of BI. The effect became stronger when the temperature
exceeded 27.21 ◦C, with the expected value of BI increasing by 0.26 units when the temperature
increased by 1 ◦C. Additionally, the effects of temperature on dengue vector index in the southern
region of Taiwan were found to be stronger than those at the national level. As the temperature
increased by 1 ◦C, the expected value of BI increased by 0.29, 0.63, and 1.49 units when the average
temperature was less than 27.27 ◦C, between 27.27 and 30.17 ◦C, and higher than 30.17 ◦C, respectively.

According to the estimation results, we concluded that dengue fever infection rates in regions with
warmer temperatures will be much more sensitive to climate change. Compared with the entire nation,
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such a difference in regional climate sensitivity was reflected in the double thresholds of temperature
found in the southern region. The effects of other climatic factors, including precipitation and relative
humidity, on BI also became stronger when the temperature exceeded these thresholds. This further
emphasizes the importance of finding potential temperature thresholds in the implementation of public
health measures and risk prediction to prevent and control dengue fever.

On the assumption that other factors affecting dengue cases remain the same, we also found that
increases of Breteau index resulted in substantial increases in the risk of dengue fever. Investigating
the potential effects of future climate change on the dengue vector index, we found that increases
in projected temperature caused the value of BI to increase, ranging from a low value of 3.51% to a
high value of 17.75% at the national level. For the southern region of Taiwan, the impacts were much
stronger, with increases in the value between 5.13 and 54.42%. This implies that southern regions will
be more vulnerable to climate-change-induced dengue fever and hence more effects should be devoted
to reducing the risk in this region.

7.2. Implications of the Study

Extreme changes in weather and climate events containing extreme temperature events are highly
likely to increase in both frequency and strength in the future. It is important to identify potential
temperature thresholds for dengue vector indices in order to quantify the effects of temperature on
climate-related spread of dengue and better support early warning systems for dengue epidemics.
Therefore, our research findings can provide valuable information for future epidemiological studies
investigating the relationship between climatic factors and dengue fever incidence.

In Taiwan, the major prevention strategies for the control of dengue fever are devised to eliminate
vector (mosquito) breeding sources and lower vector density. The identification of specific temperature
thresholds could be utilized to effectively support these dengue prevention measures. In particular,
identification of temperature thresholds is important to construct a reliable alert system not only
for disease prevention personnel but also for every resident. When average temperature is close
to the threshold value, household and surrounding environment sanitation should be strengthened
to eliminate all potential vector breeding sources. When temperature continues to increase and
exceeds the threshold value, integrated strategies and practices for dengue prevention and control
(e.g., environmental approaches to eliminate container habitats; chemical, biological, and genetic
approaches; and personal actions regarding dengue prevention interventions) are urgently needed,
especially in high-risk communities/regions like the southern region of Taiwan.

7.3. Limitations of the Study and Eecommendations for Further Research

Although we identified potential threshold effects of climate factors on dengue, our analysis had
several limitations. First, due to the lack of long-term data on meteorological and other socio-ecological
changes, the empirical estimates of climate effects on dengue may change when more data become
available in the future. Second, dengue cases may be underestimated due to asymptomatic infection
cases, and the quality of vector surveillance data may also vary county by county due to differences in
the procedure and effort investing in the surveillance. As a result, empirical estimates at the national
level may be less accurate than those at regional levels. Finally, our empirical analysis was based
on weekly county-level panel data, which did not effectively take the geographical dimension into
account due to the lack of detailed dengue surveillance data. However, research on estimating the
effects of climate factors on dengue should not be limited to the analysis of panel data. Spatiotemporal
approaches with more detailed dengue surveillance data could better describe the spatial spreading
and transmission patterns of dengue epidemic.

Future studies are recommended to develop models at regional scale with more detailed
community-level data and spatial information. In addition, the methodology proposed in this
study could also be utilized for other regions/countries to estimate the relationship between climatic
factors, vector indices, and dengue incidence. This would be very useful to support an early warning
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system for dengue epidemics worldwide, because it has been found that the habitat range of dengue
vectors has expanded from areas of low latitude to mid- or high-latitude regions as the temperature has
increased. Therefore, future studies are encouraged to focus on the climate-related habitat expansion
and spread of dengue vectors.
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Appendix A

Table A1. Panel unit root test results, using Levin–Lin–Chu test, Im–Pesaran–Shin test and Fisher-PP
test at I(0).

Variables LLC Test IPS Test PP-Fisher Chi-Sq.

Breteau Index (BI) −47.58*** −54.06*** 131.73***
Dengue Cases (DF) −28.81*** −48.65*** 118.41***
Average Temperature (Temp) −2.49** −13.27*** 27.93***
Precipitation (Precp) −72.06*** −66.60*** 144.49***
Relative Humidity (Humid) −48.37*** −47.13*** 140.77***

Note: table displays the results of panel unit root tests where ** and ***, respectively, denote significance at the 5%
and 1% levels.
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