
sensors

Article

An Accelerator Design Using a MTCA Decomposition
Algorithm for CNNs

Yunping Zhao , Jianzhuang Lu * and Xiaowen Chen

College of Computer, National University of Defense Technology, Changsha 410073, China;
zhaoyunping@nudt.edu.cn (Y.Z.); xwchen@nudt.edu.cn (X.C.)
* Correspondence: lujz1977@163.com; Tel.: +86-1038-054-8812

Received: 24 August 2020; Accepted: 26 September 2020; Published: 28 September 2020
����������
�������

Abstract: Due to the high throughput and high computing capability of convolutional neural networks
(CNNs), researchers are paying increasing attention to the design of CNNs hardware accelerator
architecture. Accordingly, in this paper, we propose a block parallel computing algorithm based
on the matrix transformation computing algorithm (MTCA) to realize the convolution expansion
and resolve the block problem of the intermediate matrix. It enables high parallel implementation
on hardware. Moreover, we also provide a specific calculation method for the optimal partition
of matrix multiplication to optimize performance. In our evaluation, our proposed method saves
more than 60% of hardware storage space compared with the im2col(image to column) approach.
More specifically, in the case of large-scale convolutions, it saves nearly 82% of storage space.
Under the accelerator architecture framework designed in this paper, we realize the performance of
26.7GFLOPS-33.4GFLOPS (depending on convolution type) on FPGA(Field Programmable Gate Array)
by reducing bandwidth and improving data reusability. It is 1.2×–4.0× faster than memory-efficient
convolution (MEC) and im2col, respectively, and represents an effective solution for a large-scale
convolution accelerator.

Keywords: CNNs accelerator; parallel computing algorithm; hardware architecture

1. Introduction

At present, CNNs are widely used in image classification [1], target recognition [2,3], and semantic
segmentation [4,5]. CNNs are essentially composed of a convolution layer, RELU layer (Rectified
Linear Unit), pooling layer, and full connection layer. In the CNNs model, the convolution layer’s
amount of calculations accounts for more than 85% of the total calculation [6], which brings huge
workload. In addition, with the deepening of CNNs, the time complexity and space complexity of
CNNs realized by software are increasing. The scheme of CNNs based on software cannot meet the
current high-speed application requirements. In order to solve this problem, accelerator design schemes
based on various platforms are proposed, such as graphics processing unit (GPU) [7], or customized
application specific integrated circuits (ASIC) [8–11], field programmable gate arrays (FPGA), and other
hardware to complete the acceleration of CNNs. However, due to the problems of power consumption,
development cost, and cycles, the research and development of GPU and ASIC are largely limited.

Recently, most of the existing CNNs accelerators on FPGA have been proposed [12–14].
These esigns only focus on the improvement of performance, and ignore the overhead of energy and
storage. However, the power consumption restricts their use in an embedded platform or mobile
devices directly, and the overhead of storage leads to increase the requirement of hardware, thereby
increasing the cost. These two aspects bring great challenges to the promotion of accelerators.

In this paper, we propose a CNNs accelerator design using a MTCA [15] decomposition algorithm.
The convolution is divided into blocks and expanded by the algorithm, so as to realize the highly

Sensors 2020, 20, 5558; doi:10.3390/s20195558 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5600-3740
http://www.mdpi.com/1424-8220/20/19/5558?type=check_update&version=1
http://dx.doi.org/10.3390/s20195558
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 5558 2 of 15

parallel computing of each matrix multiplication array (MMA) in the accelerator. We implement it on
an FPGA platform with the systolic array architecture [16]. Generally speaking, the main advantages
of this architecture are as follows.

Firstly, it optimizes the convolution expansion and storage mode by utilizing a block parallel
computing algorithm based on MTCA. Not only does the operational efficiency improve, it also reduces
the storage cost of the intermediate matrix expanded by convolution. Moreover, the MTCA-based
block computing algorithm can ensure the high parallel operation of the calculation module and
achieve optimal algorithmic efficiency.

Secondly, a matrix multiplication array (MMA) based on a systolic parallel architecture is adopted
to ensure a high parallelism and independence in both the MMA and the internal PE (Processing
Element), which gives the accelerator design good scalability. This approach can avoid the transmission
of partial-sum between PEs, optimize the internal pipeline, and achieve efficient processing. With the
support of the specific dataflow mode, the kernel level matrix operation is realized via row calculation,
whose data are fetched from row vectors of matrix. It can avoid the access to the column vector
data and the transposition of the matrix. As a result, our design reduces the control difficulty and
hardware costs.

The organizational structure of the paper is as follows. Section II summarizes the related work.
Section III introduces and explains the MTCA algorithm. Section IV introduces the architecture of
accelerator in detail. Section V provides the implementation results and comparison. Section VI is
the conclusion.

2. Motivation and Related Work

In this section, we introduce im2col, MEC, MTCA algorithms. We also introduce the related work
and challenges.

2.1. Im2col, MEC, MTCA Algorithm

Figure 1 shows the operational processes of conventional convolution. The operation process of
conventional convolution involves executing the inner product between the gray part of the input
feature map and the filter (see Figure 1); the result is an element of the output feature map, while the
sliding window can obtain the final output feature map.

Sensors 2020, 20, x FOR PEER REVIEW 2 of 15

In this paper, we propose a CNNs accelerator design using a MTCA [15] decomposition

algorithm. The convolution is divided into blocks and expanded by the algorithm, so as to realize the

highly parallel computing of each matrix multiplication array (MMA) in the accelerator. We

implement it on an FPGA platform with the systolic array architecture [16]. Generally speaking, the

main advantages of this architecture are as follows.

Firstly, it optimizes the convolution expansion and storage mode by utilizing a block parallel

computing algorithm based on MTCA. Not only does the operational efficiency improve, it also

reduces the storage cost of the intermediate matrix expanded by convolution. Moreover, the MTCA-

based block computing algorithm can ensure the high parallel operation of the calculation module

and achieve optimal algorithmic efficiency.

Secondly, a matrix multiplication array (MMA) based on a systolic parallel architecture is

adopted to ensure a high parallelism and independence in both the MMA and the internal PE

(Processing Element), which gives the accelerator design good scalability. This approach can avoid

the transmission of partial-sum between PEs, optimize the internal pipeline, and achieve efficient

processing. With the support of the specific dataflow mode, the kernel level matrix operation is

realized via row calculation, whose data are fetched from row vectors of matrix. It can avoid the

access to the column vector data and the transposition of the matrix. As a result, our design reduces

the control difficulty and hardware costs.

The organizational structure of the paper is as follows. Section II summarizes the related work.

Section III introduces and explains the MTCA algorithm. Section IV introduces the architecture of

accelerator in detail. Section V provides the implementation results and comparison. Section VI is the

conclusion.

2. Motivation and Related Work

In this section, we introduce im2col, MEC, MTCA algorithms. We also introduce the related work

and challenges.

2.1. Im2col, MEC, MTCA Algorithm

Figure 1 shows the operational processes of conventional convolution. The operation process of

conventional convolution involves executing the inner product between the gray part of the input

feature map and the filter (see Figure 1); the result is an element of the output feature map, while the

sliding window can obtain the final output feature map.

Figure 1. Calculation process of conventional convolutions.

For the im2col process described in Figure 2, both the input feature map and filter are spread by

rows. The final output feature map is obtained by two intermediate process matrix operations.

Although the intermediate matrix increases the memory cost, it can accelerate the convolution by

using the matrix vector multiplication library, and finally improve the computational performance.

× =

Input Feature Map

Filter

K

H

W

Figure 1. Calculation process of conventional convolutions.

For the im2col process described in Figure 2, both the input feature map and filter are spread
by rows. The final output feature map is obtained by two intermediate process matrix operations.
Although the intermediate matrix increases the memory cost, it can accelerate the convolution by using
the matrix vector multiplication library, and finally improve the computational performance.

Sensors 2020, 20, 5558 3 of 15
Sensors 2020, 20, x FOR PEER REVIEW 3 of 15

Figure 2. Calculation process of im2col.

For MEC, moreover (see Figure 3), the input feature map is divided into sections A–E

longitudinally according to the size of H × K, after which each segment is expanded to obtain the

intermediate matrix row by row (The gray part of Figure 3). The filter is expanded by row, which is

the same as im2col. In this case, we obtain two intermediate matrices with size (5,H × K) and (K^2,1).

Taking out a part of the intermediate matrix in a (5,K^2) window, and perform matrix multiplication

with the intermediate matrix of filter. The result is a row of output feature map elements (The red or

green parts of Figure 3), while the sliding window with step size of K can obtain the final output

feature map.

Figure 3. Calculation process of MEC.

The operation process of the MTCA algorithm is illustrated in Figure 4. Different from MEC, the

input feature map is horizontally divided into sections A–E according to the size of K × W, then

expanded to obtain a matrix of (H × K,H-K + 1). The data expansion method of each part of A–E is

shown by the arrow in the figure. Based on the im2col expansion, the filter is then expanded into a

matrix of (H-K + 1,H × K) size by zero; subsequently, the final output feature map is obtained by

multiplying the two intermediate matrices.

Figure 4. The operation process of MTCA.

=

…
…

Input Feature Map

Filter

W

H

K
K2

K2

=
Input Feature Map

Filter

Output Feature
Map

A

B

A

C

D

E

B
C
D
E

H

W

K

H×K

K2

Figure 2. Calculation process of im2col.

For MEC, moreover (see Figure 3), the input feature map is divided into sections A–E longitudinally
according to the size of H × K, after which each segment is expanded to obtain the intermediate matrix
row by row (The gray part of Figure 3). The filter is expanded by row, which is the same as im2col.
In this case, we obtain two intermediate matrices with size (5,H × K) and (Kˆ2,1). Taking out a part of
the intermediate matrix in a (5,Kˆ2) window, and perform matrix multiplication with the intermediate
matrix of filter. The result is a row of output feature map elements (The red or green parts of Figure 3),
while the sliding window with step size of K can obtain the final output feature map.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15

Figure 2. Calculation process of im2col.

For MEC, moreover (see Figure 3), the input feature map is divided into sections A–E

longitudinally according to the size of H × K, after which each segment is expanded to obtain the

intermediate matrix row by row (The gray part of Figure 3). The filter is expanded by row, which is

the same as im2col. In this case, we obtain two intermediate matrices with size (5,H × K) and (K^2,1).

Taking out a part of the intermediate matrix in a (5,K^2) window, and perform matrix multiplication

with the intermediate matrix of filter. The result is a row of output feature map elements (The red or

green parts of Figure 3), while the sliding window with step size of K can obtain the final output

feature map.

Figure 3. Calculation process of MEC.

The operation process of the MTCA algorithm is illustrated in Figure 4. Different from MEC, the

input feature map is horizontally divided into sections A–E according to the size of K × W, then

expanded to obtain a matrix of (H × K,H-K + 1). The data expansion method of each part of A–E is

shown by the arrow in the figure. Based on the im2col expansion, the filter is then expanded into a

matrix of (H-K + 1,H × K) size by zero; subsequently, the final output feature map is obtained by

multiplying the two intermediate matrices.

Figure 4. The operation process of MTCA.

=

…
…

Input Feature Map

Filter

W

H

K
K2

K2

=
Input Feature Map

Filter

Output Feature
Map

A

B

A

C

D

E

B
C
D
E

H

W

K

H×K

K2

Figure 3. Calculation process of MEC.

The operation process of the MTCA algorithm is illustrated in Figure 4. Different from MEC,
the input feature map is horizontally divided into sections A–E according to the size of K × W,
then expanded to obtain a matrix of (H × K,H-K + 1). The data expansion method of each part of A–E
is shown by the arrow in the figure. Based on the im2col expansion, the filter is then expanded into
a matrix of (H-K + 1,H × K) size by zero; subsequently, the final output feature map is obtained by
multiplying the two intermediate matrices.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15

Figure 2. Calculation process of im2col.

For MEC, moreover (see Figure 3), the input feature map is divided into sections A–E

longitudinally according to the size of H × K, after which each segment is expanded to obtain the

intermediate matrix row by row (The gray part of Figure 3). The filter is expanded by row, which is

the same as im2col. In this case, we obtain two intermediate matrices with size (5,H × K) and (K^2,1).

Taking out a part of the intermediate matrix in a (5,K^2) window, and perform matrix multiplication

with the intermediate matrix of filter. The result is a row of output feature map elements (The red or

green parts of Figure 3), while the sliding window with step size of K can obtain the final output

feature map.

Figure 3. Calculation process of MEC.

The operation process of the MTCA algorithm is illustrated in Figure 4. Different from MEC, the

input feature map is horizontally divided into sections A–E according to the size of K × W, then

expanded to obtain a matrix of (H × K,H-K + 1). The data expansion method of each part of A–E is

shown by the arrow in the figure. Based on the im2col expansion, the filter is then expanded into a

matrix of (H-K + 1,H × K) size by zero; subsequently, the final output feature map is obtained by

multiplying the two intermediate matrices.

Figure 4. The operation process of MTCA.

=

…
…

Input Feature Map

Filter

W

H

K
K2

K2

=
Input Feature Map

Filter

Output Feature
Map

A

B

A

C

D

E

B
C
D
E

H

W

K

H×K

K2

Figure 4. The operation process of MTCA.

Sensors 2020, 20, 5558 4 of 15

2.2. Related Work

Previous studies have proposed a number of designs about CNNs accelerator architecture.
The DianNao [17,18] series achieved high performance by improving the parallel computing method,
and optimizing the dataflow model. Eyeriss [19] reduced data mobility by maximizing local data reuse,
and implementing data gating. However, the development cycle of them are too long to adapt the
rapid development of CNNs, and they did not study the large-scale convolution computation.

You Huang [20] realized the high-performance for large-scale convolution by optimization of the
matrix-multiplication computing architecture. Junyang Zhang [21] proposed a large-scale convolution
parallel computing method that realized high-performance CNN acceleration on FT2000 architecture.
However, none of them optimize the storage efficiency of convolution expansion. Jing. Shen [22]
proposed a design to balance storage bandwidth and computational speed, the convolutional layer
is subdivided into granular tasks and executed to mask the time of accessing external storage,
which outperforms traditional accelerators. Chaoyang Zhu [23] propose a sparse wise dataflow to
skip the cycles of processing multiply-and-accumulates (MACs) with zero weights and exploit data
statistics to minimize energy through zeros gating to avoid unnecessary computations, which provides
high speedup and energy efficiency. Maurizio Capra [24] introduces what a hardware accelerator
is, and what are its main components, followed by the latest techniques in the field of dataflow,
reconfigurability, variable bit-width, and sparsity.

In addition, existing studies have proposed a number of designs about improving storage efficiency
in terms of algorithms. M. Cho [25] proposed a memory-efficient convolution (MEC) algorithm to
reduce the overhead of storage. Yulin Fang [15] proposed a convolution optimization algorithm based
on computing unified device architecture (CUDA) acceleration library. However, the logic of piecewise
convolution control is complex, and the address of the segmented matrix is not aligned. It is not
conducive to hardware implementation.

2.3. Motivation

In summary, in most existing designs, it is rarely involved in the following three aspects. How to
reduce the storage overhead of the convolution expansion? How to reduce the difficulty of memory
read-write control? How to accelerate large-scale convolution? We proposed the block algorithm based
on MTCA to achieve large-scale convolution computation. Compared with the im2col, MEC, MTCA,
we improve the operation performance, save hardware resources, and improve the computational
efficiency by realizing the optimal blocking. In addition, we reduce the difficulty of reading and writing
control, which is especially important in large-scale convolution.

3. Algorithm Analysis and Mapping

3.1. A Design of Block Parallel Computing Algorithm Based on MTCA

Although the MEC algorithm also introduces the intermediate matrix, it saves 51.2% memory
space than im2col. However, the MEC also has some shortcomings, that is, the logic of the matrix
partition is complex and the address space of the small matrix is not aligned, which makes it more
difficult to implement the algorithm both in hardware and software.

Compared with MEC, MTCA has a larger intermediate transformation matrix, simpler control
logic, and is easier to implement in parallel computing on hardware to achieve better performance.
However, there will be a large number of elements with a value of zero in the intermediate process
matrix expanded by the filter, while the proportion of non-zero elements is small. During the actual
computing process, this will not only increase the operational load, but will also consume a large
amount of hardware storage resources. At the same time, given the increasing size of the input
feature map and filter, this setup is inconvenient for parallel computation in hardware implementation.
Accordingly, in order to solve the above problems, we propose a block parallel computing algorithm
based on MTCA.

Sensors 2020, 20, 5558 5 of 15

As shown in Figure 5, the input feature map is longitudinally divided into m blocks, and each
block is calculated via MTCA. During this process, whether or not each block should be supplemented
is determined with reference to the number of blocks m. If the block size, Wm of the input feature map
is less than (m−K + 1)(S(m + K− 1)) , each block matrix needs to be filled according to Equation (1)
below; here, the capacity size is n, while S denotes the window sliding step size. MTCA:

n = ((W−K + 1)/S×m + W− 1) −W/m (1)

Sensors 2020, 20, x FOR PEER REVIEW 5 of 15

As shown in Figure 5, the input feature map is longitudinally divided into m blocks, and each

block is calculated via MTCA. During this process, whether or not each block should be

supplemented is determined with reference to the number of blocks m. If the block size, W ⁄ m of

the input feature map is less than (m − K + 1) ⁄ (S(m + K − 1)), each block matrix needs to be filled

according to Equation (1) below; here, the capacity size is n, while S denotes the window sliding step

size. MTCA:

n = ((W − K + 1) S × m⁄ + W − 1) − W m⁄ (1)

Figure 5. The block parallel computing algorithm based on MTCA.

Apart from the filling content of the first block, which comes from the back part of the input

feature map, the filling contents of the other blocks come from the front part of the input feature map

(marked in gray in Figure 5). According to the sliding size and the number of blocks, the filter fills to

(H × (H − K + 1) (S × m + W − 1)⁄ , (w − k + 1) S × m⁄) with 0 according to the MTCA. The

intermediate process matrix of each block is assigned to each MMA in order to perform matrix-

multiplication with the intermediate process matrix of the filter. The final output feature map is

obtained via the final combination.

3.2. Computation Method of PE Based on Vector Single Instruction Multiple Data (SIMD) Technology

The computing performance of the accelerator is primarily determined by the computing power

of each MMA. To reduce the idle time and pauses caused by memory access between the MMAs and

the internal PEs, this paper uses a calculation method based on GEMM (General Matrix

Multiplication) to realize the block calculation process by row. For the intermediate process matrix

multiplication O = IW, the calculation method outlined in Equation (2) below is usually used:

Oab = ∑ Ial × Wlb

k−1

l=0

，a = 0，1， …，m − 1; b = 0，1， …，n − 1 (2)

The intermediate process matrix W and output matrix O of the filter is divided into blocks

according to row; the row vectors are wb and oa, respectively. Equation (2) can then be transformed

into Equation (3), as follows:

{

o0 = i00w0 + i01w1 + ⋯ + i0k−1wk−1

o1 = i10b0 + i11w1 + ⋯ + i1k−1wk−1

…
om−1 = im−10w0 + im−10w1 + ⋯ + im−1k−1wk−1

 (3)

As shown in Figure 6, in a departure from the conventional method, the vector calculation

process [26] expands the b-th element of the line taken from the input intermediate process matrix I

into a vector with the same value. As illustrated in Figure 7, the element iab is loaded into each

internal local register via broadcasting for each PE. The k elements of the vector in row B of matrix

W are also loaded into each PE to facilitate the vector multiplication and accumulation calculation.

=

Filter

Output Feature
Map

H

K

H×((H-K+1)/Sm+W-1)

K2

H

…
…

…
…

H

W

H ×

Input Feature Map

(
H
-
K
+
1
)/

S

(
H
-
K
+
1
)
/
S

(W-K+1)/S

H
×

((
H
-
K
+
1
)
/
Sm

+
W
-
1
)

(W-K+1)/Sm
MMA

…
…

PE0 PE1

PEb PEb+1

I0

Buffer

W0

Buffer
W1

Buffer

I1

Buffer

I2

Buffer

MMA

PE0 PE1

PEb PEb+1

I0

Buffer

W0

Buffer
W1

Buffer

I1

Buffer

I2

Buffer

MMA

PE0 PE1

PEb PEb+1

I0

Buffer

W0

Buffer
W1

Buffer

I1

Buffer

I2

Buffer

Figure 5. The block parallel computing algorithm based on MTCA.

Apart from the filling content of the first block, which comes from the back part of the
input feature map, the filling contents of the other blocks come from the front part of the input
feature map (marked in gray in Figure 5). According to the sliding size and the number of blocks,
the filter fills to (H× (H−K + 1)/(S×m + W− 1), (w− k + 1)/S×m) with 0 according to the MTCA.
The intermediate process matrix of each block is assigned to each MMA in order to perform
matrix-multiplication with the intermediate process matrix of the filter. The final output feature
map is obtained via the final combination.

3.2. Computation Method of PE Based on Vector Single Instruction Multiple Data (SIMD) Technology

The computing performance of the accelerator is primarily determined by the computing power
of each MMA. To reduce the idle time and pauses caused by memory access between the MMAs and
the internal PEs, this paper uses a calculation method based on GEMM (General Matrix Multiplication)
to realize the block calculation process by row. For the intermediate process matrix multiplication
O = IW, the calculation method outlined in Equation (2) below is usually used:

Oab =
k−1∑
l=0

Ial ×Wlb, a = 0, 1, . . . , m− 1; b = 0, 1, . . . , n− 1 (2)

The intermediate process matrix W and output matrix O of the filter is divided into blocks
according to row; the row vectors are wb and oa, respectively. Equation (2) can then be transformed
into Equation (3), as follows:

o0 = i00w0 + i01w1 + . . .+ i0k−1wk−1

o1 = i10b0 + i11w1 + . . .+ i1k−1wk−1

. . .
om−1 = im−10w0 + im−10w1 + . . .+ im−1k−1wk−1

(3)

As shown in Figure 6, in a departure from the conventional method, the vector calculation
process [26] expands the b-th element of the line taken from the input intermediate process matrix

Sensors 2020, 20, 5558 6 of 15

I into a vector with the same value. As illustrated in Figure 7, the element iab is loaded into each
internal local register via broadcasting for each PE. The k elements of the vector in row B of matrix
W are also loaded into each PE to facilitate the vector multiplication and accumulation calculation.
The multiplication and accumulation results on each PE are then saved in the on-chip register for use
in the next iteration.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 15

The multiplication and accumulation results on each PE are then saved in the on-chip register for use

in the next iteration.

Figure 6. The method of calculating matrix multiplication by row.

Figure 7. Realization of matrix multiplication based on vector SIMD technology.

Compared with the traditional calculation method, the programming method based on vector

SIMD technology is not intuitive. However, conducting the calculation between matrix I and W, row

by row, has high memory access efficiency; in particular, it avoids the traditional column vector data

access of matrix W, and further does not require transposing the matrix W and calculation sum

between PEs. This can reduce the extra cost of inner loop pipelining to the outer loop, and makes it

easier to achieve efficient software pipelining.

4. Accelerator Architecture Design

4.1. Accelerator Architecture Overview

The structure of the CNN accelerator is illustrated in Figure 8. It mainly comprises the processor,

DRAM (Dynamic Random Access Memory), matrix-multiplication array (MMA), and system

interconnection bus.

O0

O1

Om-1

…

i00,i01,…i0k-1

…

i10,i11,…i1k-1

im-10,im-11,…im-1k-1

w0

w1

wk-1

… = ×

ia1

ia2

ia3

…

iak

w11

w21

w31

…

wk1

PE0

w12

w22

w32

…

wk2

PE1

w13

w23

w33

…

wk3

PE2

w1k

w2k

w3k

…

wkk

PEk-1

Oa1 Oa2 Oa3 Oak

…

…

Figure 6. The method of calculating matrix multiplication by row.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 15

The multiplication and accumulation results on each PE are then saved in the on-chip register for use

in the next iteration.

Figure 6. The method of calculating matrix multiplication by row.

Figure 7. Realization of matrix multiplication based on vector SIMD technology.

Compared with the traditional calculation method, the programming method based on vector

SIMD technology is not intuitive. However, conducting the calculation between matrix I and W, row

by row, has high memory access efficiency; in particular, it avoids the traditional column vector data

access of matrix W, and further does not require transposing the matrix W and calculation sum

between PEs. This can reduce the extra cost of inner loop pipelining to the outer loop, and makes it

easier to achieve efficient software pipelining.

4. Accelerator Architecture Design

4.1. Accelerator Architecture Overview

The structure of the CNN accelerator is illustrated in Figure 8. It mainly comprises the processor,

DRAM (Dynamic Random Access Memory), matrix-multiplication array (MMA), and system

interconnection bus.

O0

O1

Om-1

…

i00,i01,…i0k-1

…

i10,i11,…i1k-1

im-10,im-11,…im-1k-1

w0

w1

wk-1

… = ×

ia1

ia2

ia3

…

iak

w11

w21

w31

…

wk1

PE0

w12

w22

w32

…

wk2

PE1

w13

w23

w33

…

wk3

PE2

w1k

w2k

w3k

…

wkk

PEk-1

Oa1 Oa2 Oa3 Oak

…

…

Figure 7. Realization of matrix multiplication based on vector SIMD technology.

Compared with the traditional calculation method, the programming method based on vector
SIMD technology is not intuitive. However, conducting the calculation between matrix I and W, row by
row, has high memory access efficiency; in particular, it avoids the traditional column vector data
access of matrix W, and further does not require transposing the matrix W and calculation sum between
PEs. This can reduce the extra cost of inner loop pipelining to the outer loop, and makes it easier to
achieve efficient software pipelining.

4. Accelerator Architecture Design

4.1. Accelerator Architecture Overview

The structure of the CNN accelerator is illustrated in Figure 8. It mainly comprises the
processor, DRAM (Dynamic Random Access Memory), matrix-multiplication array (MMA), and system
interconnection bus.

Sensors 2020, 20, 5558 7 of 15

Sensors 2020, 20, x FOR PEER REVIEW 7 of 15

Figure 8. Accelerator structure overview.

The main modules and their functions are as follows:

(1) CPU (Central Processing Unit): Runs the program control task execution module, communicates

with the accelerator controller through the general interface, and facilitates interaction with the

accelerator by writing the task descriptor into the memory mapping register;

(2) Controller: After receiving the task information sent by the CPU, loads the task onto the

accelerator and begins the calculation. Distributes the tasks to each MMA execution module

according to the present algorithm, and starts the DMA (Direct Memory Access) module

through the interconnection configuration to move the data to the BUFFER or write to DDR

(Double Data Rate), until the calculation is completed. The results are transferred to the external

DRAM, after which the information is sent back to the CPU;

(3) MMA: Calculates the block matrix based on vector SIMD technology.

4.2. The Structure of the MMA

The MMA unit is responsible for the calculation of the block intermediate process matrix. Its

overall structure, as shown in Figure 9, consists of a × b processing elements (PEs). This is a structure

that combines a systolic array structure and bus broadcast-based parallel structure, and is thus called

systolic-based extended parallel architecture. Each PE does not require any data exchange and

communication in the x-dimensional direction. Therefore, the bus broadcast mode is used to load

data into each PE; this can effectively eliminate data transmission delay between adjacent processing

units, and further reduces the difficulty of designing the PE control module in the x-dimensional

direction. Moreover, due to data reuse in the Y-dimensional direction, the systolic array structure is

adopted to reduce the communication overhead. The PE is connected by short wires, which can

effectively ensure the high independence and parallelism of data processing between PEs. This

approach can not only reduce the MMA’s bandwidth requirements, but can also solve the problem

of the simple bus broadcast structure having insufficient expansibility.

Command Processor

Input_ Feature_ Buffer

Ou
tpu

t_Fe
atu

re_Bu
ffe

r

FI
FO

D
R
A
M

CPU

FIFO

PE PE PE PE PE …… PE

PE PE PE PE PE …… PE

PE PE PE PE PE …… PE

…
…

…
…

…
…

…
…

…
…

…
…

PE PE PE PE PE …… PE

Fi
lte

r_Bu
ffe

r
FIFO FIFO

RE
LU

FIFO

Figure 8. Accelerator structure overview.

The main modules and their functions are as follows:

(1) CPU (Central Processing Unit): Runs the program control task execution module, communicates
with the accelerator controller through the general interface, and facilitates interaction with the
accelerator by writing the task descriptor into the memory mapping register;

(2) Controller: After receiving the task information sent by the CPU, loads the task onto the accelerator
and begins the calculation. Distributes the tasks to each MMA execution module according
to the present algorithm, and starts the DMA (Direct Memory Access) module through the
interconnection configuration to move the data to the BUFFER or write to DDR (Double Data
Rate), until the calculation is completed. The results are transferred to the external DRAM,
after which the information is sent back to the CPU;

(3) MMA: Calculates the block matrix based on vector SIMD technology.

4.2. The Structure of the MMA

The MMA unit is responsible for the calculation of the block intermediate process matrix. Its overall
structure, as shown in Figure 9, consists of a × b processing elements (PEs). This is a structure that
combines a systolic array structure and bus broadcast-based parallel structure, and is thus called
systolic-based extended parallel architecture. Each PE does not require any data exchange and
communication in the x-dimensional direction. Therefore, the bus broadcast mode is used to load data
into each PE; this can effectively eliminate data transmission delay between adjacent processing units,
and further reduces the difficulty of designing the PE control module in the x-dimensional direction.
Moreover, due to data reuse in the Y-dimensional direction, the systolic array structure is adopted
to reduce the communication overhead. The PE is connected by short wires, which can effectively
ensure the high independence and parallelism of data processing between PEs. This approach can not
only reduce the MMA’s bandwidth requirements, but can also solve the problem of the simple bus
broadcast structure having insufficient expansibility.

Sensors 2020, 20, 5558 8 of 15
Sensors 2020, 20, x FOR PEER REVIEW 8 of 15

Figure 9. The structure of MMA.

In order to clearly and simply explain the working process of MMA, the process for an example

MMA structure with 4 × 4 PE units in processing intermediate process matrix multiplication will

be considered: O = IW , the scale of matrix I is 4 × 8 , and the scale of matrix W is 8 × 4 (see

Equation (4)):

[

O11 O12 O13 O14

O21 O22 O23 O24

O31 O32 O33 O34

O41 O42 O43 O44

] = [

I11 I12 ⋯ I18

I21 I22 ⋯ I28

I31 I32 … I38

I41 I42 … I48

] [

W11 W12 W13 W14

W21 W22 W23 W24

⋮ ⋮ ⋮ ⋮
W81 W82 W83 W84

] (4)

The MMA flow chart is shown in Figure 10. Each PE unit synchronously executes the following

process when performing multiplication calculation: first, the data of the filter intermediate matrix

W is transmitted to the next PE unit. The adder then adds the last calculation result, with the

intermediate result stored on-chip REG in PE and writes it back to the on-chip memory until the end

of the cycle. The final result is directly written back to the external memory by the DMA module in

the reverse direction of the matrix W input by the systolic array structure.

Figure 10. The working flowchart of MMA.

4.3. The Structure of PE

A PE is the most basic operation unit of an accelerator. The structure of a PE is presented in

Figure 11.

PE0 PE1 PE2 PEb-1

PEb PEb+1 PEb+2 PE2b-1

PE2b PE2b+1 PE2b+2 PE3b-1

PE（a-1）b PE（a-1）b+1 PE（a-1）b+2 PEab-1

I0
Buffer

…

…

…

…

… … … …

…

W0
Buffer

W1
Buffer

W2
Buffer

Wb-1
Buffer

I1
Buffer

I2
Buffer

Ia-1
Buffer

…

Y

X

i11*w11 a11*b11 i13*w31i12*w21 i14*w41 i15*w51 i16*w61 i17*w71 i18*w81

i21*w11 a11*b11 i23*w31i22*w21 i24*w41 i25*w51 i26*w61 i27*w71 i28*w81

PE0

PE4

PE8

PE12

i31*w11 a11*b11 i33*w31i32*w21 i34*w41 i35*w51 i36*w61 i37*w71 i38*w81

i41*w11 a11*b11 i43*w31i42*w21 i44*w41 i45*w51 i46*w61 i47*w71 i48*w81

O11

O21

O31

O41

i11*w12 a11*b11 i13*w32i12*w22 i14*w42 i15*w52 i16*w62 i17*w72 i18*w82

i21*w12 a11*b11 i23*w32i22*w22 i24*w42 i25*w52 i26*w62 i27*w72 i28*w82

PE1

PE5

PE9

PE13

i31*w12 a11*b11 i33*w32i32*w22 i34*w42 i35*w52 i36*w62 i37*w72 i38*w82

i41*w12 a11*b11 i43*w32i42*w22 i44*w42 i45*w52 i46*w62 i47*w72 i48*w82

O12

O22

O32

O42

Matrix W Data Flow

t0 a11*b11 t3t2 t4 t5 t6 t7 t8 t9 t10

Matrix I Data Flow

t1

Figure 9. The structure of MMA.

In order to clearly and simply explain the working process of MMA, the process for an example
MMA structure with 4 × 4 PE units in processing intermediate process matrix multiplication will be
considered: O = IW, the scale of matrix I is 4 × 8, and the scale of matrix W is 8 × 4 (see Equation (4)):


O11 O12 O13 O14

O21 O22 O23 O24

O31 O32 O33 O34

O41 O42 O43 O44

 =


I11 I12 . . . I18

I21 I22 . . . I28

I31 I32 . . . I38

I41 I42 . . . I48




W11 W12 W13 W14

W21 W22 W23 W24
...

...
...

...
W81 W82 W83 W84

 (4)

The MMA flow chart is shown in Figure 10. Each PE unit synchronously executes the following
process when performing multiplication calculation: first, the data of the filter intermediate matrix W
is transmitted to the next PE unit. The adder then adds the last calculation result, with the intermediate
result stored on-chip REG in PE and writes it back to the on-chip memory until the end of the cycle.
The final result is directly written back to the external memory by the DMA module in the reverse
direction of the matrix W input by the systolic array structure.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 15

Figure 9. The structure of MMA.

In order to clearly and simply explain the working process of MMA, the process for an example

MMA structure with 4 × 4 PE units in processing intermediate process matrix multiplication will

be considered: O = IW , the scale of matrix I is 4 × 8 , and the scale of matrix W is 8 × 4 (see

Equation (4)):

[

O11 O12 O13 O14

O21 O22 O23 O24

O31 O32 O33 O34

O41 O42 O43 O44

] = [

I11 I12 ⋯ I18

I21 I22 ⋯ I28

I31 I32 … I38

I41 I42 … I48

] [

W11 W12 W13 W14

W21 W22 W23 W24

⋮ ⋮ ⋮ ⋮
W81 W82 W83 W84

] (4)

The MMA flow chart is shown in Figure 10. Each PE unit synchronously executes the following

process when performing multiplication calculation: first, the data of the filter intermediate matrix

W is transmitted to the next PE unit. The adder then adds the last calculation result, with the

intermediate result stored on-chip REG in PE and writes it back to the on-chip memory until the end

of the cycle. The final result is directly written back to the external memory by the DMA module in

the reverse direction of the matrix W input by the systolic array structure.

Figure 10. The working flowchart of MMA.

4.3. The Structure of PE

A PE is the most basic operation unit of an accelerator. The structure of a PE is presented in

Figure 11.

PE0 PE1 PE2 PEb-1

PEb PEb+1 PEb+2 PE2b-1

PE2b PE2b+1 PE2b+2 PE3b-1

PE（a-1）b PE（a-1）b+1 PE（a-1）b+2 PEab-1

I0
Buffer

…

…

…

…

… … … …

…

W0
Buffer

W1
Buffer

W2
Buffer

Wb-1
Buffer

I1
Buffer

I2
Buffer

Ia-1
Buffer

…

Y

X

i11*w11 a11*b11 i13*w31i12*w21 i14*w41 i15*w51 i16*w61 i17*w71 i18*w81

i21*w11 a11*b11 i23*w31i22*w21 i24*w41 i25*w51 i26*w61 i27*w71 i28*w81

PE0

PE4

PE8

PE12

i31*w11 a11*b11 i33*w31i32*w21 i34*w41 i35*w51 i36*w61 i37*w71 i38*w81

i41*w11 a11*b11 i43*w31i42*w21 i44*w41 i45*w51 i46*w61 i47*w71 i48*w81

O11

O21

O31

O41

i11*w12 a11*b11 i13*w32i12*w22 i14*w42 i15*w52 i16*w62 i17*w72 i18*w82

i21*w12 a11*b11 i23*w32i22*w22 i24*w42 i25*w52 i26*w62 i27*w72 i28*w82

PE1

PE5

PE9

PE13

i31*w12 a11*b11 i33*w32i32*w22 i34*w42 i35*w52 i36*w62 i37*w72 i38*w82

i41*w12 a11*b11 i43*w32i42*w22 i44*w42 i45*w52 i46*w62 i47*w72 i48*w82

O12

O22

O32

O42

Matrix W Data Flow

t0 a11*b11 t3t2 t4 t5 t6 t7 t8 t9 t10

Matrix I Data Flow

t1

Figure 10. The working flowchart of MMA.

Sensors 2020, 20, 5558 9 of 15

4.3. The Structure of PE

A PE is the most basic operation unit of an accelerator. The structure of a PE is presented in
Figure 11.Sensors 2020, 20, x FOR PEER REVIEW 9 of 15

Figure 11. The structure of PE.

The PE mainly consists of the multiply-add unit, on-chip memory, row and column

communication interface, I/O bus, and so on. The PE unit receives the data of matrix I from the

broadcast bus and also receives the data of matrix W from the buffer or the previous PE. Only when

the data meet the IEEE-754 standard can it be sent to the multiplier. After the multiplication result is

obtained, it is input into the adder. The adder reads the intermediate value of the result matrix O

from the on-chip register through an MUX1 multiplexer (when the initial calculation is performed,

the data of matrix O is zero). After calculation is complete, a MUX2 multiplexer is used to determine

whether the result will be stored in on-chip RAM or written to external DRAM. Because the

intermediate value is stored in the PE’s internal memory, the calculation is independent, such that

there is no need to transfer the intermediate results to an external location.

4.4. The Double Buffer Data Movement Based on DMA

Reducing the cost of moving data between different levels of storage is one of the key means by

which the efficiency of matrix-multiplication can be improved. The data storage of an accelerator

involves a register file, Buffer, L1D SRAM, and DDR multi-level storage structure. In L1D SRAM,

two buffers are set up, while a Ping-Pong relay is used to facilitate the overlapping of core computing

and DMA data moving; this is done to reduce the data moving time and improve the calculation

efficiency of the CNN accelerator. Taking an MMA with 4 × 4 PEs as an example, the specific data

migration strategy is shown in Figure 12.

Figure 12. The double buffer data moving strategy based on DMA.

×

Data I Broadcast Bus

MUX1

+

REG_O

Store O

Load O

Data W Input

MUX2 Data O Output

Cast

Zero Output Bus

Data W Output

Phase synchronization control
module

RARB

Matrix I
Buffer

Matrix W
Buffer

DDR

L1D SRAM

Registers

PE0 PE1 PE2 PE3

i0 i1 i2 i3 w0 w1 w2 w3
i4 i5 i6 i7 w4 w5 w6 w7
i8 i9 … … w8 w9 … …
… … … … … … … …

i0 i1 i2 i3

i4 i5 i6 i7

i8 i9 … …

… … … …

w0 w1 w2 w3

w0 w1 w2 w3

PE4 PE5 PE6 PE7

i0 i0 i0 i0

STEP 1 2 3

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

w0 w1 w2 w3

i1

i4 i4 i4 i4

i1 i1 i1

i0 i1 i2 i3

i4 i5 i6 i7

i8 i9 … …
… … … …

w4 w5 w6 w7

w4 w5 w6 w7

i0 i1 i2 i3 w0 w1 w2 w3
i4 i5 i6 i7 w4 w5 w6 w7
i8 i9 … … w8 w9 … …
… … … … … … … …

Figure 11. The structure of PE.

The PE mainly consists of the multiply-add unit, on-chip memory, row and column communication
interface, I/O bus, and so on. The PE unit receives the data of matrix I from the broadcast bus and
also receives the data of matrix W from the buffer or the previous PE. Only when the data meet the
IEEE-754 standard can it be sent to the multiplier. After the multiplication result is obtained, it is
input into the adder. The adder reads the intermediate value of the result matrix O from the on-chip
register through an MUX1 multiplexer (when the initial calculation is performed, the data of matrix O
is zero). After calculation is complete, a MUX2 multiplexer is used to determine whether the result
will be stored in on-chip RAM or written to external DRAM. Because the intermediate value is stored
in the PE’s internal memory, the calculation is independent, such that there is no need to transfer the
intermediate results to an external location.

4.4. The Double Buffer Data Movement Based on DMA

Reducing the cost of moving data between different levels of storage is one of the key means
by which the efficiency of matrix-multiplication can be improved. The data storage of an accelerator
involves a register file, Buffer, L1D SRAM, and DDR multi-level storage structure. In L1D SRAM,
two buffers are set up, while a Ping-Pong relay is used to facilitate the overlapping of core computing
and DMA data moving; this is done to reduce the data moving time and improve the calculation
efficiency of the CNN accelerator. Taking an MMA with 4 × 4 PEs as an example, the specific data
migration strategy is shown in Figure 12.

Step 1: Prepare the data of the first buffer in L1D SRAM through DMA before MMA starts
the calculation.

Step 2: The buffer pools, corresponding to matrix I and matrix W in MMA, read the data in L1D
SRAM, respectively. The buffer pools, corresponding to matrix I, read the data of the corresponding
rows and transmit them the appropriate PE via bus broadcast. The data of matrix W is read row by
row and distributed to each buffer pool corresponding to matrix W, after which the data are transferred
to the next PE.

Step 3: During the process of data calculation in the PE, DMA moves the next data block of matrix
I and matrix W from DDR to the second buffer of L1D SRAM. The matrix W buffer pool reads the
remaining data in the first buffer, then uses the MMA’s systolic array structure to transmit the data
of matrix W to the next PE via the short line between the PEs. After receiving the data, the PE starts
the calculation of the PE data in the second layer. After the PEs have computed the first block matrix

Sensors 2020, 20, 5558 10 of 15

operation result, the buffer pools corresponding to matrix I and matrix W continue to read the data of
the second buffer in L1D SRAM.

The calculation results of the above process are repeated until each channel of the input feature
map is divided into blocks and the corresponding channel data of the filter is calculated; subsequently,
the calculation results are moved to DDR by using the systolic structure through DMA.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 15

Figure 11. The structure of PE.

The PE mainly consists of the multiply-add unit, on-chip memory, row and column

communication interface, I/O bus, and so on. The PE unit receives the data of matrix I from the

broadcast bus and also receives the data of matrix W from the buffer or the previous PE. Only when

the data meet the IEEE-754 standard can it be sent to the multiplier. After the multiplication result is

obtained, it is input into the adder. The adder reads the intermediate value of the result matrix O

from the on-chip register through an MUX1 multiplexer (when the initial calculation is performed,

the data of matrix O is zero). After calculation is complete, a MUX2 multiplexer is used to determine

whether the result will be stored in on-chip RAM or written to external DRAM. Because the

intermediate value is stored in the PE’s internal memory, the calculation is independent, such that

there is no need to transfer the intermediate results to an external location.

4.4. The Double Buffer Data Movement Based on DMA

Reducing the cost of moving data between different levels of storage is one of the key means by

which the efficiency of matrix-multiplication can be improved. The data storage of an accelerator

involves a register file, Buffer, L1D SRAM, and DDR multi-level storage structure. In L1D SRAM,

two buffers are set up, while a Ping-Pong relay is used to facilitate the overlapping of core computing

and DMA data moving; this is done to reduce the data moving time and improve the calculation

efficiency of the CNN accelerator. Taking an MMA with 4 × 4 PEs as an example, the specific data

migration strategy is shown in Figure 12.

Figure 12. The double buffer data moving strategy based on DMA.

×

Data I Broadcast Bus

MUX1

+

REG_O

Store O

Load O

Data W Input

MUX2 Data O Output

Cast

Zero Output Bus

Data W Output

Phase synchronization control
module

RARB

Matrix I
Buffer

Matrix W
Buffer

DDR

L1D SRAM

Registers

PE0 PE1 PE2 PE3

i0 i1 i2 i3 w0 w1 w2 w3
i4 i5 i6 i7 w4 w5 w6 w7
i8 i9 … … w8 w9 … …
… … … … … … … …

i0 i1 i2 i3

i4 i5 i6 i7

i8 i9 … …

… … … …

w0 w1 w2 w3

w0 w1 w2 w3

PE4 PE5 PE6 PE7

i0 i0 i0 i0

STEP 1 2 3

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

w0 w1 w2 w3

i1

i4 i4 i4 i4

i1 i1 i1

i0 i1 i2 i3

i4 i5 i6 i7

i8 i9 … …
… … … …

w4 w5 w6 w7

w4 w5 w6 w7

i0 i1 i2 i3 w0 w1 w2 w3
i4 i5 i6 i7 w4 w5 w6 w7
i8 i9 … … w8 w9 … …
… … … … … … … …

Figure 12. The double buffer data moving strategy based on DMA.

5. Experimental Analysis and Results

5.1. Model Analysis

When designing an accelerator, parameters such as memory access ratio and computing
performance are important considerations which must be addressed while planning the whole
accelerator scale setting, memory setting, and block size of the block algorithm. Suppose the number
of arithmetic units in MMA is a× b, the amount of MMA is nMMA, instruction execution time of each
PE is tmac (including calculation and the time required to write the result back to on-chip memory),
the matrix W data transmission time between PEs is tW, the kernel-level block size of the PE layer is
divided into a× k and k× b, and the calculated memory access ratio ƒ can be obtained by Equation (5):

f =
f lops

memops
=

abk2

(a + b)k
=

abk
a + b

(5)

As PE is the smallest block matrix computing unit for computing matrices I and W, the performance
of the PE operation will directly affect the calculation of the large-scale matrices I and W. In order to fully
guarantee high-efficiency PE calculation, the data transmission bandwidth must meet the calculation
needs, as this enables the data transmission time to be hidden in the calculation time. Suppose the data
bandwidth between L1D SRAM and DDR is R, while the clock cycle time is t; accordingly, the data
bandwidth R can be calculated by Equation (6):

R >
(a + b)k× nMMA

a− 1tW + tmac + t(k− 1)
. (6)

Since the PE unit can complete one floating-point multiplication and one floating-point addition
operation in each clock cycle after the pipeline technology is adopted, the theoretical peak computing

Sensors 2020, 20, 5558 11 of 15

performance of the entire CNNs accelerator is thus PERFmax, which can be calculated by means of
Equation (7):

PERFmax =
2ab ∗ nMMA

t
. (7)

The storage cost MI and MK of the intermediate matrix generated by the input feature map and
filter respectively can in turn be calculated by Equations (8) and (9), respectively. Finally, the total
storage cost MMTCA can be calculated by Equation (10):

MI =
(W −K + 1

S×m
+ K − 1

)
×K ×

H −K + 1
S

×m (8)

MK =
(W −K + 1

S×m
+ K − 1

)
×K ×

W −K + 1
S

(9)

MMFCA = MI + MK. (10)

By deriving Equation (10) on M, Equation (11) can be obtained, as follows:

M′MFCA = (K − 1) ×K ×
H −K + 1

S
−

K(W −K + 1)2

S2 ×m2 (11)

The best block number with minimum storage consumption based on the MTCA algorithm for
different convolution types can therefore be expressed by Equation (12):

m =

W −K + 1
S

√
S

(K − 1)(H −K + 1)

 (12)

5.2. Experimental Results and Discussion

Figure 13 shows the synthesized gate level network table generated in Vivado. This design uses
Modelsim 10.2 to test the function and timing of the complete design. The generic cabling tool uses the
Xilinx Vivado 2016.2 toolchain to realize an (8 × 8) × 2 scale accelerator design on FPGA. The peak
performance reaches 38.4GFLOPS, on-chip power is 2.95 W, and per power consumption performance
reaches 13GFLOPS.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 15

M𝐾 = (
𝑊 − 𝐾 + 1

𝑆 × 𝑚
+ 𝐾 − 1) × 𝐾 ×

𝑊 − 𝐾 + 1

𝑆
 (9)

M𝑀𝐹𝐶𝐴 = M𝐼 + M𝐾 (10)

By deriving Equation (10) on M, Equation (11) can be obtained, as follows:

M′
𝑀𝐹𝐶𝐴 = (𝐾 − 1) × 𝐾 ×

𝐻 − 𝐾 + 1

𝑆
−

𝐾(𝑊 − 𝐾 + 1)2

𝑆2 × 𝑚2
 (11)

The best block number with minimum storage consumption based on the MTCA algorithm for

different convolution types can therefore be expressed by Equation (12):

m = ⌈
𝑊 − 𝐾 + 1

𝑆
√

𝑆

(𝐾 − 1)(𝐻 − 𝐾 + 1)
⌉ (12)

5.2. Experimental Results and Discussion

Figure 13 shows the synthesized gate level network table generated in Vivado. This design uses

Modelsim 10.2 to test the function and timing of the complete design. The generic cabling tool uses

the Xilinx Vivado 2016.2 toolchain to realize an (8 × 8) × 2 scale accelerator design on FPGA. The

peak performance reaches 38.4GFLOPS, on-chip power is 2.95 W, and per power consumption

performance reaches 13GFLOPS.

Figure 13. Gate-level Netlist generated in Vavido.

In order to facilitate the desired analysis, we use the different convolution types and the best

MTCA block number provided in Table 1 for our experiments.

Table 1. Various types of convolutions and their optimal number of blocks.

 Input Feature Map Filter Optimal m

COV1 ResNet-18 COV5_X 7×7 3*3 2

COV2 ResNet-18 COV4_X 24×24 3*3 6

COV3 ResNet-18 COV2_X 56×56 3*3 7

COV4 ResNet-18 COV1_X 112×112 3*3 3

COV5 VGG-16 COV1 224×224 3*3 5

COV6 AlexNet COV1 227×227 11*11 16

COV7 720×480 5*5 9

COV8 1920×1080 5*5 12

Each network parameter comes from the official open literature.

Figure 14 describes the consumption of storage resources when the MTCA block parallel

computing algorithm, MTCA, MEC, and im2col are used to test the testing set. From the figure, it can

Figure 13. Gate-level Netlist generated in Vavido.

In order to facilitate the desired analysis, we use the different convolution types and the best
MTCA block number provided in Table 1 for our experiments.

Sensors 2020, 20, 5558 12 of 15

Table 1. Various types of convolutions and their optimal number of blocks.

Input Feature Map Filter Optimal m

COV1 ResNet-18 COV5_X 7 × 7 3*3 2
COV2 ResNet-18 COV4_X 24 × 24 3*3 6
COV3 ResNet-18 COV2_X 56 × 56 3*3 7
COV4 ResNet-18 COV1_X 112 × 112 3*3 3
COV5 VGG-16 COV1 224 × 224 3*3 5
COV6 AlexNet COV1 227 × 227 11*11 16
COV7 720 × 480 5*5 9
COV8 1920 × 1080 5*5 12

Each network parameter comes from the official open literature.

Figure 14 describes the consumption of storage resources when the MTCA block parallel computing
algorithm, MTCA, MEC, and im2col are used to test the testing set. From the figure, it can be seen
that the MTCA block parallel computing algorithm and the MTCA do not dominate in terms of
performance when the size of the filter or input feature map is small. In the case of small convolution
size, MEC consumes the lowest amount of hardware storage resources and saves about 50% storage
space compared with the traditional im2col algorithm. However, the block logic of MEC is complex;
this is because the address space of the intermediate process matrix is not aligned, making it very
complex and difficult to implement on hardware. For its part, the MTCA block parallel computing
algorithm saves more than 60% of storage space compared with the traditional algorithm. Furthermore,
when the convolution size is large, the MTCA block parallel computing algorithm exhibits more
obvious advantages than others (e.g., cov7 and cov8). This proves that the parallel computing
algorithm is not only conducive to parallel computing, but can also save space when calculating
large-scale convolutions.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 15

be seen that the MTCA block parallel computing algorithm and the MTCA do not dominate in terms

of performance when the size of the filter or input feature map is small. In the case of small

convolution size, MEC consumes the lowest amount of hardware storage resources and saves about

50% storage space compared with the traditional im2col algorithm. However, the block logic of MEC

is complex; this is because the address space of the intermediate process matrix is not aligned, making

it very complex and difficult to implement on hardware. For its part, the MTCA block parallel

computing algorithm saves more than 60% of storage space compared with the traditional algorithm.

Furthermore, when the convolution size is large, the MTCA block parallel computing algorithm

exhibits more obvious advantages than others (e.g., cov7 and cov8). This proves that the parallel

computing algorithm is not only conducive to parallel computing, but can also save space when

calculating large-scale convolutions.

Figure 14. The storage overhead comparison between different convolution algorithms.

Figure 15 illustrates the computational efficiency of the CNN accelerator under different

convolution types. It can be seen from the figure that when the size of the matrix is small, the

calculation efficiency is low; this is because even if the optimization strategy of DMA-based double

buffer data migration is adopted in order to hide the data handling time in the data calculation, the

DMA channel start time, the time of the first data handling, and the time of the last data writing

cannot be hidden in this way. At the same time, moreover, the time of the first convolution expansion

and the writing time cannot be hidden, which reduces the computational efficiency of the entire

accelerator. When the convolution size is small, the time required for convolution expansion and for

intermediate matrix reading and writing will be longer than the corresponding calculation time; this

means that the data handling time can no longer be hidden between the operations, resulting in

overall performance degradation.

Figure 15. Accelerator computing performance and efficiency.

0%

10%

20%

30%

40%

50%

60%

70%

80%

cov1 cov2 cov3 cov4 cov5 cov6 cov7 cov8

This paper

MTCA

MEC

im2col

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

35

40

cov1 cov2 cov3 cov4 cov5 cov6 cov7 cov8

Average Performance Efficiency

Figure 14. The storage overhead comparison between different convolution algorithms.

Figure 15 illustrates the computational efficiency of the CNN accelerator under different
convolution types. It can be seen from the figure that when the size of the matrix is small, the calculation
efficiency is low; this is because even if the optimization strategy of DMA-based double buffer data
migration is adopted in order to hide the data handling time in the data calculation, the DMA
channel start time, the time of the first data handling, and the time of the last data writing cannot
be hidden in this way. At the same time, moreover, the time of the first convolution expansion
and the writing time cannot be hidden, which reduces the computational efficiency of the entire
accelerator. When the convolution size is small, the time required for convolution expansion and
for intermediate matrix reading and writing will be longer than the corresponding calculation time;
this means that the data handling time can no longer be hidden between the operations, resulting in
overall performance degradation.

Sensors 2020, 20, 5558 13 of 15

Sensors 2020, 20, x FOR PEER REVIEW 12 of 15

be seen that the MTCA block parallel computing algorithm and the MTCA do not dominate in terms

of performance when the size of the filter or input feature map is small. In the case of small

convolution size, MEC consumes the lowest amount of hardware storage resources and saves about

50% storage space compared with the traditional im2col algorithm. However, the block logic of MEC

is complex; this is because the address space of the intermediate process matrix is not aligned, making

it very complex and difficult to implement on hardware. For its part, the MTCA block parallel

computing algorithm saves more than 60% of storage space compared with the traditional algorithm.

Furthermore, when the convolution size is large, the MTCA block parallel computing algorithm

exhibits more obvious advantages than others (e.g., cov7 and cov8). This proves that the parallel

computing algorithm is not only conducive to parallel computing, but can also save space when

calculating large-scale convolutions.

Figure 14. The storage overhead comparison between different convolution algorithms.

Figure 15 illustrates the computational efficiency of the CNN accelerator under different

convolution types. It can be seen from the figure that when the size of the matrix is small, the

calculation efficiency is low; this is because even if the optimization strategy of DMA-based double

buffer data migration is adopted in order to hide the data handling time in the data calculation, the

DMA channel start time, the time of the first data handling, and the time of the last data writing

cannot be hidden in this way. At the same time, moreover, the time of the first convolution expansion

and the writing time cannot be hidden, which reduces the computational efficiency of the entire

accelerator. When the convolution size is small, the time required for convolution expansion and for

intermediate matrix reading and writing will be longer than the corresponding calculation time; this

means that the data handling time can no longer be hidden between the operations, resulting in

overall performance degradation.

Figure 15. Accelerator computing performance and efficiency.

0%

10%

20%

30%

40%

50%

60%

70%

80%

cov1 cov2 cov3 cov4 cov5 cov6 cov7 cov8

This paper

MTCA

MEC

im2col

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

35

40

cov1 cov2 cov3 cov4 cov5 cov6 cov7 cov8

Average Performance Efficiency

Figure 15. Accelerator computing performance and efficiency.

Figure 16 describes the convolution operation time under different convolution conversion
algorithms, which are compared with the running time required by im2col. The figure shows that the
MTCA block parallel computing algorithm achieves minimal performance improvement compared
with EMC in the case of small convolution size. As the convolution size increases, the MTCA block
parallel computing algorithm has certain advantages. Compared with EMC, the MTCA block parallel
computing algorithm can improve the acceleration effect by about 20% and can achieve more than
three times of im2col.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 15

Figure 16 describes the convolution operation time under different convolution conversion

algorithms, which are compared with the running time required by im2col. The figure shows that the

MTCA block parallel computing algorithm achieves minimal performance improvement compared

with EMC in the case of small convolution size. As the convolution size increases, the MTCA block

parallel computing algorithm has certain advantages. Compared with EMC, the MTCA block parallel

computing algorithm can improve the acceleration effect by about 20% and can achieve more than

three times of im2col.

Figure 16. The running time between different convolution conversion algorithms.

It can be seen from Figure 17 that the per power performance of Core i7-960 is the worst,

followed by NVIDIA series, while the accelerator we designed has advantages in per unit power

operation performance, and the per unit power operation performance reaches 13 GFLOPS/W.

Figure 17. Per unit power operation Performance of different processors handling cov8.

6. Conclusions

In this paper, we propose a design based on the MTCA block parallel computing algorithm for

CNNs hardware accelerator. With the row matrix-multiplication computing, the MTCA block

parallel computing algorithm can provide high performance and high efficiency acceleration for

various convolutions on the premise of reducing bandwidth and maximizing data reuse. In our

design, we realize the convolution expansion and the partition of the intermediate matrix, which is

conducive to the high parallel computation on hardware. Compared with the accelerator design

based on the im2col algorithm, our design can save more than 60% of the hardware storage space.

Especially in the case of computing large-scale convolution, it saves nearly 82% of the storage space.

In addition, it shows more prominent advantages than the accelerator design based on MEC.

Experiments show that, with the support of specific dataflow mode, and the per unit power operation

performance reaches 13 GFLOPS/W, which is better than popular processors.

0%

20%

40%

60%

80%

100%

C O V 1 C O V 2 C O V 3 C O V 4 C O V 5 C O V 6 C O V 7 C O V 8

This paper MEC im2col

0

2

4

6

8

10

12

14

Figure 16. The running time between different convolution conversion algorithms.

It can be seen from Figure 17 that the per power performance of Core i7-960 is the worst, followed
by NVIDIA series, while the accelerator we designed has advantages in per unit power operation
performance, and the per unit power operation performance reaches 13 GFLOPS/W.

Sensors 2020, 20, 5558 14 of 15

Sensors 2020, 20, x FOR PEER REVIEW 13 of 15

Figure 16 describes the convolution operation time under different convolution conversion

algorithms, which are compared with the running time required by im2col. The figure shows that the

MTCA block parallel computing algorithm achieves minimal performance improvement compared

with EMC in the case of small convolution size. As the convolution size increases, the MTCA block

parallel computing algorithm has certain advantages. Compared with EMC, the MTCA block parallel

computing algorithm can improve the acceleration effect by about 20% and can achieve more than

three times of im2col.

Figure 16. The running time between different convolution conversion algorithms.

It can be seen from Figure 17 that the per power performance of Core i7-960 is the worst,

followed by NVIDIA series, while the accelerator we designed has advantages in per unit power

operation performance, and the per unit power operation performance reaches 13 GFLOPS/W.

Figure 17. Per unit power operation Performance of different processors handling cov8.

6. Conclusions

In this paper, we propose a design based on the MTCA block parallel computing algorithm for

CNNs hardware accelerator. With the row matrix-multiplication computing, the MTCA block

parallel computing algorithm can provide high performance and high efficiency acceleration for

various convolutions on the premise of reducing bandwidth and maximizing data reuse. In our

design, we realize the convolution expansion and the partition of the intermediate matrix, which is

conducive to the high parallel computation on hardware. Compared with the accelerator design

based on the im2col algorithm, our design can save more than 60% of the hardware storage space.

Especially in the case of computing large-scale convolution, it saves nearly 82% of the storage space.

In addition, it shows more prominent advantages than the accelerator design based on MEC.

Experiments show that, with the support of specific dataflow mode, and the per unit power operation

performance reaches 13 GFLOPS/W, which is better than popular processors.

0%

20%

40%

60%

80%

100%

C O V 1 C O V 2 C O V 3 C O V 4 C O V 5 C O V 6 C O V 7 C O V 8

This paper MEC im2col

0

2

4

6

8

10

12

14

Figure 17. Per unit power operation Performance of different processors handling cov8.

6. Conclusions

In this paper, we propose a design based on the MTCA block parallel computing algorithm
for CNNs hardware accelerator. With the row matrix-multiplication computing, the MTCA block
parallel computing algorithm can provide high performance and high efficiency acceleration for
various convolutions on the premise of reducing bandwidth and maximizing data reuse. In our design,
we realize the convolution expansion and the partition of the intermediate matrix, which is conducive
to the high parallel computation on hardware. Compared with the accelerator design based on the
im2col algorithm, our design can save more than 60% of the hardware storage space. Especially in
the case of computing large-scale convolution, it saves nearly 82% of the storage space. In addition,
it shows more prominent advantages than the accelerator design based on MEC. Experiments show
that, with the support of specific dataflow mode, and the per unit power operation performance
reaches 13 GFLOPS/W, which is better than popular processors.

Author Contributions: Conceptualization, Y.Z., J.L. and X.C.; Formal analysis, Y.Z., and J.L.; Resources, Y.Z., J.L.
and X.C.; Software, Y.Z.; Writing—original draft, Y.Z. and X.C.; Writing—review & editing, Y.Z., J.L. and X.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Hunan Provincial Science and Technology Plan Project, grant number
is 2018XK2102.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
Adv. Neural Inf. Process. Syst. 2012, 60, 1097–1105. [CrossRef]

2. Dong, G.; Liu, H.; Kuang, G.; Chanussot, J. Target recognition in SAR images via sparse representation in the
frequency domain. Pattern Recognit. 2019, 12, 96. [CrossRef]

3. Uijlings, J.R.; VandeSande, K.E.A.; Gevers, T.; Smeul-ders, A.W.M. Selective search for object recognition.
Int. J. Comput. Vis. 2013, 2, 154–171. [CrossRef]

4. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. Proc. IEEE CVPR 2014, 580–587. [CrossRef]

5. Noh, H.; Hong, S.; Han, B. Learning deconvolution net-work for semantic segmentation. Proc. IEEE ICCV
2015, 1520–1528. [CrossRef]

6. Liu, S.; Du, Z.; Tao, J. Cambricon: An instruction set architecture for neural networks. ACM Sigarch Comput.
Archit. News 2016, 44, 393–405. [CrossRef]

7. Lavin, A.; Gray, S. Fast algorithms for convolutional neural net-works. Proc. IEEE CVPR 2016, 4013–4021.
[CrossRef]

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.patcog.2019.106972
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/ICCV.2015.178
http://dx.doi.org/10.1145/3007787.3001179
http://dx.doi.org/10.1109/CVPR.2016.435

Sensors 2020, 20, 5558 15 of 15

8. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow
for Convolutional Neural Networks. In Proceedings of the 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 367–379. [CrossRef]

9. Yin, S. A high energy efficient reconfigurable hybrid neural network processor for deep learning applications.
IEEE J. Solid-State Circuits 2018, 53, 968–982. [CrossRef]

10. Desoli, G. A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28 nm for intelligent embedded
systems. In Proceedings of the IEEE Int. Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA,
5–9 February 2017; pp. 238–239.

11. Shin, D.; Lee, J.; Yoo, H.J. DNPU: An 8.1TOPS/W reconfigurable CNN-RNN processor for general-purpose
deep neural networks. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC),
San Francisco, CA, USA, 5–9 February 2017; pp. 240–241.

12. Wang, J.; Lin, J.; Wang, Z. Efficient hardware architectures for deep convolutional neural network. IEEE Trans.
Circuits Syst. I 2018, 65, 1941–1953. [CrossRef]

13. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Optimizing the convolution operation to accelerate deep neural
networks on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1354–1367. [CrossRef]

14. Ardakani, A.; Condo, C.; Ahmadi, M.; Gross, W.J. An architecture to accelerate convolution in deep neural
networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 65, 1349–1362. [CrossRef]

15. Fang, Y.; Chen, Q. Optimization method of convolution calculation based on matrix transformation.
Comput. Eng. 2019, 45, 217–221.

16. Kung, H.T.; Leiserson, C.E. Systolic Arrays. In Handbook of Signal Processing Systems; Springer: Berlin/

Heidelberg, Germany, 1978; pp. 1111–1143.
17. Chen, T.; Du, Z.; Sun, N. DianNao: A small-footprint high-throuhput accelerator for ubiquitous

machine-learning. ACM SIGARCH Comput. Archit. News 2014, 49, 269–284. [CrossRef]
18. Chen, Y.; Lou, T.; Liu, S. DaDianNao: A machine-learning supercomputer. ACM Int. Symp. Microarchit. 2014,

609–622. [CrossRef]
19. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep

convolutional neural net-works. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]
20. You, H.; Junzhon, S.; Yuran, Q. MALMM: A Multi-array Architecture for Large-scale Matrix Multiplication

on FPGA. IEICE Electron. Express 2018, 15, 10. [CrossRef]
21. Zhang, J.Y.; Guo, Y.; Hu, X. Parallel computing method of two-dimensional matrix convolution. Eng. Sci.

2018, 52, 515–523. [CrossRef]
22. Jing, S.; Haoqi, R.; Zhifeng, Z.; Jun, W.; Zhenyu, J. A High-Performance Systolic Array Accelerator Dedicated

for CNN. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology
(ICCT), Xi’an, China, 16–19 October 2020; pp. 264–274. [CrossRef]

23. Chaoyang, Z.; Kejie, H.; Shuyuan, Y.; Ziqi, Z.; Hejia, Z. An Efficient Hardware Accelerator for Structured
Sparse Convolutional Neural Networks on FPGAs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020,
28, 1953–1965.

24. Maurizio, C.; Beatrice, B.; Alberto, M.; Muhammad, S. An Updated Survey of Efficient Hardware Architectures
for Accelerating Deep Convolutional Neural Networks. Future Internet 2020, 12, 113. [CrossRef]

25. Cho, M.; Brand, D. MEC: Memory-efficient convolution for deep neural network. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 815–824.

26. Liu, Z.; Tian, X. Matrix multiplication and vectorization for multi-core vector processors. J. Comput. Sci. 2018,
41, 2251–2264.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ISCA.2016.40
http://dx.doi.org/10.1109/JSSC.2017.2778281
http://dx.doi.org/10.1109/TCSI.2017.2767204
http://dx.doi.org/10.1109/TVLSI.2018.2815603
http://dx.doi.org/10.1109/TCSI.2017.2757036
http://dx.doi.org/10.1145/2654822.2541967
http://dx.doi.org/10.1109/MICRO.2014.58
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1587/elex.15.20180286
http://dx.doi.org/10.1016/j.ces.2017.10.006
http://dx.doi.org/10.1109/ICCT46805.2019.8947127
http://dx.doi.org/10.3390/fi12070113
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation and Related Work
	Im2col, MEC, MTCA Algorithm
	Related Work
	Motivation

	Algorithm Analysis and Mapping
	A Design of Block Parallel Computing Algorithm Based on MTCA
	Computation Method of PE Based on Vector Single Instruction Multiple Data (SIMD) Technology

	Accelerator Architecture Design
	Accelerator Architecture Overview
	The Structure of the MMA
	The Structure of PE
	The Double Buffer Data Movement Based on DMA

	Experimental Analysis and Results
	Model Analysis
	Experimental Results and Discussion

	Conclusions
	References

