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1  | INTRODUC TION

The introduction of exotic species is a major cause of global biodi-
versity loss (Bellard, Cassey, & Blackburn, 2016; Mack et al., 2000; 
McNeely, Mooney, Neville, Schei, & Waage, 2001). The introduc-
tion of an alien species into an ecosystem might result in instability, 
negatively affecting native species through direct or indirect com-
petition, predation, or habitat modification (Blackwell, 2005; Clout 

& Russell, 2008; Doherty, Glen, Nimmo, Ritchie, & Dickman, 2016; 
Long, 2003; Mooney et al., 2005).

In South America, the geographic distribution of the introduced 
European hare (Lepus europaeus Pallas, 1778) has been quickly ex-
panding. First introduced in Argentina during 1888 (for a review, see 
Bonino, Cossíos, & Menegheti (2010)), this exotic leporid has been 
rapidly spreading through several South American countries, becom-
ing invasive (Bonino et al., 2010; Grigera & Rapoport, 1983; Rosa, 
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Abstract
Introduced in South America at the end of the 19th century, the European hare 
population has expanded dramatically and now represents a risk to native Brazilian 
forest rabbits. Monitoring the invasive Lepus europaeus and its coexistence with na-
tive Sylvilagus brasiliensis is a challenge that can be efficiently addressed by the use 
of molecular tools. This work describes a set of primers useful for amplifying three 
mini-barcodes for the molecular identification of both invasive and native leporid 
species using degraded fecal DNA. In addition, tests in silico indicate that these mini-
barcodes can successfully amplify the DNA sequences of a number of leporids. These 
mini-barcodes constitute a powerful tool for the monitoring and management of the 
invasive L. europaeus and the conservation of native rabbits.
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Almeida Curi, Puertas, & Passamani, 2017). In Brazil, L. europaeus is 
expanding at a rate of up to 45 km/year (de Faria et al., 2015). No 
study has thus far investigated in detail the habitat use of this exotic 
species in Brazil. Although this species can be found in preserved 
areas (de Faria et al., 2015), its presence seems to be more frequent 
in areas where native vegetation has been impacted by human activ-
ities, such as deforestation and fragmentation, especially in pastures 
and exotic planting areas (e.g., Pinus spp. and Eucalyptus spp.) and 
the agricultural crops that are often found in south and southeastern 
Brazil (Auricchio & Olmos, 1999).

The native species Sylvilagus brasiliensis (Linnaeus, 1758), also 
known as the Brazilian forest rabbit or tapiti, can be found in the 
same regions where L. europaeus has settled in South America, ex-
cept for in Chile and Uruguay, where only the alien species is found 
(Eisenberg & Redford, 1999; Mexican Association for Conservation 
and Study of Lagomorphs (AMCELA), Romero Malpica & Rangel 
Cordero, 2008; Bonino et al., 2010). Although L. europaeus and 
S. brasiliensis seem to occur most frequently in agricultural crops 
(Petrovan, Ward, & Wheeler, 2012; Smith, Jennings, & Harris, 
2005) and closed vegetation types (Eisenberg & Redford, 1999; 
Vaughan, Ryan, & Czaplewski, 2011), respectively, research has 
shown that S. brasiliensis is a border species rather than a for-
est dweller (De Sousa e Silva Júnior, Oliveira, Dias, & Gomes de 
Oliveira, 2005). In fact, L. europaeus and S. brasiliensis co-occur 
in the contact zones between these habitat types (Salvador & 
Chiarello, 2016). The potential for competition between the two 
species by interference and/or exploitation is therefore high. In 
addition, L. europaeus can be a vector of diseases, placing the 
native species at risk (Cuervo et al., 2015; Edwards, Fletcher, & 
Berny, 2000). Therefore, correctly assessing the distribution of 
L. europaeus and the areas where this distribution overlaps with 
the native S. brasiliensis habitat is essential for management and 
conservation measures.

However, the elusive behavior and nocturnal habit of these 
two species (Reis, Peracchi, Pedro, & Lima, 2011) can represent 
challenges for data collection based on direct observations, the 
capture of individuals or even camera traps (Larrucea & Brussard, 
2009; Lee, Larsen, Flinders, & Eggett, 2010; Sanchez, Rachlow, 
Robinson, & Johnson, 2009). In this sense, the search for traces 
left by animals, such as feces, can be an alternative method for 
detecting the presence of these species (Davison, Birks, Brookes, 
Braithwaite, & Messenger, 2002; Laguardia, Jun, Fang-Lei, Kun, & 

Riordan, 2015; Souza et al., 2017). However, it is challenging to 
correctly ascertain the species from which a given fecal sample 
was derived based solely on morphological aspects due to simi-
larities in the size and shape of feces from different leporid spe-
cies (Larrucea & Brussard, 2008; Sullivan et al., 2019; Zahratka & 
Buskirk, 2007).

The use of molecular techniques can be an effective tool for the 
correct identification of samples, which explains why this approach is 
increasingly used in research on the wild populations of several taxa 
(Goossens & Bruford, 2009; Rehnus & Bollmann, 2016; Schwartz, 
Luikart, & Waples, 2007; Waits & Paetkau, 2005). This approach has 
also allowed the monitoring of invasive species, even rare invasive 
species, generating useful information for their management and the 
conservation of native species (Berry, Sarre, Farrington, & Aitken, 
2007; Kovach, Litvaitis, & Litvaitis, 2003).

On the other hand, fecal DNA exposed to environmental 
conditions can be degraded, limiting the effectiveness of some 
molecular techniques. Hot weather and humidity, usual in the 
neotropical regions, accelerate DNA degradation compared with 
cold and dry conditions of temperate areas (Adams, Goldberg, 
Bosworth, Rachlow, & Waits, 2011; DeMay et al., 2013; Murphy, 
Kendall, Robinson, & Waits, 2007; Piggott, 2004). Moreover, sam-
ple age also affects DNA degradation (Broquet, Ménard, & Petit, 
2007; DeMay et al., 2013). Thus, in neotropics, the use of small 
sequences or mini-barcodes for DNA amplification based on fecal 
samples can improve success.

In this study, we describe three mitochondrial DNA-based 
mini-barcodes (16S rRNA, Cytochrome b and Cytochrome Oxidase 
I) to enable and optimize species identification from the feces of 
S. brasiliensis and L. europaeus. The mini-barcode primers were devel-
oped to amplify small fragments of mtDNA (100–200 bp) to optimize 
DNA amplification and species identification from feces.

2  | MATERIAL S AND METHODS

2.1 | Development of the mini-barcode primers

Primer pairs were designed to amplify mini-barcode sequences from 
three mitochondrial DNA genes, namely, 16S rRNA, cytochrome b 
(Cytb), and cytochrome oxidase I (COI; Table 1), using sequences 
available from GenBank (Benson et al., 2014) for leporids (Appendix 

TA B L E  1   Primer pair sequences for 
three mitochondrial genesmtDNA 

region
Primer 
name Sequences (5′–3′) Ta (°C)

Amplicon 
(bp)

COI COI_Lag F: CTAATGATTGGAGCCCCTGA
R: CCTGCGCCAGCTTCTACTAT

58 116

Cytb Cytb_Lag F: ATATCCAAACAACGCAGCAT
R: AATGGGTGTTCAACTGGTTG

56 116

16S rRNA 16S_Lag F: AGAAAGCGTTAAAGCTCAAC
R: TCCGATCTGATATAAACTTGTGC

55 167

Abbreviations: bp, base pairs; F, forward; R, reverse; Ta, annealing temperature.
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S1), in order to evaluate their capability for identification of both 
focal species, L. europaeus and S. brasiliensis.

The selected sequences were aligned using ClustalW algorithm 
(Thompson, Higgins, & Gibson, 1994) implemented in the Geneious 
software (Kearse et al., 2012). The mini-barcode primers were de-
signed using Primer 3 Plus, which is available at http://prime r3plus.
com/web_3.0.0/prime r3web_input.htm (Rozen & Skaletsky, 2000). 
The primer pair selection considered both size of the target fragment 
and its polymorphism. Shorter fragments, to minimize effects of DNA 
degradation on the amplification success, showing higher polymor-
phic information among the tested species were preferable. Hairpins, 
heterodimers, and/or homodimers were analyzed using OligoAnalyzer 
3.1 software (Owczarzy et al., 2008). Finally, the Primer-BLAST tool 
(Ye et al., 2012), which allows the analysis of nonspecific annealing, 
was used to check the primer-target sequence specificity.

2.2 | In silico PCR amplification

We performed PCR tests in silico (i.e., using computer simulation) 
to evaluate the wider applicability of the mini-barcode primers and 
verify their annealing ability in other species of Leporidae, includ-
ing species that occur outside South America. Other potential co-
occurring mammal species with fecal morphology similar to leporids 
and which may occur in the study region (Cuniculus paca, Dasyprocta 
leporina, and Hydrochoerus hydrochaeris) were also evaluated to 
verify the primer specificity (Table 2). Because tissue or feces sam-
ples were not available, the sequences available on GenBank were 
used for in silico tests. The in silico tests were performed using the 
Primer-Blast tool (Ye et al., 2012) and determined the ability of the 
primers to anneal to the GenBank sequences (Benson et al., 2014).

2.3 | Samples analyzed

A total of 36 potential fecal samples of the native S. brasiliensis and 
invasive L. europaeus were collected during a mammal survey carried 
out in 15 landscapes (200 ha each) during the dry season (April–
October) of 2017 and 2018, when the environmental temperature 
reached up to 35°C. Samples were randomly allocated in an area 
of approximately 1,500,000 ha in northeastern São Paulo state, 
Brazil (Figure 1). The sampled landscapes were filtered from an ini-
tial pool of 12,000 points in order to ensure spatial independence 
(i.e., at least 6 km apart between them) and to encompass as much 
variation as possible in two key variables (percentage of native for-
est and compositional heterogeneity), following (Pasher et al., 2013), 
which will be further investigated in a future habitat use study. The 
time of deposition of the field-collected pellets was unknown. To 
optimize and confirm the accuracy of the mini-barcode primers and 
perform the PCR tests, control tissue samples obtained from road-
kills of both species were used. Both feces and tissue samples were 
preserved in 95% ethyl alcohol and stored at −20°C, in the biologi-
cal samples collection of the Laboratory of Molecular Biodiversity 

and Conservation, Department of Genetics and Evolution, Federal 
University of São Carlos, Brazil.

DNA from feces was extracted using the QIAamp DNA Stool 
Mini Kit (Qiagen) following the manufacturer's recommended pro-
tocol. We used this specific kit for stool samples to remove the PCR 

TA B L E  2   In silico PCR amplification success (+). Sequence not 
available in GenBank (*). Non-in silico amplification result (NA)

Species COI Cytb 16S rRNA

Lepus alleni (+) (+) *

Lepus americanus (+) (+) (+)

Lepus arcticus (+) (+) (+)

Lepus brachyurus * (+) *

Lepus californicus (+) (+) (+)

Lepus callotis * (+) *

Lepus capensis (+) (+) (+)

Lepus comus (+) (+) *

Lepus coreanus (+) (+) (+)

Lepus corsicanus (+) (+) (+)

Lepus europaeus (+) (+) (+)

Lepus flavigularis (+) (+) *

Lepus granatensis (+) (+) (+)

Lepus hainanus (+) (+) (+)

Lepus insularis * (+) *

Lepus mandshuricus (+) (+) *

Lepus microtis (+) * *

Lepus oiostolus (+) (+) *

Lepus othus (+) (+) (+)

Lepus peguensis (+) (+) *

Lepus saxatilis * (+) *

Lepus sinensis (+) (+) (+)

Lepus tibetanus (+) (+) (+)

Lepus timidus (+) (+) (+)

Lepus tolai (+) (+) (+)

Lepus townsendii (+) (+) (+)

Lepus yarkandensis (+) (+) *

Oryctolagus cuniculus (+) (+) (+)

Sylvilagus audubonii (+) * *

Sylvilagus bachmani (+) * (+)

Sylvilagus brasiliensis (+) (+) *

Sylvilagus floridanus (+) (+) (+)

Sylvilagus nuttallii * (+) *

Sylvilagus obscurus * (+) *

Sylvilagus palustris * (+) *

Sylvilagus transitionalis * (+) *

Cuniculus paca NA NA *

Dasyprocta leporina NA NA *

Hydrochoerus 
hydrochaeris

NA NA NA

http://primer3plus.com/web_3.0.0/primer3web_input.htm
http://primer3plus.com/web_3.0.0/primer3web_input.htm
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inhibitors. The extraction of DNA from the tissue samples followed 
the conventional phenol-chloroform protocol (Sambrook & Russell, 
2001).

Sample collection was conducted following the Brazilian leg-
islation, SISBIO (10983-1), and COTEC (001.155/2017) for sample 
collection permissions and SISGEN for accessing genetic material 
authorization (A05D558).

2.4 | PCR amplification

The PCRs were performed at a 12 μl final volume containing Taq 
Buffer—KCl 1× (Tris–HCl 20 mM pH 8.4 e KCl 50 mM), 3 mM MgCl2 
(50 mM; Invitrogen) for both COI_Lag and 16S_Lag, 2.5 mM MgCl2 
for the Cytb_Lag primer pair, 0.2 μM dNTPs, 0.8 pmol of each primer 
pair, 1U Taq DNA Polymerase Platinum (Invitrogen), 50 ng target DNA, 
and ultrapure water (q.s.p.). The PCRs were conducted in a Veriti 96 
Well Thermal Cycler (Applied Biosystems). The amplification program 
consisted of an initial denaturation step at 94°C for 4 min; 35 cycles 
at 94°C for 30 s, the annealing temperature for each primer (Table 1) 
for 45 s and 72°C for 45 s; and a final extension step of 12 min at 72°C.

The PCR products were purified using the enzymatic method 
(ExoSAP-IT; Affymetrix) and sequenced in both forward and re-
verse directions by the 3730xl DNA Analyzer automatic sequencer 
(Applied Biosystems).

2.5 | Species identification

The resulting nucleotide sequences for each amplified gene were ed-
ited using the Geneious software (Kearse et al., 2012) and compared 
against the GenBank sequences using the BlastN tool (Madden, 
2013) and 97% or higher percentage of identity. For each gene 
studied, a set of sequences comprised by the reference sequences 
(Appendix S1), tissue control, and fecal sequences here obtained 
was aligned using ClustalW algorithm (Thompson et al., 1994) imple-
mented in the Geneious software (Kearse et al., 2012). Genetic dis-
tance analyses were conducted using Kimura two-parameter model 

(Kimura, 1980), and a neighbor-joining tree (Saitou & Nei, 1987) was 
constructed using 1,000 bootstrap replicates.

3  | RESULTS AND DISCUSSION

All selected mitochondrial regions allowed us to identify the spe-
cies of leporids tested using both fecal samples and control tissue 
samples. From the 36 fecal samples analyzed, 30 were identified as 
L. europaeus, three S. brasiliensis, and three unidentified, probably 
due to sample DNA poor quality. Despite the reduced number of 
S. brasiliensis sampled, these results confirm the expectation that the 
molecular analysis of feces is an efficient tool for the correct iden-
tification of Leporidae species and can be used for wild population 
monitoring (Goossens & Bruford, 2009; Rehnus & Bollmann, 2016; 
Schwartz et al., 2007; Waits & Paetkau, 2005), particularly the moni-
toring of invasive species (Berry et al., 2007; Kovach et al., 2003).

The small mini-barcode sequences obtained (116–167 bp) showed 
a high number and unmistakable distribution of polymorphic sites 
(Appendix S2), enabling independently each one for a precise identifi-
cation of the focal species, and no combination of these mini-barcodes 
is mandatory for the species identification success. Thus, any of these 
mini-barcodes can be used for molecular identification of L. europaeus 
and S. brasiliensis. However, the number of polymorphic sites of 12, 14, 
and 22 in the COI, Cytb, and 16S rRNA mini-barcodes between both 
species (Appendix S3) may suggest the use of 16S rRNA as preferable 
in case one wants to employ only one of these mini-barcodes.

The PCR amplification success rates of 90%, 89%, and 83% for 16S_
Lag, COI_Lag, and Cytb_Lag, respectively, were comparable among 
the three mini-barcodes for the total fecal samples analyzed. Taking in 
account the environmental condition occurring in the collection sites 
(temperatures up to 35°C), these can be considered high rates of DNA 
amplification success, as higher temperatures have a great impact on 
the DNA degradation (Adams et al., 2011; DeMay et al., 2013; Murphy 
et al., 2007; Piggott, 2004). High amplification rate (93%) was obtained 
by Adams et al. (2011) amplifying larger fragments (up to 417 bp) from 
fecal samples collected during winter, but it was dropped (72%) when 
fecal samples collected during other seasons were used.

F I G U R E  1   Molecularly identified 
Lepus europaeus and Sylvilagus brasiliensis 
samples collected in the studied area. 
Numbers represent the sample codes. 
*Shapefile of “Natural vegetation 
remnants” obtained from Inventário 
Florestal da Vegetação Natural do Estado 
de São Paulo (2010)
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The small size of all three mini-barcodes here amplified could have 
favored the success rates obtained (Chaves, Graeff, Lion, Oliveira, & 
Eizirik, 2012; Rodríguez-Castro, Saranholi, Bataglia, Blanck, & Galetti, 
2018; Walker, Williamson, Sanchez, Sobek, & Chambers, 2016). By tar-
geting small and informative fragments, the mini-barcode primer pairs 
described here were able to successfully amplify degraded DNA and 
produced consistent, positive molecular identification of leporids.

Because we were able, with this technique, to identify the inva-
sive L. europaeus and native S. brasiliensis, which currently co-occur 
in several areas throughout South America (Penter, Pedó, Fabián, 
& Hartz, 2008; Salvador & Chiarello, 2016), these mini-barcodes 
have enormous potential as an alternative method for detecting the 
presence of these species even in low density areas, particularly 
considering the difficulty of collecting data from these nocturnal 
and elusive species (Reis et al., 2011) and the fecal morphological 
similarity observed between both species (Figure 2). Noninvasive 
genetic sampling and molecular species identification were suc-
cessfully used for tracking the threatened North American rabbit 
Sylvilagus transitionalis and the presence of two non-native species, 
Sylvilagus floridanus and Lepus americanus (Sullivan et al., 2019), cor-
roborating the use of this approach for monitoring invasive species.

In order to make our study broader, we also evaluated the 
mini-barcodes in other leporid species by in silico tests. The in 
silico PCR amplified the target fragments in all tested species 
(Table 2), suggesting that the set of mini-barcode primers de-
veloped here has great potential for DNA amplification in other 
related species and may represent a powerful tool for the estab-
lishment of mini-barcodes, not only for our focal species but also 
for other leporids. Historical DNA samples from museums and 
other biological collections, usually having similar highly degraded 
DNA (Taberlet, Waits, & Luikart, 1999; Wandeler, Hoeck, & Keller, 
2007), can also benefit from these tools and extend the use of 
these mini-barcodes.

For the three mini-barcodes obtained, the polymorphism amount 
was informative for discriminating every leporid species pair tested, 
except to a few pairwise comparisons (Appendices S2 and S3). All spe-
cies pair compared could be discriminated through at least one of these 

min-barcodes, but Lepus othus and Lepus arcticus pair, which have been 
considered highly evolutionary related (Waltari & Cook, 2005; Waltari, 
Demboski, Klein & Cook, 2004). In addition, the in silico evaluation re-
vealed no potential amplification in the other mammals tested, rein-
forcing the leporid specificity of these mini-barcode primers.

In conclusion, since L. europaeus population and area of occur-
rence have significantly increased (Bonino et al., 2010; de Faria et al., 
2015; Grigera & Rapoport, 1983), representing a risk of competition 
and disease for the native S. brasiliensis (Cuervo et al., 2015; Edwards 
et al., 2000), the precise identification of both species by molecular 
fecal analysis constitutes a powerful tool for effective monitoring 
changes in occupancy, geographical range, and control of this invasive 
species.
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