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Abstract Body mass index (BMI), hyperlipidemia, and truncal adipose distribution concordantly 
elevate cardiovascular disease risks, but have unknown genetic effects on blood trait variation. 
Using Mendelian randomization, we define unexpectedly opposing roles for increased BMI and 
truncal adipose distribution on blood traits. Elevated genetically determined BMI and lipid levels 
decreased hemoglobin and hematocrit levels, consistent with clinical observations associating 
obesity and anemia. We found that lipid- related effects were confined to erythroid traits. In contrast, 
BMI affected multiple blood lineages, indicating broad effects on hematopoiesis. Increased truncal 
adipose distribution opposed BMI effects, increasing hemoglobin and blood cell counts across 
lineages. Conditional analyses indicated genes, pathways, and cell types responsible for these 
effects, including Leptin Receptor and other blood cell- extrinsic factors in adipocytes and endothe-
lium that regulate hematopoietic stem and progenitor cell biology. Our findings identify novel roles 
for obesity on hematopoiesis, including a previously underappreciated role for genetically deter-
mined adipose distribution in determining blood cell formation and function.

Editor's evaluation
The study shows that genetically determined adiposity plays a previously underappreciated role in 
determining blood cell formation and function. The authors have clearly spelled out their hypothesis 
and performed all the relevant and available analyses in the "Mendelian Randomization toolbox". 
The study will help understand the pathogenesis for clonal hematopoiesis.

Introduction
Blood cell homeostasis is achieved through incompletely understood coordination of blood cell- 
intrinsic gene regulation and blood cell- extrinsic environmental mechanisms (Comazzetto et  al., 
2021; Ulirsch et al., 2019). The importance of blood cell formation and function in normal hema-
topoietic development, hematologic diseases, and clinical manifestations of systemic disorders has 
prompted extensive investigation of loci underlying human blood trait variation through genome- 
wide association studies (GWAS) (Astle et al., 2016; Chen et al., 2020; Vuckovic et al., 2020). One 
shortcoming has been an inability to identify extrinsic effects from these data.
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Adipocytes and endothelial cells within the bone marrow environment regulate hematopoiesis 
(Comazzetto et al., 2021; Zhong et al., 2020). Discrete adipocyte populations differentially modu-
late systemic physiology and homeostasis (Hildreth et al., 2021). For example, white adipose tissue 
has a derogatory effect on hematopoiesis, whereas mesenchymal- derived bone marrow adipocyte 
populations support blood cell formation (Comazzetto et al., 2021; Cuminetti and Arranz, 2019; 
Wang et al., 2018; Zhong et al., 2020).

Single nucleotide polymorphisms (SNPs) that genetically increase body mass index (BMI) also 
raise metabolic and cardiovascular disease risks (Pulit et al., 2019). Some observational studies have 
linked obesity (BMI > 30 kg/m2; Aigner et al., 2014) or hypercholesterolemia (Shalev et al., 2007) 
with anemia. However, others observed apparent erythrocytosis in obese individuals (Keohane et al., 
2013). Genetic relationships have not been elucidated for BMI on erythroid or other blood traits. A 
genetic predisposition to accumulate truncal adipose tissue elevates waist- to- hip ratio (WHR). Like 
BMI, WHR influences cardiovascular risks (Huang et al., 2021; Pulit et al., 2019), but genetic impacts 
of WHR on blood traits are unknown.

Our study was designed to test several hypotheses. First, we wanted to determine if increased 
BMI decreased hemoglobin (HGB) at the genetic level, consistent with higher anemia risk in obese 
individuals (Aigner et al., 2014). Second, we wanted to identify BMI- related traits and mechanisms 
responsible for effects on erythroid traits (e.g., HGB level and hematocrit [HCT]). We specifically exam-
ined effects of adipose distribution (WHR), which impacts cardiovascular disease risk along with BMI 
variation (Huang et al., 2021). We also analyzed genetically determined lipid fractions, since hyperlip-
idemia has been linked with anemia risk (Shalev et al., 2007) and since lipids can impact erythrocyte 
stability (Mohandas and Gallagher, 2008). Third, we asked if BMI and related traits impacted non- 
erythroid blood cell lineages. This led us to assess genetic impacts on a total of 15 quantitative blood 
traits, which generally reflect perturbations in blood cell formation and/or function (Chen et al., 2020; 
Vuckovic et al., 2020).

We used a Mendelian randomization (MR) framework for our study, anticipating that the results 
would help to clarify the complex interplay between cardiometabolic traits and hematopoiesis without 
necessarily revealing clinically apparent effects. MR leverages variants linked to an exposure trait to 
estimate causal genetic effects on an outcome (Hemani et al., 2018). Multivariable MR (MVMR) and 
causal mediation analyses can parse effects from multiple factors (Burgess et al., 2017). Interrogating 
causal effects of BMI and related factors on erythroid and other blood traits revealed unexpected 
associations between BMI, WHR, and hematopoietic variation. Conditional genome- wide analyses 
using mtCOJO (Zhu et al., 2018) highlighted blood loci that were substantially influenced by BMI 
and/or WHR, helping to reveal genes and pathways by which these physiological factors impact blood 
trait variation.

Results
Causal association between genetically determined BMI and lower 
HGB level
We hypothesized that BMI would decrease HGB at the genetic level, consistent with clinical obser-
vations. Using MR, we found that each standard deviation (SD) unit increase in BMI caused a 0.057 
SD decrease in HGB levels by the inverse variance weighted (IVW) method (p = 1.0 × 10–5) that 
was directionally consistent across sensitivity analyses without evidence of horizontal pleiotropy or 
weak instrument bias (Figure 1a, Figure 1—figure supplement 1a, Supplementary file 1—Table 1). 
Similar effects were observed for HCT (Figure 1b and Figure 1—figure supplement 1b), suggesting 
BMI is genetically linked with reduced HGB.

Cholesterol levels impact erythroid traits independent of BMI
We next investigated previously proposed mechanisms to explain observational links between BMI 
and anemia. For example, we hypothesized that hypercholesterolemia may cause anemia (Shalev 
et al., 2007) through altered erythrocyte membrane formation and stability (Mohandas and Galla-
gher, 2008). We confirmed that increased total cholesterol (TC) or lipid fractions (low density lipopro-
tein [LDL] or high density lipoprotein [HDL]), but not triglyceride levels (TG), decreased HGB or HCT 
(Figure 1—figure supplements 2–3). However, multivariable and mediation experiments revealed 
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Figure 1. Body mass index (BMI) and waist- to- hip ratio (WHR) exert opposing effects on blood traits. (a–f) Effects of BMI, WHR, WHRadjBMI on 
(a) hemoglobin (HGB), (b) hematocrit (HCT), (c) mean corpuscular volume (MCV), (d) red blood cell count (RBC), (e) platelet count (PLT), or (f) white 
blood cell count (WBC). Shown in top panel are effects of BMI, WHR, or WHRadjBMI on HGB in univariable Mendelian randomization (MR) experiments 
by inverse variance weighted (IVW) method. Underneath univariable MR results, effects of BMI or WHR at 639 LD- independent WHR- associated single 

Figure 1 continued on next page
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that cholesterol levels alter erythroid traits via mechanisms independent from BMI (Figure 1—figure 
supplement 3b and Supplementary file 1—Table 2). Chronic inflammation and iron deficiency, which 
cause decreased erythrocyte size (microcytosis), have also been suggested to mediate obesity- related 
anemia (Aigner et al., 2014). However, BMI did not alter erythrocyte mean corpuscular volume (MCV) 
by MR (p = 0.12, Figure 1c, Figure 1—figure supplement 4a). In sum, these findings aligned with 
clinical observations linking BMI with anemia risk, but argued against prevailing mechanistic hypoth-
eses at the genetic level.

Reverse causality experiments also identified inverse correlations between erythroid and metabolic 
traits (Figure 1—figure supplement 5). Directional MR Steiger (Hemani et al., 2017) analyses were 
inconsistent (Supplementary file 1—Table 3), perhaps limited by blood trait measurement variation 
or quantitative adjustments for individual characteristics (Vuckovic et al., 2020).

Genetic impacts of WHR oppose BMI effects on blood trait variation
We then considered an alternative hypothesis that the physiological distribution of adipose, as 
measured by WHR, could impact BMI- related anemia risk. Unexpectedly, and in contrast to BMI, 
higher WHR increased red blood cell (RBC) traits (Figure 1a and b and Figure 1—figure supplement 
6a,b). WHR adjusted for BMI on an individual level (WHRadjBMI) exacerbated these positive effects 
(Figure 1a and b and Figure 1—figure supplement 6c,d) and also associated with decreased MCV 
(Figure  1c and Figure  1—figure supplement 4b,c). Multivariable analyses formally validated the 
opposing, cross- mediating effects of BMI and WHR on erythroid traits (Figure 1a, b and c).

Next, we asked whether BMI- and WHR- related effects impacted non- erythroid blood traits. Multi-
variable and mediation analyses on other blood traits identified cross- mediating opposing effects of 
WHR and BMI on quantitative blood counts across cell lineages (Figure 1d, e and f and Figure 1—
figure supplements 7–8). These effects persisted after accounting for related blood traits (Figure 1—
figure supplement 9). The directionally consistent effects across multiple lineages suggested that 
underlying mechanisms related to hematopoietic stem and progenitor cells (HSCs) common to these 
lineages (Thom and Voight, 2020; Figure 1g). These findings also argued against sex- related effects. 
Men generally have higher HGB (Vuckovic et al., 2020) and WHR (Pulit et al., 2019), but women can 
have higher platelet and neutrophil counts (Bain, 1996).

BMI- and WHR-adjusted conditional analyses clarify blood trait 
variation loci
Our findings suggested that effects from BMI and WHR were likely to have influenced some previ-
ously reported blood trait loci. To identify blood loci related to these factors, we applied mtCOJO 

nucleotide polymorphisms (SNPs) are shown. Bottom row of panels show effects of BMI or WHR at 1268 LD- independent BMI- associated SNPs. Effects 
are in SD units with 95% confidence intervals. *p < 0.05, **p < 0.003. (g) Schematic summarizing effects of indicated exposures on blood traits (created 
with https://BioRender.com).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Genetically determined body mass index (BMI) decreases hemoglobin (HGB) and hematocrit (HCT) levels.

Figure supplement 2. Effects of lipid fractions or triglyceride level (TG) on erythroid traits.

Figure supplement 3. Total cholesterol (TC) decreases hemoglobin (HGB) and hematocrit (HCT) levels independent of body mass index (BMI) effects.

Figure supplement 4. Effects of body mass index (BMI), waist- to- hip ratio (WHR), and WHRadjBMI on mean corpuscular volume (MCV) across 
Mendelian randomization (MR) methodologies.

Figure supplement 5. Effects of hemoglobin (HGB) or hematocrit (HCT) on body mass index (BMI).

Figure supplement 6. Effects of waist- to- hip ratio (WHR) and WHRadjBMI are consistent across Mendelian randomization (MR) methodologies.

Figure supplement 7. Genetically determined waist- to- hip ratio (WHR) and body mass index (BMI) exert opposing effects on multilineage quantitative 
blood traits, including red blood cell (RBC), platelet (PLT), and white blood cell (WBC) count.

Figure supplement 8. Effects of body mass index (BMI) and waist- to- hip ratio (WHR) on quantitative blood traits by multivariable Mendelian 
randomization (MVMR).

Figure supplement 9. Effects of waist- to- hip ratio (WHR) and body mass index (BMI) on quantitative blood traits by multivariable Mendelian 
randomization (MVMR) after regressing out effects of other blood traits.

Figure 1 continued
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(Zhu et al., 2018) to condition blood trait GWAS data on polygenic- measured BMI and/or WHR. BMI 
adjustment modestly changed SNP effect sizes and retained most (91%) unadjusted lead sentinel 
variants (Figure 2a and b and Supplementary file 1—Table 4). However, combined BMI and WHR 
adjustment resulted in substantial SNP effect size changes (>36- fold increased SD (SD = 7.6 × 10–3) vs. 
BMI adjustment alone (SD = 2.1 × 10–4), p < 0.0001 by F- test to compare variances), with a negative 
skew (–2.0) reflecting adjustment for the positive effect of WHR on HGB levels (Figure 2a and b). 
Thus, while prior GWAS adjusted for BMI (Astle et al., 2016), we identified more prominent effects 
for WHR across blood traits and lineages.

Combined BMI/WHR adjustment shifted 341 HGB- associated loci toward the null, supporting a key 
role for BMI- and WHR- mediated mechanisms at these sites, while also identifying 844 sites that either 
clarified interpretation of previously implicated HGB loci or tagged previously unreported regions (n 
= 242 novel loci, Figure 2b and Supplementary file 1—Table 5). For example, a missense coding 
variant in RAPGEF3 (rs145878042), previously linked to BMI (Pulit et al., 2019), WHRadjBMI (Pulit 
et  al., 2019), and platelet distribution width (Vuckovic et  al., 2020), did not meet genome- wide 
significance for HGB (p = 0.003) until BMI/WHR adjustment (p = 2.4 × 10–14, Figure 2b and c). Inter-
pretation of SNPs at the RSPO3 locus also dramatically changed (Figure 2b and d). RSPO3, a Wnt 
pathway modulator that directs development of bone and other tissues (Nilsson et al., 2021), has 
been linked with adipose distribution (Pulit et al., 2019) and blood trait variation (Vuckovic et al., 
2020). Similar effects were seen in adjusted HCT data (Figure 2a and b and Supplementary file 
1—Tables 6–7) and quantitative traits across blood lineages (Figure 2—figure supplement 1). These 
conditional analyses presumably revealed sites where BMI and/or WHR biology most strongly impact 
blood trait variation, although it is possible that some pleiotropic loci independently regulate blood 
traits through shared or different gene regulation.

Functional enrichment analyses identified many consistent genes and processes in unadjusted vs. 
BMI/WHR- adjusted data across blood traits, with some notable changes (Figure 2e and f, Figure 2—
figure supplements 2–6 and Supplementary file 1—Tables 8–23) (Mi et al., 2019; Watanabe et al., 
2019). For example, at the gene level, association with LEPR in these adjusted analysis for HGB 
elevated to statistical attention (Figure 2e). LEPR perturbations cause obesity (Dubern and Clement, 
2012), and LepR+ endothelial niches support HSC survival (Comazzetto et  al., 2021). Further, 
adjusted HGB locus- related genes were enriched for some endothelial and mesenchymal develop-
ment processes, albeit with diminished p- values due to power loss from limited SNP sets (Figure 2f 
and Supplementary file 1- Tables 8–17). Adjusted RBC, PLT, and WBC data also demonstrated enrich-
ment of endothelial and cell adhesion pathways (Figure 2—figure supplement 1 and Supplementary 
file 1- Tables 18–23). These findings highlight the relevance for BMI, WHR, and related biology in regu-
lating multilineage blood traits, including contributions from mesenchyme- derived adipocytes (Zhong 
et al., 2020) and stromal endothelial cells in bone marrow (Comazzetto et al., 2021).

Discussion
The obesity epidemic has increased the importance of understanding associated systemic comorbid-
ities (Koenen et al., 2021), including complex physiology linking cardiometabolic and blood traits. 
While some clinical epidemiological studies have proposed iron deficiency and chronic inflamma-
tion to explain anemia observed in obese populations (Aigner et al., 2014; Benova and Tencerova, 
2020; Koenen et al., 2021), confounders inherent to observational studies may limit interpretation. 
Consistent with most clinical observations (Aigner et al., 2014), genetically determined BMI is indeed 
causally associated with lower HGB and HCT levels.

We identified divergent genome- wide effects of BMI and WHR on erythroid traits. Whereas 
increased BMI or WHR are typically thought to concordantly raise cardiovascular risk, our results agree 
with recent findings showing that adipose distribution can influence obesity- related comorbidities 
(Huang et al., 2021). We were somewhat surprised to identify impacts for BMI and WHR on multi-
lineage blood traits that extended beyond clinically reported erythroid effects, suggesting BMI and 
WHR may act through different mechanisms than previously proposed (Aigner et al., 2014; Koenen 
et al., 2021). While the absolute effect sizes are unlikely to impact patient management (e.g., a 1 SD 
unit increase in BMI [~4.8 kg/m2] decreases HGB by ~0.06 g/dL [Beutler and Waalen, 2006; Gharah-
khani et al., 2019]), genetic mechanisms linking BMI, WHR, and blood traits may help elucidate how 
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Figure 2. Conditional blood trait analysis based on body mass index (BMI) and/or waist- to- hip ratio (WHR) modifies interpretation of genomic loci 
that impact blood trait variation. (a) Violin plots showing the dispersion in effect size at genome- wide significant loci after adjusting erythroid traits 
(hemoglobin [HGB] or hematocrit [HCT]) for BMI, or WHR and BMI. **p < 0.0001 by F- test to compare variances. (b) Scatterplots depicting changes in 
effect sizes and p- values for all genome- wide significant sentinel loci before or after adjustment. Novel loci (red) had p < 5 × 10–8 only after adjustment 

Figure 2 continued on next page
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cardiovascular disease (Heyde et al., 2021; Rohde et al., 2021) and cardiometabolic derangements 
(Fuster et al., 2020; Jaiswal et al., 2014) are linked to normal or clonal hematopoiesis.

Directionally consistent effects for BMI and WHR across blood lineages may indicate influences 
on HSCs in the bone marrow (Figure 1g). For example, genetic predisposition to accumulate bone 
marrow white adipose tissue may underlie age- (Tuljapurkar et al., 2011) or obesity- related (Benova 
and Tencerova, 2020) cytopenias by regulating HSC self- renewal or differentiation (Wang et  al., 
2018). Alternatively, genetically determined differences in bone marrow stromal cell types (e.g., 
mesenchymal stem cell- derived bone marrow adipocytes; Zhong et  al., 2020) could impact HSC 
biology. Finally, WHR- related mechanisms impacting blood trait variation may reflect inhibitory para-
crine or endocrine effects from gluteal or truncal adipose depots (Comazzetto et al., 2021).

Strengths of this study include the use of the largest and most recent GWAS statistics available for 
all traits, as well as consistent directional effect trends across multiple analyses. However, these anal-
yses were restricted to individuals of European descent, perhaps limiting generalizability. Our study 
is also subject to limitations of currently available MR methods, including potential MR assumption 
violations (see Materials and methods), unforeseen pleiotropy, or traits correlating with BMI or WHR 
that may confound direct causality (Burgess et al., 2019).

At minimum, this provides a rationale for concurrent BMI and WHR adjustments when analyzing 
blood trait GWAS loci to avoid directional bias. These adjustments also provide novel stratification 
criteria for blood trait GWAS fine mapping studies and candidate blood gene selection. This will be 
particularly important for studies aiming to explain metabolic or stromal effects on blood cells, which 
are notably distinct from cholesterol- or lipid- mediated peripheral effects on erythroid cells at the 
genetic level.

Materials and methods
GWAS summary statistics collection
We analyzed publicly available GWAS summary statistics for blood traits (n = 563,085) (Vuckovic 
et al., 2020), BMI (n = 484,680) (Pulit et al., 2019), WHR (n = 485,486) (Pulit et al., 2019), WHRad-
jBMI (n = 484,563) (Pulit et al., 2019), CAD (n = 547,261) (van der Harst and Verweij, 2018), and 
lipid traits including TC (n = 215,551), TG (n = 211,491), LDL (n = 215,196), and HDL (n = 210,967) 
(Klarin et  al., 2018). A glossary of these traits, including unit measurements and descriptions, is 

and represent new loci (not in LD with genome- wide significant single nucleotide polymorphisms [SNPs] before adjustment). Clarified loci (pink) are 
sentinel SNPs with p < 5 × 10–8 after adjustment and are in linkage disequilibrium with significant pre- adjustment SNPs. Missing loci (blue) are those 
with adjusted p > 5 × 10−8, which were significant pre- adjustment. Shared SNPs (gray) are sentinel SNPs before and after adjustment for the indicated 
factors. (c) After adjustment for WHR and BMI, the common coding SNP (rs145878042) in RAPGEF3 significantly impacts HGB level. (d) Adjustment for 
WHR and BMI alters interpretation of SNP effects at the RSPO3 locus, including more significant effects for new sentinel variant rs72959041 (unadjusted 
p = 2.1 × 10–10, adjusted p = 3.4 × 10–40). (e) Gene- based Manhattan plots for HGB, before or after BMI/WHR adjustment. (f) Gene ontology analyses 
for hematopoietic, mesenchymal, and vascular biological processes for HGB loci before and after mtCOJO adjustment for BMI and WHR. Significance 
reflects Fisher’s exact test after multiple testing.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Conditional blood trait analysis based on body mass index (BMI) and/or waist- to- hip ratio (WHR) modifies interpretation of 
genomic loci that impact variation in red blood cell (RBC), platelet (PLT), and white blood cell (WBC) counts.

Figure supplement 2. MAGMA tissue enrichment analyses for original and body mass index (BMI)/waist- to- hip ratio (WHR)- adjusted hemoglobin 
(HGB) data.

Figure supplement 3. MAGMA tissue enrichment analyses for original and body mass index (BMI)/waist- to- hip ratio (WHR)- adjusted hematocrit 
(HCT) data.

Figure supplement 4. MAGMA tissue enrichment analyses for original and body mass index (BMI)/waist- to- hip ratio (WHR)- adjusted red blood cell 
count (RBC) data.

Figure supplement 5. MAGMA tissue enrichment analyses for original and body mass index (BMI)/waist- to- hip ratio (WHR)- adjusted platelet count 
(PLT) data.

Figure supplement 6. MAGMA tissue enrichment analyses for original and body mass index (BMI)/waist- to- hip ratio (WHR)- adjusted white blood 
cell count (WBC) data.

Figure 2 continued
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available in Supplementary file 1—Table 24. Data were derived from individuals of European ancestry 
only and were analyzed using genome build hg19/GRCh37.

Instrumental variable creation
To construct instrumental variables (IVs), we identified all SNPs common to exposure and outcome data 
sets and clumped genome- wide significant SNPs for the exposure to identify linkage- independent 
SNPs (EUR r2 < 0.01) in 500 kb regions using TwoSample MR. IV strengths were estimated using F- sta-
tistics calculated as described (Burgess and Thompson, 2011). IVs used in this study can be found on 
GitHub (https://github.com/thomchr/ObesityAdiposityBloodMR) or obtained upon request.

MR and causal effect estimation
Univariable MR analyses (TwoSample MR package v0.5.5; Hemani et  al., 2018) were conducted 
using R (v3.6.3). Random variant allele allocation at meiosis enables the MR approach to address 
confounding and reverse causality that can otherwise preclude causal inference from epidemio-
logic and cohort studies. Key assumptions must hold in order to make valid conclusions from MR 
studies. For example, independent genetic instruments (SNPs) must be specifically associated with 
the exposure trait. Weak instruments, the presence of horizontal pleiotropy, heterogeneity, and error 
in measured instrument- exposure associations can limit applicability or inferences gleaned from MR 
studies (Burgess et al., 2019).

Presented data show causal estimates from IVW (random effects model), weighted median, and MR 
Egger regression methods. We assessed pleiotropic bias using MR Egger regression intercepts, which 
if significantly non- zero can imply directional bias (Bowden et al., 2015). MVMR analyses utilized the 
MVMR package (Sanderson et al., 2019) in R. Results shown are IVW method- based causal estimates. 
Causal direction analyses utilized MR- Steiger and we report values for sensitivity, statistical signifi-
cance, and inference of the ‘correct causal direction’ (Hemani et al., 2017).

For continuous outcomes (blood traits, lipid traits, BMI), results are presented as beta effect values 
representing changes in SD units for these traits, per SD unit change in exposure. SD unit estima-
tions were previously calculated for BMI (Gharahkhani et al., 2019) and HGB (Beutler and Waalen, 
2006). For dichotomous outcomes (CAD), causal effect estimates can be converted to odds ratios by 
exponentiating causal effect estimates ( = exp^[effect]) to calculate a value reflecting the change in 
outcome per SD unit increase in exposure (Burgess and Labrecque, 2018). However, CAD outcome 
values are presented as SD units to facilitate comparison with blood trait effects.

Mediation analysis
Mediation analysis estimates were calculated as described (Burgess et al., 2017). Total and direct 
effects are reported for the exposure and mediating trait on each outcome.

Conditional GWAS analysis
Conditional analyses of filtered SNP sets, containing SNPs found in BMI, WHR, and blood trait summary 
statistics, were analyzed using mtCOJO with a limit of r2 < 0.01 (Yang et al., 2011). Results were 
clumped using plink (v1.90 beta) (Purcell et al., 2007) to identify linkage- independent sentinel SNPs 
with r2 < 0.01 in 500 kb genomic regions (flagged parameters were --clump- p1 5E- 8 --clump- p2 
1 --clump- r2 0.01 --clump- kb 500). Separate experiments were performed on the same filtered 
SNP sets to adjust for BMI, or both BMI and WHR. To compare uncorrected with BMI- or BMI- and- 
WHR- adjusted results, we aggregated sentinel SNPs and clumped based on original GWAS p- values 
(--clump- p1 1 --clump- p2 1 --clump- r2 0.01 --clump- kb 500) to retrieve a complete set of 
linkage- independent loci. This second clump output allowed us to calculate how many regions were 
shared, nullified, or novel in the adjusted vs. unadjusted data sets. The gene nearest to each sentinel 
locus was identified using bedtools (Quinlan and Hall, 2010). Locus zoom plots were created through 
the online instrument (http://locuszoom.org, Pruim et al., 2010).

Gene-level analyses
We identified gene and tissue associations for blood trait summary statistics before and after adjust-
ment using FUMA (Watanabe et al., 2019), which uses MAGMA for gene identification (de Leeuw 
et al., 2015).

https://doi.org/10.7554/eLife.75317
https://github.com/thomchr/ObesityAdiposityBloodMR
http://locuszoom.org
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Gene ontology
Gene lists were analyzed for significantly over- or under- enriched gene ontology biological processes. 
Statistical significance was assigned based on Fisher’s exact test p < 0.05 after Bonferroni correction 
for multiple testing (http://geneontology.org, Mi et al., 2019).

Statistical analyses and data presentation
Estimated effects from exposure(s) on outcome are presented from IVW, weighted median, and MR 
Egger regression measures. Because Cochran’s Q test (included in the TwoSample MR package; 
Hemani et al., 2018 found heterogeneity in some IVs, we utilized the random effect model when 
performing inverse variance weighted MR). Thus, we performed and report MR results using IVs that 
had not undergone pruning. Statistical significance was defined as p < 0.05 for all experiments. For 
experiments that analyzed 16 blood traits, we also report those that met a more stringent threshold 
of p < 0.003 (~0.05/16).

Statistics were calculated with GraphPad Prism 8. Figures were prepared using GraphPad Prism 8 
and Inkscape (v1.1). Schematic cartoons were created using BioRender.

Coding scripts and data sets
All relevant coding scripts and data sets can be found on GitHub (https://github.com/ 
thomchr/ObesityAdiposityBloodMR; copy archived at swh:1:rev:4f8e3ae9898f2dcff-
2378d02a0977146dc4e0545; Thom, 2022). All data and coding scripts are also available upon 
request.
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