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The revolutionary advances in network technologies have spearheaded the design of advanced cyberattacks to 
surpass traditional security defense with dreadful consequences. Recently, Intrusion Detection System (IDS) is 
considered as a pivotal element in network security infrastructures to achieve solid line of protection against 
cyberattacks. The prime challenges presented to IDS are curse of high dimensionality and class imbalance that 
tends to increase the detection time and degrade the efficiency of IDS. As a result, feature selection plays an 
important role in enabling to identify the most significant features for intrusion detection. Although, several 
feature evaluation measures are being proposed for feature selection in literature, there is no consensus on which 
measures are best for intrusion detection. Therein, this work aims at recommending the most appropriate feature 
evaluation measure for building an efficient IDS. In this direction, four filter-based feature evaluation measures 
that stem from different theories such as Consistency, Correlation, Information and Distance are investigated for 
their potential implications in enhancing the detection ability of IDS model for different classes of attacks. Along 
with this, the influence of the selected features on classification accuracy of an IDS model is analyzed using 
four different categories of classifiers namely, K-nearest neighbors (KNN), Random Forest (RF), Support Vector 
Machine (SVM) and Deep Belief Network (DBN). Finally, a two-step statistical significance test is conducted 
on the experimental results to determine which feature evaluation measure contributes statistically significant 
difference in IDS performance. All the experimental comparisons are performed on two benchmark intrusion 
detection datasets, NSL-KDD and UNSW-NB15. In these experiments, consistency measure has best influenced 
the IDS model in improving the detection ability with regard to detection rate (DR), false alarm rate (FAR), kappa 
statistics (KS) and identifying the most significant features for intrusion detection. Also, from the analysis results, 
it is revealed that RF is the ideal classifier to be used in conjunction with any of these four feature evaluation 
measures to achieve better detection accuracy than others. From the statistical results, we recommend the use of 
consistency measure for designing an efficient IDS in terms of DR and FAR.
1. Introduction

With the revolutionary advance in network infrastructure and in-

formation technologies, the cybersecurity threats are also consistently 
increasing in number and intricacy [1]. For instances, in 2018, the 
MCAFee’s report on economic impact of cybercrime states that mali-

cious activities are quite astounding with 80 billion malicious scans 
each day [2]. Also, the 2018 Cybersecurity breaches survey states that 
43% of high profile businesses across the world have fallen victim to 
cybersecurity breaches in the last 12 months [3]. Furthermore, accord-

ing to annual cybercrime report of 2017 its estimated that the financial 
losses by cybercrime activities will cost $6 trillion per year by 2021 [4]. 
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This high cost has necessitated an urgency need for developing new cy-

berattack defense methods and techniques [5, 6].

Although several antivirus software, firewalls and IDS exist to detect 
and protect IT infrastructures from many known kind of cyberattacks, 
cybercriminals in turn have become more skilled in developing new ad-

vanced and more complex techniques to gain access and damage critical 
IT infrastructure [7]. Recent annual Cisco security of 2018 has point 
out that application of machine learning will pave a way to develop 
cyberdefense methods that can automatically detect any unusual new 
patterns in network traffics [8]. In this line of direction, recently hot 
research topics are to develop a new effective and adaptive defense 
methods than ever before [9]. Traditionally, Cyber defense products 
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such as firewalls were considered as the first line of security defense 
against cyberattacks in most business networks but fail to identify the 
attacks on allowed services. Under such situations, second line of secu-

rity defense is mandate by products like anti-virus and IDS [10]. But, 
anti-viruses are delimited to protect network only from those malwares 
whose signatures are available in the database. Also, the update sched-

ule for signatures is either on daily or weekly basis [11]. Therefore, 
the network is unsafe against malicious activities in the time between 
the updates. Hence, IDS are considered as a key asset to protect IT in-

frastructure against threats and enhance network security in almost all 
organizations.

In this line, many researches are being carried out to develop in-

telligent IDS and achieve better network security [12]. For instances, 
Yang Jia et al. attempted to build an intelligent IDS applying deep 
neural network and succeeded with promising results [13]. Similarly, 
a new intelligent IDS was presented in [14] applying ensemble and 
unsupervised machine learning techniques specifically to combat the se-

curity challenges in software-defined 5G networks. Saurabh Dey et al. in
[15] proposed a multi-layered IDS for mobile clouds involving hetero-

geneous client networks. In this approach, they have applied machine 
learning methods such as DBScan and K-means to observe the incom-

ing traffic pattern and detect potential attacks. Also they have indicated 
that the complexity of this approach can be customized according to 
the requirement of the client network. Also in [16], the authors have 
attempted to design an IDS combining learning, case-based reasoning 
and reactive behavior for acquiring knowledge from past solutions and 
support the evolution of case-based reasoning to reactive behavior in 
enhancing the performance of the IDS. In [17], Vajiheh Hajisalem et 
al. investigated to develop intelligent CART classifier for IDS by op-

timizing rapidity and accuracy. To achieve this, they have combined 
artificial fish swarm and artificial bee colony to choose effective If-then 
rules for the classifier CART and achieved a DR of 99% with FAR of 
0.01%. Approach proposed in [18] successfully applied machine learn-

ing to design an intelligent IDS that are capable to learn and update 
incrementally the detection engine and maintain good detection rate 
with low FAR over long time period.

While numerous work has been devoted in the past decade on devis-

ing IDS applying machine learning techniques [1], the success of these 
methods depends on the quality of data used. Unfortunately, the cur-

rent real-world network traffic is characterized by huge volume of high 
dimensionality data. This may negatively impact on the detection accu-

racy of IDS due to the presence of irrelevant/redundant information in 
network traffic. Also, it may slow down the entire detection process due 
to high computational complexity required to handle such data. There-

fore, it is of paramount importance in the intrusion detection process to 
identify or propose an effective method to handle the reduction of data 
dimensionality as recognized by great body of scientific literature.

Further, the high dimensionality is not the only challenge presented 
to IDS. Another important issue that may worsen the detection accu-

racy of IDS, but is often ignored in this domain, is imbalance in class 
distribution [19, 20, 21]. This occurs when the data contain different 
numbers of observations for the different classes which is a common 
situation in intrusion detection process as the attack traffic tends to be 
only a small portion of overall traffic. The class with dominate num-

ber of observations than other classes is called majority class, while the 
class with smallest amount is called minority class. The class imbal-

ance causes the classifier to bias towards majority class and tends IDS 
to generate many false alarms. In this situation, sophisticated attackers 
are encouraged to create minority attack types to reach their targets. 
Despite, misclassification of minority attack types leads to severe loss 
in practical applications, the class imbalance problem has not received 
substantial attention as it would deserve in the field of IDS.

The solutions crafted to combat the class imbalance problem, fall un-

der two main categories namely, data level and algorithmic level [22]. 
The data level focuses on changing the original data distribution and in-

cludes many different resampling techniques. Whereas algorithmic level 
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adjusts the existing learning algorithm to strengthen their ability and 
optimize their classification accuracy towards minority class. Recently, 
the importance of feature selection for class imbalance problem is real-

ized and has received much attention in the field of machine learning 
[19, 22]. In general, feature selection aims to improve the quality of the 
dataset by selecting the most informative features and eliminating the 
features that are irrelevant or redundant. With an imbalanced dataset, 
the key idea of employing feature selection is to find the optimal subset 
of features that can optimize the contrast of minority class from other 
classes in the data and reduces the risk of misclassifying minority class 
samples. Hence, this notion forms the initial impetus for this research 
work.

To date, very few studies are reported in literature to illustrate 
the significance of feature selection in handling high dimensional class 
imbalance problem. Further, most of these studies are conducted on bi-

ological data. Therefore, we believe it would be of unique contribution 
if the significance of feature selection for high dimensional imbalanced 
intrusion dataset is investigated.

Accordingly, the objective of this work will be to give guidance for 
researchers not working in feature selection field but searching out for 
the best feature evaluation measure to build efficient IDS. In this di-

rection, the work here investigates the performance of different feature 
evaluation measures based on their correlation with intrusion detection 
accuracy and recommends the most appropriate measure to consider 
for use while building an IDS. Here, KNN, RF, SVM and DBN was used 
as a classifier to demonstrate the quality of the recommending feature 
evaluation measure. The standard intrusion detection datasets NSL-KDD 
and UNSW-NB15 which are high dimensional and imbalanced was em-

ployed to prove the recommending feature evaluation measure in terms 
of higher DR and lower FAR. Finally, statistical analysis was conducted 
to confirm the recommending feature evaluation measure for building 
efficient IDS.

2. Intrusion detection system

According to NIST [23], “Intrusion is defined as an attempt to com-

promise confidentiality, integrity and availability (CIA), or to bypass the 
security mechanisms of a computer or network”. “Intrusion detection is 
a process of monitoring the events occurring in a computer system or 
network and analyzing them for signs of intrusions”. Therefore, IDS is 
a security management system for monitoring anomalous activities that 
take place within computers or network systems and flag out the ac-

tivity that comprise the computer security principles of CIA. They are 
potential in detecting malicious activities from both outsiders and in-

siders of the network system.

IDS consist of four major components namely, Information Source, 
Feature Selection, Detection Engine and Response. These four compo-

nents function collaboratively with an objective to identify attacks and 
report output in a required format [24]. Fig. 1 shows the organization 
of these components in IDS.

(A) Data Collection: It is responsible for collecting intrusion evidence 
data from desired sources and provide the collected data in compre-

hensive format to the rest of the system. Collecting all information 
is expensive, and the key challenge is in collecting the distinguished 
information.

Fig. 1. General IDS architecture.
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(B) Feature Extraction: It is responsible to selectively retain the in-

formative set of features for the purpose of attack characterization 
eliminating the irrelevant/redundant features. Finally, it forms the 
feature vector with selected subset of features. This work will focus 
to contribute a new approach for feature extraction with an aim to 
enhance the detection performance of the system.

(C) Detection Engine: It is the core component of IDS and its responsi-

ble for analyzing the data to detect intrusion activity. The strength 
of the overall IDS is often determined by the capability of this com-

ponent to detect all classes of attacks.

(D) Response Engine: It is responsible to decide how to respond when 
the detection engine identifies an attack and controls the reaction 
mechanism. This component decides either to take “passive respon-

se” by just triggering an alert without taking any action against the 
source or to take “active response” by blocking the source for a 
predefined time period. The type of response action to be taken is 
based on the security policy decided by the organization.

IDS are usually categorized according to their deployment in real 
time and detection mechanism. With regard to their deployment, they 
are classified as Host-based and Network-based IDS [25]. The host-

based IDS are deployed in the local machine to collect information 
about the host machine activities and detect any abnormal activities 
in that machine. Alternatively, the network-based IDS monitors net-

work traffic and analyzes all packets in the network to identify any 
threats on network resources. Further, these IDS are two types based 
on detection mechanism namely, signature-based and anomaly-based. 
The signature-based IDS employs pattern matching techniques to de-

tect anomaly activity by comparing the activities across network system 
with predefined attack signatures stored in IDS database. The key ben-

efits of these methods are their simplicity and low false alarm rates 
(FAR). But their application in real time is confronted by their inability 
to recognize and block new or unknown attacks whose signatures are 
not available in IDS database. Alternatively anomaly-based IDS mon-

itors all activities across the network system and employs statistical 
learning techniques to pinpoint any action that deviates significantly 
from normal activities. One of key benefits of anomaly-based IDS is their 
ability to recognize new and unknown attacks. Therein they are pre-

ferred for real-time applications. Unfortunately, these systems exhibit 
high FAR due to their inability to define a clear boundary between nor-

mal and abnormal behavior. Researchers attempted to combat this issue 
by applying machine learning techniques to improve the performance 
of detection engine in IDS. Several machine learning techniques are 
proposed in literature to design detection engine, a detail survey of all 
techniques with their pros and cons is given in [1, 26, 27]. From these 
cited literatures, it is clear that less attempts are made to enhance the 
performance of detection engine providing the most important and rel-

evant features required for intrusion detection. This indicates that there 
seems to be a gap in this area. The current work attempts to resolve 
this gap recommending an appropriate feature evaluation measure to 
remove redundant/irrelevant information and enhance the accuracy of 
detection engine with reduced false alarm rate.

3. Feature selection techniques

Selection of important features is a first and important data prepro-

cessing step in IDS development process. The key objective of feature 
selection techniques is to select compact and optimal subset of rele-

vant features from the given large dataset and enhance the accuracy of 
the intrusion detection classifier. A standard feature selection technique 
comprises two key parts [28]. One is selection algorithm to describe 
how subset of features is selected for consideration. Another is fea-

ture evaluation measure to describe how the selected feature subsets 
are evaluated for quality. In general, feature set selection algorithms as 
shown in Fig. 2 are divided into three types based on different selection 
strategies: filter, wrapper and embedded methods. The wrapper meth-
3

Fig. 2. Strategies for feature selection.

Fig. 3. Taxonomy of filter evaluation measure.

ods search through feature space to select a subset that gives the highest 
detection classifier accuracy. Embedded methods utilize the structure 
of specific classes of detection classifiers to guide the feature selection 
process and select a feature subset during the learning stage. One crit-

ical problem with these two categories of methods is application of 
exhaustive search strategy to select the optimal subset among all the 
possible feature subsets which results in high computational complex-

ity. Also, these methods provide features that are classifier dependent 
and may suffer from the risk of overfitting. Alternatively, filter methods 
select features based on predefined metrics rather than using classi-

fiers. Therefore, the selected features are more general and have no 
dependence with classifier used for detection. Importantly, they are less 
expensive methods and are therefore most preferable for large datasets. 
Due to these advantages, this work utilizes filter methods.

4. Feature evaluation measures

Evaluation measure plays a crucial role in feature selection tech-

niques for guiding the search in feature space and for selecting the 
discriminative features. The filter methods evaluate the merits of fea-

tures or feature subsets using various measures based on the intrinsic 
characteristics of data rather than considering the interaction of data 
with the classifier. Thus far, several robust filter-based feature evalua-

tion measures have been proposed to remove irrelevant and redundant 
features. As shown in Fig. 3, they can be grouped into two categories 
based on what combination of feature and class information is used 
to compute the measure. Univariate measures assess the discrimina-

tive ability of each feature individually and assign a weight to each 
feature. This weight is not influenced by other features in the set. Mul-

tivariate measures assess the discriminative ability of the entire set of 
selected features. The most widely used four filter-based feature eval-

uation measures are adopted in the present work for investigation and 
they are described in the following subsections.

4.1. Consistency measure

Consistency measure is a multivariate filter measure that evaluates 
the merits of a candidate feature subset by computing its inconsistency 
rate over the given dataset as given in Eq. (1). It uses heuristic search 
technique to guide them through the given feature space and find the 
correct candidate feature subset. For example, it starts with the origi-

nal number of features in the given dataset and continues to generate 
random subset with C features until a minimum size feature subset sat-

isfying the inconsistency criterion is reached. Thus, the inconsistency 
criterion that checks the inconsistency rate of candidate feature subset 
against the user defined rate (𝐼𝑛𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝐶ℎ𝑒𝑐𝑘(𝑆, 𝐷) < 𝛾) is the key suc-

cess of consistency measure. In other words, this criterion defines the 
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Algorithm 1 CBF Algorithm [29].

Input: D - Dataset, 𝛾 - predefined inconsistency rate

Output: Consistent Feature subset

function CBF (D, 𝛾)

𝑆𝑏𝑒𝑠𝑡 ← (D)

𝐶𝑏𝑒𝑠𝑡 ← number_of_features(D)

for 𝑇 = 1 to Max_TRIES do

𝑆 ← randomset(seed);

𝐶 ← number_of_features(S)

if 𝐶 < 𝐶𝑏𝑒𝑠𝑡 then

if (𝐼𝑛𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝐶ℎ𝑒𝑐𝑘(𝑆, 𝐷) < 𝛾) then

𝐶𝑏𝑒𝑠𝑡 ← C ; 𝑆𝑏𝑒𝑠𝑡 ← S

end if

end if

end for

print 𝑆𝑏𝑒𝑠𝑡

end function

extent to which dimensionality reduction is acceptable. Based on this 
criterion, the outcome of consistency measure is a minimum size fea-

ture subset that can separate the target classes as consistently as full 
feature set. In literature, it has proven to be the best and fast filter in re-

moving irrelevant and redundant features even in presence of noise in 
the dataset. The feature selection algorithm based on consistency mea-

sure (CBF) devised by Liu et al. [29] is given in Algorithm 1. The time 
complexity of this algorithm is O(NI ⋅ 𝑀2); where M is the number of 
selected features and NI represents the total number of instances in the 
dataset.

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑅𝑎𝑡𝑒𝑠 =
∑𝐽

𝑖=0 |𝑍𝑖|− |𝑃𝑖|
𝑁𝐼

(1)

where s represents the candidate feature subset and J is the number of 
distinct combinations of feature values for 𝑆𝑖. |𝑍𝑖| and |𝑃𝑖| denotes the 
number of occurrence and the cardinality of the majority class for the 
𝒊th feature value in the combination.

4.2. Correlation measure

Correlation Measure is a multivariate filter measure that evaluates 
the merits of the candidate feature subset based on the degree to which 
each feature in subset is correlated with the target class and is un-

correlated with other features. Thus, this measure is very powerful in 
removing redundant and irrelevant features on the ground truth that 
irrelevant features will have weak association with target class and re-

dundant features will be strongly correlated with at least one of other 
features. Correlation measure by default uses search techniques to ex-

plore the feature space and heuristic evaluation function defined in 
Eq. (2) to assess the merit of the candidate feature subset. For exam-

ple, it starts with an empty set of features and continues to explore the 
feature space for all possible single feature expansions until no further 
improvements can be achieved in merit evaluation.

𝑀𝑒𝑟𝑖𝑡𝑠 =
𝑘𝑟𝑐𝑓√

𝑘+ 𝑘(𝑘− 1)𝑟𝑓𝑓
(2)

where 𝑀𝑒𝑟𝑖𝑡𝑠 is the evaluation of a feature subset with k features, 𝑟𝑐𝑓
is the average correlation value between features and class labels, and 
𝑟𝑓𝑓 is the average correlation value between two features. Hall et al.

[30] devised a feature selection algorithm given in Algorithm 2 using 
correlation measure (CFS) with time complexity of O(NI ⋅ 𝑀2).

4.3. Information measure

Information Measure is a univariate filter measure that evaluates 
each individual feature for the quantity of information it shares to 
4

Algorithm 2 CFS Algorithm [30].

Input: D - Dataset

Output: Correlated Feature subset

function CFS (D)

𝑁 ← number_of_features(D)

𝑆𝑙𝑖𝑠𝑡 ← Null ; 𝑚𝑎𝑥𝑉 𝑎𝑙𝑢𝑒 = 0

for 𝑇 = 1 to Max_TRIES do

for 𝑖 = 1 to 𝑁 do

for all feature 𝑓 ∉ 𝑆𝑙𝑖𝑠𝑡 do

𝑡𝑙𝑖𝑠𝑡 ← 𝑆𝑙𝑖𝑠𝑡 ∪ 𝑓

compute merit_value for tlist using Eq. (2)

if 𝑚𝑎𝑥𝑉 𝑎𝑙𝑢𝑒 <𝑚𝑒𝑟𝑖𝑡_𝑣𝑎𝑙𝑢𝑒 then

𝑆𝑙𝑖𝑠𝑡 ← 𝑡𝑙𝑖𝑠𝑡

𝑚𝑎𝑥𝑉 𝑎𝑙𝑢𝑒 ←𝑚𝑒𝑟𝑖𝑡_𝑣𝑎𝑙𝑢𝑒

end if

end for

end for

end for

return Slist

end function

Algorithm 3 IG Algorithm [33].

Input: D: Dataset

Output: vector W with feature scores estimating the quality of features

function IG (D)

𝑁 ← number_of_features(D)

for 𝑖 = 1 to N do

Compute IG for feature 𝑓𝑖 using Eq. (3)

end for

end function

detect the target attack class. As opposed to other measures, they are ca-

pable of quantifying the amount of information making no assumption 
about the data distribution and size. Also, they are capable of discover-

ing any relationship between classes and a feature no matter it is linear 
or non-linear. For this purpose, the information measure calculates the 
information gain (IG) or mutual information between classes C and fea-

ture F using the equation given below to determine the relevance of a 
feature in class C [31, 32].

𝐼𝐺 =𝐻(𝐶) −𝐻(𝐶|𝐹 ),

=𝐻(𝐹 ) −𝐻(𝐹 |𝐶),

=𝐻(𝐹 ) +𝐻(𝐶) −𝐻(𝐹 ,𝐶) (3)

Here, 𝐻(𝐶) is the entropy of class C and is calculated as,

𝐻(𝐶) = −
∑
𝑐∈𝐶

𝑝(𝑐) 𝑙𝑜𝑔2 𝑝(𝑐) (4)

𝐻(𝐶|𝐹 ) is the conditional entropy of class C given the feature F and 
is calculated as,

𝐻(𝐶|𝐹 ) = −
∑
𝑓∈𝐹

𝑝(𝑓 )
∑
𝑐∈𝐶

𝑝(𝑐|𝑓 ) 𝑙𝑜𝑔2 𝑝(𝑐|𝑓 ) (5)

Higher the value of IG, higher is the relevance of the feature F to 
detect the target class C. The pseudocode for computing IG is given in 
Algorithm 3. This algorithm has a time complexity of O(N ⋅ T2), where 
N is the number of features in the dataset and T2 is the time taken to 
calculate the IG.
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Algorithm 4 ReliefF Algorithm [35].

Input: D: Dataset

Output: vector W with feature scores estimating the quality of features

function ReliefF (D)

𝐼 ← number_of_Iterations

𝑁 ← number_of_features(D)

Create a weight vector W
Initialize weight of all features to 0 (𝑊 [𝑓 ] = 0)

for 𝑖 = 1 to 𝐼 do

select randomly an instance 𝑅𝑖 from D
For 𝑅𝑖 , find nearest hit H and nearest miss M
for 𝑓 = 1 to 𝑁 do

update 𝑊 (𝑓 ) using Eq. (7)

end for

end for

return W

end function

4.4. Distance measure

Distance Measure (DM) is the only univariate filter measure that 
has the capability of learning the feature dependencies in the process 
of identifying the ‘quality’ feature for detecting the target attack class 
[34]. Most importantly, It does not make any conditional independence 
assumption upon target attack classes rather they are efficient in us-

ing the contextual information to correctly estimate the quality of a 
feature. Accordingly, it computes statistic score value for each feature 
by rewarding a feature if it has different values for two near instances 
from different classes and by penalizing an feature if it has different val-

ues for two near instances from the same classes. The steps for finding 
the statistic score value for each feature using distance measure (Re-

liefF) are given in Algorithm 4. It comprises three key steps. First, it 
randomly selects an instance from the training dataset. Second, it finds 
two nearest neighbors, one from same class called nearest Hit (H) and 
one from different class called nearest miss (M). Third, it updates the 
statistic score for all features based on their values for M and H using 
the equation given below [35],

𝑊𝑓 =𝑊𝑓 −
(
𝑑𝑖𝑓𝑓𝑓 (𝑅,𝐻)

𝑚
−

𝑑𝑖𝑓𝑓𝑓 (𝑅,𝑀)
𝑚

)
(6)

where m is the number of random training instances used to update W 
and diff is the difference between two instances as defined below and is 
normalized to the range [0, 1].

𝑑𝑖𝑓𝑓𝑓 (𝐼1, 𝐼2) =
|𝑣𝑎𝑙𝑢𝑒(𝑓, 𝐼1) − 𝑣𝑎𝑙𝑢𝑒(𝑓, 𝐼2)|

𝑚𝑎𝑥(𝑓 ) −𝑚𝑖𝑛(𝑓 )
(7)

Now, the weight 𝑊𝑓 of a feature increases if it has same values for 
instances from same class and distinguishes the instances from different 
classes. The above three steps are repeated by selecting randomly m 
instances from training set. As this measure uses the concept of nearest 
neighbors rather than search algorithm techniques. The time complexity 
is based on the number of sampled instances and is given by O (𝑚2.𝑁)).

5. The classifier scheme for intrusion detection

Since there is no one best classification method that fits all appli-

cations, it is recommended to examine multiple classifiers considering 
their characteristics, complexity, performance and previous applica-

tions in literature. Accordingly, this work chose three classifiers from 
different categories such as statistical learning theory (SVM), distance 
(KNN), ensemble learning (RF) and deep learning (DBN) to investigate 
5

the effectiveness of different feature evaluation measures for classifi-

cation performance in IDS. Following is a brief description on these 
classifiers.

5.1. k-Nearest neighbor (KNN)

KNN is a simple and easy-to-implement classification scheme [36]. 
Unlike other classification schemes, KNN is a lazy learner which means 
it does not require explicit training phase to learn a discriminative func-

tion rather it memorizes the training samples. KNN use nearest neighbor 
decision rule and the majority vote of k-nearest neighbors to classify any 
new unknown intrusion. More importantly, they are non-parametric, 
meaning it does not make any assumption on the underlying data pat-

tern distribution rather it determines the model structure from the data. 
These were the reasons for choosing KNN in this work for evaluation.

5.2. Random forests (RF)

RF is an ensemble-based learning method [37]. It operates by con-

structing and combining several randomized decision trees. Aside from 
being simple to use, RF is a versatile method in producing accurate re-

sults for many types of data. RF has turned out to be very powerful 
model with their ability to limit the notorious overfitting without sub-

stantially increasing error due to bias. Further, it is worth noted that RF 
is capable of handling data imbalances in different classes especially for 
large datasets [6]. RF has found a wide spread acceptability in various 
applications due to its robustness to noise, tuning simplicity, parallel 
architecture and due to its ability to efficiently handle non-linear clas-

sification tasks. Attributed to these advantages of RF, this work has also 
chosen RF for comparison.

5.3. Support vector machine (SVM)

SVM is a discriminative classifier [38] that blends linear modeling 
with instance-based learning to find an optimal separating hyperplane 
(OSH) with maximal margin between classes in feature space. The data 
points that are closest to the OSH are called support vectors and are 
used to create decision boundary. The OSH is oriented at the maximum 
distance between the sets of support vectors. It is because of this orien-

tation, SVM generalizes more accurately for new unknown cases even 
when with limited number of training samples. Also, SVM is acknowl-

edged for producing significant accuracy with less computation power. 
Another key property of SVM is their ability to use kernel function to 
automatically map the data samples to higher dimensional space and 
solve non-linear problems in that space where the classes can be sep-

arated linearly. Due to these inherent properties, SVM is preferred as 
the most reliable and accurate algorithm in most applications. Hence, 
SVM is also chosen in this work for comparative evaluation. But since 
SVM is initially defined for binary classification, the present work em-

ploys kernel function and constructs SVM classifier with “one-to-one” 
combination to realize the multi-classification in intrusion detection.

5.4. Deep belief network (DBN)

DBN is a deep learning mechanism with potential to determine op-

timal representation for input data than the shallow models [39, 40]. It 
is a probabilistic generative network created with multiple layers of Re-

stricted Boltzmann Machine (RBM) for learning complex data pattern. 
Here the layers are trained sequentially in greedy fashion. Training pro-

cess in DBN consists of two stages. The first stage called pre-training 
employs unsupervised learning to train each RBM one by one with 
large amount of data without labels to capture the data distribution 
and obtain their initial weights. Later, the second stage called fine-

tuning employs supervised learning with data labels to adjust the initial 
weights through error backpropagation and finalize their weights for 
enhanced discriminative ability. Thus, the pre-training stage of DBN 
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not only reduces the training complexity but also enhances its discrim-

inative ability by avoiding overfitting.

Recently, DBN is most valued for its versatile ability and has ex-

posed great success in unsupervised feature dimensionality reduction 
and supervised pattern classification [41, 42]. But only limited studies 
in literature have used DBN in the field of intrusion detection [43, 44]. 
Also, the authors in these studies have not focused to investigate the 
influence of feature selection on DBN. Therefore, we believe if DBN is 
chosen for comparative evaluation then the experimental results from 
this study can contribute to deep learning research communities.

6. Experimental setup

This section describes the datasets, performance metrics, framework 
design adopted for the experiments that were conducted to investigate 
the effectiveness of the four feature evaluation measures for intrusion 
detection.

6.1. Datasets

Most of the real-world network traffic data is unavailable due to the 
companies’ privacy and security issues. On the other direction, there 
are number of public datasets available for IDS performance evaluation. 
But, these datasets suffer from lack of sufficient number of traffic types 
and modern low footprint attack styles. Therefore, in order to facilitate 
a fair and reasonable comparison, this article uses an older benchmark 
dataset, NSL-KDD and a new contemporary dataset UNSW-NB15 to 
compare the effective performance of the four feature evaluation mea-

sures under study. A brief description of these two high dimensional 
imbalanced cybersecurity datasets is given below.

6.1.1. NSL-KDD dataset

KDD-Cup’99 [58] is one of the most widely accepted benchmark 
dataset in the field of intrusion detection despite of being outdated and 
inherent with several problems [45]. In 2009, the Network Security 
Lab—Knowledge Discovery and Data Mining (NSL-KDD) released an 
improved version of KDD-Cup’99 dataset known as “NSL-KDD dataset” 
[46]. This presented NSL-KDD dataset mitigates the inherent problems 
in KDD-Cup’99 such as large number of redundant records and un-

balanced distribution of records, which might otherwise mislead the 
evaluation. Thus, NSL-KDD is considered as most valuable and reliable 
benchmark resource for performance evaluation in many studies re-

lated to intrusion detection and other cybersecurity related tasks. Thus, 
after removing the duplicate records, the NSL-KDD dataset comprises 
125,973 records of training and 22544 records of testing, each record 
with 41 features and a class label, determines whether the traffic is nor-

mal or an attack type. It includes 22 different types of attacks belonging 
to one of the four major classes of attack in what follows

(a) Denial of Service (Dos): attacker make the resources too busy to 
process the request from legitimate users to the resources.

(b) Probe: attacker attempts to gather important information about the 
network and discovers vulnerabilities to launch an attack

(c) User to Root (U2R): attacker exploits the vulnerability in the system 
to gains the super user privileges

(d) Remote to Local (R2L): attacker exploits the vulnerability in the 
system to gain local access as a user to a remote computer.

The distribution of records of these five attack class types is shown

in Table 1. From this statistics, it can be observed that the prevalence of 
DoS class is around 36% but the attack classes such as R2L and U2R ac-

counts for less than 1%. This clearly shows that this dataset is extremely 
unbalanced.

6.1.2. UNSW-NB15 dataset

UNSW-NB15 is a comprehensive latest published dataset for re-

search purpose by Australian Centre for Cyber Security (ACCS) to reflect 
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Table 1

Distribution of four attack classes in NSL-

KDD.

Attack class Number Volume (%)

DoS 45927 35.45

Prob 11656 9.25

R2L 995 0.75

U2R 52 0.05

Table 2

Distribution of nine attack classes in UNSW-

NB15.

Attack class Number Volume (%)

Fuzzers 18184 10.37

Analysis 2000 1.14

Backdoors 1746 0.99

DoS 12264 6.99

Exploits 33393 19.04

Generic 40000 22.81

Reconnaissance 10491 5.98

Shellcode 1133 0.64

Worms 130 0.07

a more complex and modern threat environment [47]. This dataset 
contains a hybrid of realistic modern legitimate activities and contem-

porary synthesized attack behaviors of live network traffic. The UNSW-

NB15 dataset is an extensive collection of 48 features extracted from 
network packet headers and network payload to effectively reflect net-

work traffic record and a class label to classify the traffic record either 
as legitimate or attack. The dataset involves nine modern classes of at-

tacks as defined below,

(a) Fuzzers: attacker attempts to find out the security loopholes in oper-

ating system, network or programs and crash it by feeding massive 
amount of random data.

(b) Analysis: attacker attempts to gain access into web applications via 
emails (e.g., spam), ports (e.g., port scans), and web scripts (e.g., 
HTML files).

(c) Backdoor: a technique adopted by attacker to bypass a stealthy nor-

mal authentication procedure and gain unauthorized remote access 
to a host or network.

(d) DoS: attacker make the resources too busy to process the request 
from legitimate users to the resources.

(e) Exploit: attacker takes the advantage of security vulnerability 
caused by an unsuspected or intentional behavior on a host or 
network.

(f) Generic: a technique employed by attacker to cause collision us-

ing hash function against every block-cipher irrespective of block-

cipher configuration.

(g) Reconnaissance: attacker attempts to gather important information 
about the network and discovers vulnerabilities to launch an at-

tack.

(h) Shellcode: attacker injects piece of code to start a command shell 
and exploit the compromised machine.

(i) Worm: attacker attempts to replicate itself and spread on other 
computers based on the security failures on the host.

The UNSW-NB15 dataset is available in two forms, original and 
partitioned UNSW-NB15 datasets. The original UNSW-NB15 dataset 
contains 2,540,044 records logged in four csv files. The partitioned 
UNSW-NB15 dataset is mainly configured for research purpose with 
175,341 of training and 82,332 of testing records, in which each record 
is characterized by only 42 features and a class label. The network traf-

fic distribution of this dataset under nine attack class types is shown 
in Table 2. According to this statistics, the frequency of normal traffic 
records accounts for 32%. On other hand, the frequency of attack traf-
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Fig. 4. Experimental framework used for evaluating the performance of four feature evaluation measures.
fic accounts very less percentage and varies greatly. For example, the 
number of attack samples of Exploits and Worms differ by about 257 
times. Thus, this dataset is also exhibits high imbalance.

6.2. Evaluation metrics

Several experiments were conducted to investigate and compare the 
effectiveness of the four feature evaluation measures for intrusion de-

tection. For this purpose, the most widely used three metrics namely, 
the accuracy, detection rate, false positive rate were adopted as in most 
previous literature on IDS. These metrics are defined as follows,

• Accuracy (ACC): is measured as the proportion of connection 
records that are correctly classified as given below,

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(8)

• Detection rate (DR): Also called True Positive Rate is measured as 
the proportion of network attack records that are correctly classi-

fied as given below,

𝐷𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9)

• False positive rate: also termed as false alarm rate (FAR), it is 
measured as probability of incorrectly classifying normal network 
connection records as attack. The consistent increase of this metric 
may mislead the network administrator to intentionally ignore the 
alerts from network system. As a result, the entire network may be 
face dangerous situation. Therefore, it is always advisable to keep 
this metric value as low as possible.

𝐹𝐴𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(10)

Another most important metric required called Kappa statistics (KS) 
[48] is employed as one of the evaluation measure as it is more essential 
than precision and recall to furnish the comprehensive performance of 
the model with unbalanced- and multi-class problem. Since the two 
benchmark datasets utilized here are unbalanced, KS is considered here 
as an essential measure for comparison. In essence, KS is measured as 
agreement between predicted class of a dataset and the observed label 
as ground truth, while correcting the agreement that occurs by chance 
as given below,

𝐾𝑆 =
𝑃𝑂 − 𝑃𝐸

1 − 𝑃𝐸

(11)

where 𝑃𝑂 is the proportion of observed agreements and 𝑃𝐸 is the pro-

portion of agreements expected by chance.
7

6.3. Framework

The experiments designed for evaluation process consist of three 
main steps: First, the chosen dataset is preprocessed by mapping the 
symbolic feature to numeric value, discretizing continuous feature and 
normalizing each feature to specific range [0, 1]. Next, feature selection 
was performed using the four competing feature evaluation measures 
discussed in the Section 4 to select the most informative features from 
the preprocessed dataset. As recommended in literature [49], five-fold 
cross validation strategy was applied five times for feature selection to 
avoid selection bias. Finally, the feature subsets resulting from four fea-

ture evaluation measures were evaluated with the above discussed four 
different classifiers namely KNN, RF, SVM and DBN.

As evaluation protocol, again five-fold cross validation was repeated 
five times on the dataset to prevent overfitting and reduce any bias due 
to specific data partitioning. This means that each experimental vali-

dation was executed five times. Therein, totally 25 experimental runs 
were conducted to evaluate the performance of each IDS classifier and 
the evaluation metrics averaged across the different runs were reported. 
Also, during each five-fold cross validation, the dataset was randomly 
shuffled and divided into five sets, out of which one was used as test 
set while others were used as training set. This experimental evaluation 
framework is depicted in Fig. 4.

7. Experimental results and discussion

This section presents the experimental results that were conducted 
based on the framework discussed in the previous section 6.3 and anal-

ysis of those results to demonstrate the impact of different feature 
evaluation measures on the efficiency of intrusion detection.

7.1. Feature selection analysis

Procedurally, the first experiment was conducted to select the most 
important features for different classes of attacks applying the four 
feature evaluation measures discussed in Section 4. Here, the Greedy 
algorithm was employed as search strategy for the multivariate mea-

sures, consistency and correlation to select the most optimal subset of 
features. While the univariate measures, Information and distance ap-

plies a threshold of 25% of the total features, sorted in descending order 
of importance to select the informative features for each type of attacks.

The features selected by these four feature evaluation measures on 
NSL-KDD and UNSW-NB15 datasets are reported in Table 3 and Table 4

respectively. Each row lists the indexes of the features selected for each 
attack class by different feature evaluation measures. The number in 
parentheses indicates the number of features (NF) selected by the re-

spective feature evaluation measures. These features are represented by 
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Table 3

Features selected by four feature evaluation measures for different attack classes in NSL-KDD.

Attack class Correlation Consistency

NF Feature subset NF Feature subset

DoS (6) {5,6,12,26,30,39} (5) {3,5,23,34,39}
Prob (8) {3,5,6,12,27,29,37,41} (5) {3,5,32,35,40}
R2L (3) {5,10,11} (4) {1,3,5,6,37}
U2R (4) {14,17,18,32} (7) {1,5,17}

Attack class Information Distance

NF Feature subset NF Feature subset

DoS (10) {3,4,5,6,23,29,30,34,38,39} (10) {3,12,26,29,32,33,34,36,38,39}
Prob (10) {3,5,6,12,33,34,35,36,37,41} (10) {2,3,12,31,32,33,34,35,36,40}
R2L (10) {3,5,6,10,22,23,24,33,36,37} (10) {2,3,10,12,22,31,32,33,34,36}
U2R (10) {1,3,5,10,13,14,17,32,33,36} (10) {2,3,12,14,24,31,32,33,34,36}

Table 4

Features selected by four feature evaluation measures for different attack classes in UNSW-NB15.

Attack class Correlation Consistency

NF Feature subset NF Feature subset

Fuzzers (1) {10} (11) {3,7,8,9,10,17,27,28,32,33,35}
Analysis (3) {2,27,35} (11) {2,13,18,27,28,31,34,36,39,40,41}
Backdoor (2) {2,35} (6) {2,3,7,27,28,40}
DoS (2) {2,10} (7) {3,7,8,16,31,40,41}
Exploits (3) {2,10,32} (12) {2,7,8,9,10,17,27,28,31,36,40,41}
Generic (4) {3,4,11,35} (8) {3,7,8,25,27,31,36,40}
reconnaissance (2) {7,10} (8) {2,3,7,12,31,36,40,41}
Shellcode (2) {10,41} (8) {3,7,8,27,31,33,36,40}
Worms (2) {7,30} (5) {3,7,10,15,27}

Attack class Information Distance

NF Feature subset NF Feature subset

Fuzzers (11) {7,10,8,32,11,27,13,9,28,17,1} (11) {10,11,16,32,42,28,13,20,2,3,40}
Analysis (11) {7,27,12,2,8,9,28,1,13,32,6} (11) {2,3,4,10,16,20,21,22,27,29,42}
Backdoor (11) {7,2,27,12,8,9,1,28,11,32,10} (11) {2,4,10,16,20,27,31,35,36,41,42}
DoS (11) {7,27,2,12,8,9,1,28,11,32,10} (11) {2,10,11,16,20,27,31,32,36,41,42}
Exploits (11) {7,8,10,27,11,28,32,12,9,1,17} (11) {2,11,16,27,28,31,32,35,36,41,42}
Generic (11) {7,12,35,27,9,1,34,36,32,41,4} (11) {3,9,10,16,27,33,34,35,40,41,42}
Reconnaissance (11) {7,27,12,8,28,10,9,6,32,13,1} (11) {2,4,10,16,20,27,31,34,36,41,42}
Shellcode (11) {7,12,27,10,8,28,9,1,32,6,11} (11) {2,3,4,10,16,20,27,29,32,35,42}
Worms (11) {7,27,28,8,6,15,3,10,25,32,11} (11) {2,3,4,10,16,21,22,27,29,32,42}
Table 5

Parameter settings for classifiers.

Classifiers Parameters Value range Optimal value

NSL-KDD UNSW-NB15

SVM Kernel [RBF, linear] linear linear

C [1,10,100,1000] 1000 10

KNN k [3,5,10,15] 5 15

feature indexes in table for reasons of brevity. Readers may refer to Ta-

ble A1 and Table A2 in the Appendix – A for resolving feature index to 
name.

From the results in Table 3 and Table 4, it can be observed that 
though there are some overlapping features among the four feature 
evaluation measures, feature subsets are distinct for different classes 
of attacks. Also it can be clearly noted that when compared to univari-

ate measures, multivariate evaluation measures such as correlation and 
consistency are more efficient in eliminating irrelevant/redundant fea-

tures and selecting the most compact subset of features across all types 
of attack classes. Within multivariate measures, correlation seems to re-

tain the smallest number of features. Further, in conformity with the 
time complexity of its Algorithm 2, it was reasonably faster than oth-

ers despite of its searching strategy. Thus the results in the Table 3

and Table 4, prove the ability of correlation measure in selecting the 
lowest proportion of features. In general, all the four feature evaluation 
measures have shown dimensionality reduction by selecting a small pro-

portion of the original features.
8

Table 6

DBN structure.

Parameters Values

hidden layer structure [41,41]

activation function ‘relu’

learning rate 0.1

drop out rate 0.2

Pre-training iteration 10

Fine-tuning iteration 100

7.2. Classification accuracy analysis

Generally, all classifiers are not able to take the advantage of all 
informative features. In this direction, second set of experiments were 
conducted to investigate the impact of the four feature evaluation mea-

sures on detection accuracy of IDS applying four different classifiers. As 
discussed in previous section, KNN, RF, SVM and DBN were utilized in 
this context. These four classifiers approach differently the problem of 
supervised machine learning. Nevertheless, tuned parameter is crucial

for improving classifier performance. Therein, the best parameter val-

ues for KNN and SVM were selected performing grid search on NSL-KDD 
and UNSW-NB15. The parameter range used and the reported results of 
grid search are illustrated in Table 5. Whereas for RF, the default pa-

rameters were utilized. Considering the computational complexity, grid 
search was not used in case of DBN rather the parameter values given in 
Table 6 that proved to achieve best performance in previous experiment 
settings were utilized.
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Table 7

Classification Accuracy Analysis of four feature evaluation measures on NSL-KDD.

Attack class ALL features Correlation Consistency

KNN RF SVM DBN KNN RF SVM DBN KNN RF SVM DBN

DoS 99.88 99.96 98.2 99.44 97.7 97.94 96.0 98.4 99.8 99.96 97.5 98.3

Prob 99.63 99.84 97.8 98.4 99.67 99.78 97.3 96.9 99.47 99.91 96.8 97.27

R2L 99.77 99.90 98.46 98.46 99.01 99.01 98.46 98.4 99.90 99.94 98.46 98.46

U2R 99.9 99.93 98.94 98.4 99.93 99.92 99.8 99.85 99.93 99.94 99.9 99.9

Attack class Information Distance

KNN RF SVM DBN KNN RF SVM DBN

DoS 99.91 99.97 98.4 99.5 98.9 99.0 93.7 92.0

Prob 99.69 99.90 98.8 98.8 99.79 99.80 98.7 98.7

R2L 99.72 99.91 98.9 98.46 99.73 99.84 98.7 98.84

U2R 99.93 99.96 99.9 99.85 99.93 99.93 99.9 99.85

Table 8

Classification Accuracy Analysis of four feature evaluation measures on UNSW-NB15.

Attack class ALL features Correlation Consistency

KNN RF SVM DBN KNN RF SVM DBN KNN RF SVM DBN

Fuzzers 80.01 83.52 79.25 79.21 84.7 84.7 75.4 78.4 88.5 90.1 79.2 83.7

Analysis 98.97 99.0 96.78 96.78 99.2 99.1 98.8 98.8 99.3 99.4 98.8 98.8

Backdoors 99.39 99.4 97.29 97.21 99.4 99.4 99.3 97.6 99.8 99.9 98.8 98.6

DoS 96.0 96.61 91.65 91.45 96.1 96.2 91.5 92.3 98.4 99.1 92.2 94.8

Exploits 80.36 92.92 73.95 76.4 89.9 91.0 70.8 85.1 97.0 98.8 84.4 85.2

Generic 99.37 99.42 95.98 95.97 99.2 99.2 99.0 90.2 99.6 99.7 99.1 99.1

Reconnaissance 90.62 92.21 86.87 86.88 97.9 98.1 90.2 89.6 97.8 99.5 86.4 85.7

Shellcode 98.56 98.46 97.99 97.99 98.3 98.2 98.0 97.9 99.3 99.67 98.4 97.9

Worms 99.73 99.77 99.74 99.74 99.8 99.89 99.7 99.7 99.9 99.99 99.7 99.7

Attack class Information Distance

KNN RF SVM DBN KNN RF SVM DBN

Fuzzers 87.2 89.07 81.8 83.9 87.3 89.62 83.0 83.9

Analysis 98.9 99.33 97.9 97.6 99.0 99.35 99.0 98.8

Backdoors 99.5 99.84 97.1 97.9 99.7 99.76 97.1 99.2

DoS 97.7 98.85 93.0 91.2 98.5 99.0 95.1 96.8

Exploits 95.3 97.56 79.1 84.4 97.6 98.59 86.9 93.0

Generic 99.3 99.69 93.2 89.0 99.5 99.71 94.6 96.9

Reconnaissance 98.6 99.11 91.9 88.5 98.9 99.54 96.5 97.1

Shellcode 98.7 98.63 98.0 97.9 98.7 98.44 98.0 97.9

Worms 99.9 99.96 99.7 99.7 99.8 99.90 99.7 99.7
Intrusion detection accuracy obtained under optimal parameter of 
each classifier is used here for comparison. The accuracy obtained for 
four classifiers with four feature evaluation measures over the base-

line performance of these classifiers with all features on NSL-KDD and 
UNSW-NB15 is presented in Table 7 and Table 8 respectively. From 
these results, it can be observed indeed the effectiveness of applying 
feature selection not only improves the detection accuracy of minority 
attack class types but also helps to reduce the data acquisition cost in fu-

ture minimizing the number of features required to achieve competitive 
detection accuracy with high dimensional imbalanced network traffic. 
This clearly confirms our initial discussion that feature selection elimi-

nating irrelevant features can serve as an effective alternative approach 
to manage the class imbalance problem on high dimensional intrusion 
datasets.

Likewise observing the experimental results of four classifiers using 
the four feature evaluation measures, it can be seen that RF classifier 
achieves better detection accuracy compared to its counterparts with all 
feature evaluation measures across all attack types. Here particularly, 
it exhibits comparably better with consistency and distance measures 
in improving the detection accuracy of minority attack class types. The 
reason possibly might be due to the non-linear “if-then-else” rules un-

derlying the decision tree. These non-linear rules are further enhanced 
by the feature subset identified by consistency and distance measure to 
show more accurate detection in a complex detection environment.

Whereas the classifiers KNN, SVM and DBN perform better with 
consistency, information and distance measures for most of the attack 
types. Most specifically, KNN classifier achieves better detection accu-
9

racy with consistency measure and second better accuracy with distance 
measure. Hence KNN classifier with consistency measure might be bet-

ter choice to get benefited with better detection accuracy. Also, it can 
be noticed that the distance measure being most closely related to the 
KNN classifier produces better accuracy results with KNN than with 
other classifiers. Similarly, it can be seen that SVM and DBN classifiers 
perform better with distance measures for all attack classes except for 
two attacks, probe and generic.

Another most noteworthy result is that the classifier DBN exhibits 
comparable performance improvement in detection accuracy with fea-

ture selection over the baseline classifiers. Thus demonstrating the ef-

fectiveness of feature selection in enhancing its discriminative ability 
in handling the class imbalance problem on high-dimensional network 
traffic by avoiding overfitting and reducing the training complexity.

To verify and ensure the above discussed findings, statistical analysis 
was conducted computing the mean accuracy value for each classi-

fier against the four feature evaluation measures. The mean plot of 
four classifier groups comparing the accuracy to four feature evalua-

tion measures is shown in Fig. 5. This plot confirms our findings and 
gives better understanding of how the mean accuracy varies across the 
four groups of classifiers.

Overall, it can be summarized that RF is better choice than its 
counterparts across all attack types especially in detecting minority at-

tack class types. Also, the performance of all classifiers were varied 
with different feature evaluation measures across attack types. And all 
the classifiers performed comparably well with only consistency mea-

sure for most of the attack classes. This indicates that the consistency 
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Table 9

Performance Analysis of four feature evaluation measures on NSL-KDD.

Attack class ALL features Correlation Consistency Information Distance

DR FAR KS DR FAR KS DR FAR KS DR FAR KS DR FAR KS

DoS 1 0.000 0.999 0.981 0.007 0.998 1.000 0.001 0.999 1.000 0.001 0.999 0.994 0.014 0.98

Prob 1 0.004 0.997 0.999 0.039 0.991 1.000 0.004 0.996 1.000 0.005 0.996 0.999 0.009 0.992

R2L 1 0.045 0.974 0.998 0.106 0.879 1.000 0.030 0.983 1.000 0.044 0.971 0.999 0.098 0.911

U2R 1 0.442 0.69 1.000 0.673 0.404 1.000 0.428 0.704 1.000 0.381 0.739 0.978 0.436 0.691

Table 10

Performance Analysis of four feature evaluation measures on UNSW-NB15.

Attack class ALL features Correlation Consistency Information Distance

DR FAR KS DR FAR KS DR FAR KS DR FAR KS DR FAR KS

Fuzzers 0.937 0.145 0.780 0.799 0.267 0.659 0.941 0.143 0.784 0.909 0.196 0.710 0.860 0.176 0.653

Analysis 0.999 0.116 0.926 0.998 0.186 0.870 0.999 0.11 0.931 0.997 0.125 0.897 0.996 0.142 0.879

Backdoor 1 0.037 0.976 1.000 0.183 0.895 1 0.019 0.982 0.999 0.042 0.963 0.999 0.091 0.943

DoS 0.997 0.018 0.979 1.000 0.211 0.860 0.996 0.02 0.971 0.998 0.011 0.982 0.993 0.129 0.897

Exploits 0.991 0.012 0.978 0.979 0.282 0.801 0.990 0.015 0.975 0.982 0.034 0.947 0.972 0.092 0.925

Generic 0.999 0.004 0.996 0.999 0.083 0.983 0.999 0.004 0.995 0.999 0.007 0.990 0.998 0.027 0.987

Reconnaissance 0.999 0.006 0.992 0.988 0.126 0.928 0.997 0.014 0.981 0.995 0.029 0.965 0.995 0.084 0.967

Shellcode 0.998 0.125 0.893 0.986 0.224 0.619 0.999 0.090 0.916 0.995 0.425 0.618 0.995 0.473 0.582

Worms 1 0.208 0.861 1.000 0.292 0.753 1.000 0.062 0.981 1.000 0.069 0.920 1.000 0.123 0.904
Fig. 5. Mean Plot of four classifier groups against four feature evaluation mea-

sures.

measure is more generalizable in identifying the most informative fea-

tures that minimizes the overlap degree across different attack types 
and are capable of detecting new attacks.

7.3. Performance analysis

As third step of analysis, experiments were conducted to investigate 
the effectiveness of the four feature evaluation measures on the detec-

tion competence of IDS model for different attack classes. For these 
experiments, four IDS models were built for each attack class using the 
feature subsets selected by the four feature evaluation measures along 
the baseline model with all features. Here, RF was used as IDS classifier 
based on its better performance in the previous experiments. The ex-

perimental results on NSL-KDD and UNSW-NB15 datasets with regard 
to DR, FAR and KS are tabulated in Table 9 and Table 10 respectively.

From the evaluation metrics of NSL-KDD datasets, it can be clearly 
observed that all the four feature evaluation measures show satisfactory 
DR over the baseline for all classes of attacks. But with more precise ob-

servation, it is obvious that the IDS models built using the feature subset 
of multivariate consistency measure and univariate Information mea-

sure produced comparably better detection rates for all attack classes 
than those built using the feature subset of other measures. Also, they 
demonstrate the best result in FAR and KS. On other hand, observing 
the performance of correlation and distance measure, it is clear that 
correlation measure was superior in selecting less number of features 
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but its influence in improving the DR of IDS model maintaining low 
FAR was not remarkable. Whereas with distance measure, it is found to 
achieve the third best among the four evaluation measure in influencing 
the detection capability of IDS model across all attack types. Further, it 
can be noticed that though, consistency measure proved higher prior-

ity than its counterparts in terms of DR, FAR and KS, its achievement 
of 0.1% FAR with DoS raises slightly to 0.4% in Probe and 3% in R2L 
classes and further to 55% in U2R. This is might be due to smaller num-

bers of samples for ‘U2R’, ‘R2L’ and Probe in training set than for DoS 
classes. Nevertheless, the consistency measure proved to perform best 
and more stable in identifying the most informative feature subset for 
all attacks in NSL-KDD datasets.

The experimental results on UNSW-NB15 dataset also conformed 
that the consistency measure was stable across all attack classes in 
attaining the highest detection performance in terms of DR and KS. 
Followed by information measure and distance measure. This is really 
appreciable. Also FAR achieved by consistency measure across all attack 
classes were very less which is actually a good requirement for an IDS. 
Because increase in FAR increases overheads, time and resources of the 
systems. Overall, consistency-based measure produces most of the best 
results and has proven their superiority in increasing DR for all attacks 
especially even with less frequent attack classes like U2R and Worms. 
It is evident from all the above results that the consistency measure 
is effective to handle class imbalance problem on high dimensionality 
problem in IDS.

7.4. Statistical analysis

Finally, statistical analysis is carried out as stated in literature [50, 
51] to confirm the feature evaluation measure that holds significant dif-

ference in contributing to IDS performance. ANOVA is one of the most 
popular and appropriate hypothesis testing that looks for statistical dif-

ference between the output of more than two algorithms and confirms 
whether the average difference between the outputs is significant or it 
is due to random chance. Hence it is adopted here for statistical analysis 
and for answering the NULL hypothesis given below,

There is no significant difference between 
the four feature evaluation measures in im-

proving IDS performance in terms of NF, DR, 
FAR and KS.
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Table 11

ANOVA Statistics of performance metrics (NF, DR, FAR and KS) for four feature evaluation measures.

Performance 
metrics (PM)

Feature measures 
(FM)

N Mean Std. deviation Std. error 95% confidence interval for mean

Lower bound Upper bound

NF Correlation 13 3.23 1.921 0.532 2.186 4.275

Consistency 13 7.46 2.569 0.712 6.064 8.858

Information 13 10.7 0.480 0.133 10.43 10.95

Distance 13 10.7 0.480 0.133 10.43 10.95

DR Correlation 13 0.98 0.055 0.015 0.949 1.008

Consistency 13 0.99 0.016 0.004 0.985 1.002

Information 13 0.99 0.025 0.007 0.976 1.003

Distance 13 0.99 0.024 0.006 0.977 1.003

FAR Correlation 13 0.21 0.167 0.046 0.115 0.296

Consistency 13 0.07 0.116 0.032 0.009 0.135

Information 13 0.11 0.140 0.039 0.033 0.186

Distance 13 0.14 0.145 0.040 0.066 0.224

KS Correlation 13 0.82 0.172 0.048 0.724 0.912

Consistency 13 0.93 0.108 0.030 0.868 0.987

Information 13 0.89 0.125 0.035 0.830 0.965

Distance 13 0.87 0.135 0.038 0.976 0.944
Table 12

ANOVA Significance report of feature evaluation measures.

Sources Sum. Sq. Diff. Mean Sq. F Sig.

FM 121.8 3 40.60 59.5 3.0e-27

PM 2130.6 3 710.19 1040.91 1.8e-118

FM * PM 366.33 9 40.7 59.66 6.7e-51

Error 131 192 0.68

Total 2749.72 207

In this respect, ANOVA analysis was conducted on the performance 
results given in Table 9 and Table 10. As first step, ANOVA statistics was 
computed on NF, DR, FAR and KS results obtained for both NSL-KDD 
and UNSW-NB15 datasets, and the findings are presented in Table 11. 
Observing the results in Table 11, it can be noted that minimum and 
maximum and 95% confidence interval for mean values of DR and 
KS results obtained using consistency measure are higher compared to 
other measures. Also its FAR values are lower compared to other mea-

sures. Therefore, it can be stated that the consistency measure provides 
a better IDS performance among all other measures.

The ANOVA statistics encouraged to perform two-way ANOVA anal-

ysis between the four feature evaluation measures (FM) and the four 
performance evaluation metrics (PM) and the findings are presented in 
Table 9 and Table 10. This analysis was carried out for significance 
level of 5%, i.e. for 95% confidence level. It can be observed from the 
results in Table 12 that the interaction between the explanatory vari-

ables FM and PM is significant (F = 59.56 and sig < 0.05). Hence, it is 
evident to conform that the defined NULL hypothesis remains rejected 
and the effects of the feature evaluation measure on the outcome of the 
four performance evaluation metrics differed significantly.

Accordingly, as third step Post hoc test such as TurkeyHSD and pair-

wise Wilcoxon rank sum test was carried out to confirm the feature 
evaluation measure pair that performs significantly different. The re-

sults of Post hoc test are given in Fig. 6. It is clear from these results 
that only the pairs with consistency measure are statistically significant 
(𝑝 < 0.05) in improving the detection performance. Added to this, the 
mean plot for IDS performance in terms of NF, DR, FAR and KS against 
four feature evaluation measures is shown in Fig. 7 to demonstrate the 
superiority of consistency measure over its counter part.

From the results of all our experiments, we conclude and recom-

mend the researcher community involved in building IDS to adopt 
consistency evaluation measure to enhance the classifier performance 
for intrusion detection.
11
Fig. 6. Post hoc ANOVA Analysis for four feature evaluation measures.

Fig. 7. Mean Plot of IDS Performance for four feature evaluation measures.
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8. Conclusion

This paper presented a comprehensive analysis of four feature eval-

uation measures namely correlation, consistency, information and dis-

tance for intrusion detection. The main goal of the present work was 
to recommend the best feature evaluation measure that can improve 
the overall detection performance of an IDS. In this direction, a gen-

eral experimental framework was designed on two benchmark datasets 
namely, NSL-KDD and UNSW-NB15 with four different state-of-art ma-

chine learning classifiers namely, KNN, RF, SVM and DBN to investigate 
the influence of the four feature evaluation measures on classification 
accuracy of an IDS. Under optimized parameter settings, all classifiers 
provided competitive results; with RF giving the better detection accu-

racy with all feature evaluation measures. On other hand, all the other 
classifiers gave the best detection accuracy with consistency measure 
for most of the attack classes. Further, the effectiveness of the four fea-

ture evaluation measures on IDS detection performance in terms of DR, 
FAR and KS was analyzed. Here all the four feature evaluation mea-

sures showed good detection rate for most classes of attacks except for 
less frequent attack classes like U2R and worms. Only consistency mea-

sure was observed to stand out with higher detection rate even for U2R 
and worms. Also, it surpassed the other measures in achieving low FAR. 
Thus, consistency measure demonstrated its superiority over others con-

tributing the more critical features for intrusion detection to achieve 
higher accuracy and detection rate with low false alarm rate. To con-

clusively conform the most significant feature evaluation measure for 
intrusion detection, two-step statistical test was conducted. The consis-

tency measure achieved impressive results demonstrating statistically 
its significance in improving the IDS performance. This versatility of 
consistency measure demands to recommend it as an appropriate fea-

ture evaluation measure for IDS. Taken altogether, the findings from 
comprehensive analysis are expected to help guide the cybersecurity re-

searchers in designing an effective lightweight system with reduced set 
of features for the emerging technologies such as IoT and Fog Clouds.
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Appendix A. Utilized benchmark datasets

Table A1

Feature List of NSL-KDD dataset.

No. Feature name No. Feature name

1 duration 21 is_hot_login

2 protocol_type 22 is_guest_login

3 service 23 count

4 src_bytes 24 serror_rate

5 dst_bytes 25 rerror_rate

6 flag 26 same_srv_rate

7 land 27 diff_srv_rate

8 wrong_fragment 28 srv_count

9 urgent 29 srv_serror_rate

10 hot 30 srv_rerror_rate

11 num_failed_logins 31 srv_diff_host_rate

12 logged_in 32 dst_host_count

13 num_compromised 33 dst_host_srv_count

14 root_shell 34 dst_host_same_srv_rate

15 su_attempted 35 dst_host_diff_srv_rate

16 num_root 36 dst_host_same_src_port_rate

17 num_file_creations 37 dst_host_srv_diff_host_rate

18 num_shells 38 dst_host_serror_rate

19 num_access_files 39 dst_host_srv_serror_rate

20 num_outbond_cmd 40 dst_host_rerror_rate

Table A2

Feature List of UNSW-NB15 dataset.

No. Feature name No. Feature name

1 Id 23 dtcpb

2 dur 24 dwin

3 xProt 25 tcprtt

4 xServ 26 synack

5 xState 27 ackdat

6 spkts 28 smean

7 dpkts 29 dmean

8 sbytes 30 trans_depth

9 dbytes 31 resp_body_len

10 rate 32 ct_srv_src

11 sttl 33 ct_state_ttl

12 dttl 34 ct_dst_ltm

13 sload 35 ct_src_dport_ltm

14 dload 36 ct_dst_sport_ltm

15 sloss 37 ct_dst_src_ltm

16 dloss 38 is_ftp_login

17 sinpkt 39 ct_ftp_cmd

18 Dinpkt 40 ct_flw_http_mthd

19 sjit 41 ct_src_ltm

20 djit 42 ct_srv_dst

21 swin 43 is_sm_ips_ports

22 stcpb 44 attack_cat
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