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Abstract: In this study, sulfidized nanoscale zerovalent iron (S-nZVI) supported by oyster shell
(OS) powder (S-nZVI@OS) was synthesized by controlling the initial S/Fe ratios (0.1–0.5) to explore
the potential synergistic effects during the adsorption and reduction of Cr (VI). X-ray diffraction
(XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses
showed that Fe (0) and FeS were well dispersed on the OS surface. Furthermore, the stability of
S-nZVI@OS composite was higher than that of nZVI, which was proved by the material ageing
experiment. The effects of different S/Fe molar ratios, time, temperature, the initial concentration of
Cr (VI), and initial pH on the removal efficiency were also studied. The results indicated that with
the increase of the S/Fe molar ratio, the removal capacity of Cr (VI) first increased rapidly and then
decreased slowly. Batch experiments showed that an optimal S/Fe molar ratio of 0.2 offered a Cr
(VI) removal capacity of about 164.7 mg/g at pH 3.5. The introduction of S can not only promote
Cr (VI) reduction but also combine with Cr (III) by forming precipitate on S-nZVI@OS mainly as
CrxFe(1−x) OOH and Cr2S3. The adsorption thermodynamics and kinetics demonstrated that the
Langmuir model and pseudo-second-order kinetics model can describe the adsorption isotherms and
kinetics. These results suggest that S-nZVI@OS is an effective and safe material for removing Cr (VI)
from aqueous solutions.

Keywords: oyster shell; S-nZVI; adsorption; reduction; mechanism

1. Introduction

Heavy metal–contaminated wastewater is a central problem in water pollution [1,2].
Controlling water pollution and protecting water resources have become essential goals
globally. Chromium is one of the primary heavy metals causing groundwater pollution.
With rapid industrial development, chromium is widely used in several industries, in-
cluding electroplating, metallurgy, mechanical engineering, chemical engineering, and
electronics [3]. Over the years, with the increase in industrialization worldwide, much
chromium-containing wastewater discharge has polluted water supplies [4]. In general,
chromium exists in nature in the form of Cr (VI), such as Cr2O7

2− and CrO4
2− [5–8], and

Cr (VI) has been identified as a strong carcinogen [9,10]. The Ministry of Ecology and
Environment of China has set the relevant limit values for Cr (VI) [11].

With rises in contamination, many tactics for removing Cr (VI) have been developed,
including biological approaches [12], electrochemical oxidation methods, membrane fil-
tering methods [13], and adsorption methods [14]. The adsorption method is regarded
as the most promising way of eliminating Cr (VI) due to its high efficiency, cheap cost,
and simplicity. The most commonly utilized substance for removing Cr (VI) is nanoscale
zerovalent iron (nZVI) [15]. It has a high specific surface area, is highly reducible, and
is low in toxicity [16]. However, particle agglomeration reduces the migration ability of
nZVI in a porous environment. Moreover, nZVI exhibits low reaction efficiency with other
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chemicals in waste, which reduces pollutant removal efficiency [17]. The main methods
of nZVI modification are emulsification, immobilization, vulcanization, and bimetallic
particles. After several years of research, Han and Yang [18] found that nZVI could be
modified by sodium thiosulate or sodium sulfide to increase its conductivity, inhibit its
reaction with water, and extend its lifespan. Moreover, the nZVI-loaded metal-organic
framework exhibited significant Cr (VI) removal capacity [19]. nZVI has been successfully
loaded onto silica [20], activated carbon [21,22], zeolite [23], biochar [24], chitosan [25],
metal [26], and other materials. However, nZVI materials still have some drawbacks. For
example, the process of removing Cr (VI) requires highly acidic conditions, and the reaction
produces large amounts of sludge containing heavy metals [27]. To further improve the
reducing ability of nZVI, sulphur is usually added to the material to generate S-nZVI, with
a stronger reducing ability to remove Cr (VI) [28].

Many sorbents, including biochar [29], clay [30], polymers [31,32] and graphene
oxide [33], can be used as carriers. Oyster shell (OS) is a common marine debris in coastal
cities. Its chemical constituents are mainly inorganic substances. OS is rich in calcium salts
and has a porous surface. The shell comprises a cuticular layer, a prismatic layer and a
pearl layer. The cuticular layer is highly resistant to corrosion, the prismatic layer has a
foliated structure with a large number of 2~10 microns micropores, and the pearl layer
is mainly calcite. Due to its special structure and calcium carbonate composition, OS can
be decomposed into CaO and CO during high-temperature calcination, as well as CO2
gas. Moreover, its pore structure endows it with strong adsorption capacity, exchange
capacity, and catalytic decomposition capacity. Therefore, it can absorb various pollutants
in sewage and improve water quality. Through dynamic column experiments and static
batch experiments, Gao et al. [34–36] studied the adsorption performance of OS powder
towards cadmium and cobalt in an aqueous solution. The adsorbent exhibited better Cd2+

removal than that of Co2+ removal from single-component metal ion solutions. In addition,
OS is self-alkaline, which facilitates Cr (III) precipitation. The treatment of domestic waste
with OS powder is characterized by high efficiency, low consumption, and the absence of
secondary pollution, demonstrating the potential applications of the powder.

It is reported that OS has not been used as a solid loading material for nZVI in the
current literature. In this study, OS was used as the loading material to synthesize S-
nZVI@OS, which was used to remove Cr (VI) from water. S-nZVI@OS was characterized
via XRD, SEM, FTIR, and XPS. On Cr(VI) removal, the influence of pH, Cr(VI) starting
concentration, and temperature was examined.

2. Materials and Methods
2.1. Chemical Reagent

Potassium dichromate (K2Cr2O7, 99.8%) was purchased from Tianjin Chemical Co.,
Ltd. Ferrous sulfate heptahydrate (FeSO4·7H2O) and phosphoric acid were purchased from
McLaines Biochemical Technology Co., Ltd. (Shanghai, China), and sodium sulfide mono-
hydrate (Na2S·9H2O) was bought from Fuchen Reagent Co., Ltd. Sodium borohydride
(NaBH4) was purchased from Damao Chemical Reagent Factory (Tianjin, China). Oyster
powder was purchased from Guangxi. The original solution containing potassium dichro-
mate (500 mg/L) was prepared by drying 0.2829 g of K2Cr2O7 pellets at high temperature
for a period of time and then dissolving them in deionized water.

2.2. The Preparation of S-nZVI@OS

Composite diagram of S-nZVI@OS is shown in Figure 1. The S-nZVI@OS was prepared
via the following processes: (1) To maximize contact between oyster powder and iron,
1.1 g of oyster powder was dispersed in 5.5 g of 100 mL of FeSO4·7H2O solution under
ultrasonic conditions and stirred for 30 min. (2) The mixture was stirred with a mechanical
stirrer under N2 conditions for 1 h, and then borohydride (3 g, 50 mL) was slowly added
with a constant-pressure separator to reduce the iron ions in the solution. (3) Na2S·9H2O
was deposited into the mixture. The introduction of sulfide turns the system into FeS, and
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an FeS layer is formed on the nZVI surface when the system contains a large amount of
Fe2+. The resulting material was cleaned with anaerobic water and anhydrous ethanol
many times before being vacuum dried and stored in a vacuum glove box until it was
needed again.
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Figure 1. Schematic diagram of S-nZVI@OS synthesis.

2.3. Characterization and Analysis Methods

The composite crystal structures were characterized using X-ray diffraction (XRD,
Bruker D8 Advance, Germany) scanned in the range of 10–80◦ (2θ). The morphology
of the product was studied by transmission electron microscope (Jeol Jem-2100, TEM)
images and scanning electron microscope (Regulus8100, SEM) images. An electronic
spectrometer (XPS, PHI-5300, UK) for analyzing the state of surface elements using X-ray
photographs of chemical elements. In addition, a zeta potential meter (Malvern Zetasizer
Nano ZS 90, UK) and a vibrating sample magnetometer (VSM LakeShore 7400-S, USA) were
used to analyse the surface charge and magnetic properties of the material. Total Cr was
determined by (ICP-OES) (Optima 8000, USA) and Cr (VI) concentration was determined
by a spectrophotometric UV spectrophotometer (T6 New Century, China).

2.4. Removal Process

In 50 mL test tubes (25 ◦C), experiments on the adsorption of Cr (VI) by the new
material S-nZVI@OS were carried out. A certain concentration of S-nZVI@OS was put
into a 20 mg/L solution of Cr (VI) and then the pH was adjusted to 3.5 using various
concentrations of HCl or NaOH. Conical flasks were used to study the removed material
by shaking them in a temperature-controlled water bath shaker at 180 rpm. At the end of
the specified experimental time, the adsorbent material is separated from the water phase
using a magnet. All of the experiments were conducted three times.

Equation (1) was used to analyze Cr (VI) removal efficiency (RE), while Equation (2)
was used to estimate Cr (VI) removal capacity (RC):

RE(%) =
(C0 − Ct)

C0
× 100% (1)

RC =
(C0 − Ct)·V

m
(2)

where C0 is the initial Cr (VI) concentration (mg/L) and Ct is the equilibrium Cr (VI)
concentration (mg/L); m is the adsorbent mass (g); and V is the total of the aqueous
systems in the reaction system (mL).

Quantitative relationships between Cr (III) concentrations, Cr (VI) concentrations, and
total Cr concentrations:

CCr3+ + CCr6+ = CTCr (3)

where CTCr, CCr6+, and CCr3+ are the TCr, Cr (VI), and Cr (III) concentrations in the reaction
system (mg/L), respectively.
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2.5. Kinetic Study

Kinetic experiments were performed using a three-necked flask. The experiments
were performed at the same temperature under mechanical stirring. The Cr (VI) content
was determined according to the amount of supernatant absorbed within a specified time.

The kinetic data were analyzed using the Langmuir–Hinshelwood first-order kinetic
model Equation (4) and a pseudo-second-order kinetic model Equation (5) [37,38].

ln(Ct/C0) = −kobst + c (4)

t
qt

=
1

k2q2
e
+

t
qe

(5)

where qe and qt are the Cr (VI) removal capacities at equilibrium and time t (mg/g),
respectively; kobs (min−1) is the Langmuir–Hinshelwood first-order kinetic model’s rate
constant; c is a constant; and k2 (g·min/mg) is the pseudo-second-order rate constant.

2.6. Isotherms and Thermodynamics

The Langmuir Equation (6) and Freundlich isotherms Equation (7) are common ad-
sorption models.

Langmuir :
Ce

qe
=

1
qmb

+
Ce

qm
(6)

Freundlich : ln qe = ln k +
1
n

ln Ce (7)

The adsorbent concentration in solution at adsorption equilibrium is Ce (mg/L),
qe (mg/g) is the removal capacity of the material for Cr (VI), qm is the maximum removal
capacity of the material for Cr (VI) (mg/g), and b (L/mg) is the Langmuir model constant
associated with the adsorbent to the adsorbate. The Freundlich constant is k, and the
adsorption strength is n (L/mg).

The thermodynamic parameters are determined by the following relations:

∆G0 = −RT ln K (8)

ln K =
∆S
R
− ∆H

RT
(9)

The free energy ∆G0 (kJ/mol), the enthalpy changes ∆H0 (kJ/mol), and the entropy
change ∆S0 (J/mol/K) were all calculated. R is the ideal gas constant (8.314 J/(mol·K)) and
T is the temperature in Kelvin (K). lnK is obtained by plotting lnKd as a function of Ce, with
Ce extrapolated to zero. ∆S0 and ∆H0 are the intercept and slope of a linear plot between
lnK and 1/T, respectively.

3. Results and Discussion
3.1. Characterization

Figure 2 shows SEM and TEM images of the material before and after reaction. SEM
image of S-nZVI@OS is shown in Figure 2a. TEM images (Figure 2b,c) show that the
dendritic S-nZVI is uniformly dispersed on the surface of the OS carrier and are more
dispersed compared to nZVI, so the material has better spatial stability. Figure 2d shows
essentially no change in the structure of the material compared to TEM images (Figure 2b,c)
before reaction, which is further evidence of the stability of the material.
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The elemental composition of S-nZVI@OS (Figure 3b) illustrates the presence of Fe, O
and S elements in S-nZVI@OS, demonstrating the formation of Fe oxides and the presence
of S after sulphide modification. Figure 3c–h show the HRTEM image of S-nZVI@OS and
the corresponding EDS mapping after reaction. In comparison to Figure 3b, the mass
concentration of S before reaction reduced from 0.57% to 0.16% after reaction, whereas the
mass content of Fe reduced from 88.53% to 78.73%. This indicates that oxidation of S and
Fe occurs during the removal process, resulting in the formation of SO4

2− and oxygenated
iron compounds.
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Figure 4a describes powder XRD patterns of different composite before and after
removal Cr (VI). The peak at 2θ of 29.4◦ is CaCO3 (PDF#05-0586), corresponding to the (104)
plane of the index. In the S-nZVI@OS composite, the crystalline metals Fe (PDF#99-0064)
and FeS (PDF#23-1123) were present due to the diffraction peaks at 44.67◦ and 47.46◦,
corresponding to the index (110) and (220) planes, respectively. After reaction with Cr (VI),
new characteristic peaks appeared at 35.62◦ and 62.59◦ indexed as (3 1 1) and (2 1 4) planes
corresponding to the characteristic peaks of Fe3O4 (PDF#88-0315) and Fe2O3 (PDF#72-
0469). The presence of iron oxides after reaction indicates that the iron was oxidized during
the removal process. The XRD pattern of OS after reaction with Cr (VI) shows there is
no characteristic peak of new substance, which indicates that OS mainly participates in
the adsorption.
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The FTIR spectra of the composite material before and after the reaction are shown in
Figure 4b. Prior to the reaction, peak locations are 3421 cm−1, 1620 cm−1, 1414 cm−1, and
873 cm−1, corresponding to stretching vibrations related to hydroxyl (-OH), C=O bonds,
carboxyl (-COOH), and C-O bonds, respectively. The disappearance of absorption vibration
absorption peaks for carboxyl and C-O bonds following reaction indicates a reduction
reaction during Cr (VI) removal. In addition, the spectrum of the S-nZVI@OS composite
exhibits absorption peaks at 666 and 604 cm−1, corresponding to the formation of Fe-O
and Fe-S bonds during the preparation of the composite [39]. In contrast, the vibrational
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absorption peak here disappears after the reaction, indicating that the oxidation of Fe and S
occurred during the removal process.

Figure 4c shows the results of the thermogravimetric analysis of OS and S-nZVI@OS.
Both materials have mass loss at 630 ◦C, and the weight loss of OS is 40%, which is due to
the decomposition of CaCO3 contained in OS. S-nZVI@OS loses 13.7% of its weight owing
to the decomposition of OS, which indicates that S-nZVI loaded by OS has good thermal
stability. Figure 4d is the magnetization curve of S-nZVI@OS. It can be clearly seen that the
magnetization value of S-nZVI@OS is high (97 emu/g), which indicates that the adsorbent
can be recycled using magnetism well after the reaction is completed.

3.2. Adsorption Kinetics for S-nZVI@OS with Different S/Fe Ratio

Figure 5a depicts the kinetics of Cr (VI) elimination for materials with various S/Fe
ratios. The Cr (VI) removal rate was high for the first 30 min and then levelled off with time.
The equilibrium adsorption capacities were 100, 158, 125, and 112 mg/g for S/Fe ratios of
0.1, 0.2, 0.35, and 0.5, respectively. The results reveal that as the S/Fe ratio increases, the Cr
(VI) removal capability increases at first, then falls. A too-high S/Fe ratio may lead to the
formation of less active FeSn, which reduces the reduction capacity of Fe (0) and the activity
of the particles [40]. Therefore, the S/Fe ratio affects the effectiveness of the material in
removing Cr (VI).
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Figure 5b illustrates the Cr (VI) adsorption kinetics of S-nZVI@OS, S-nZVI and
nZVI@OS. Adsorption was rapid in the first 40 min and then entered the adsorption
equilibrium phase. The maximum adsorption capacities of S-nZVI@OS and S-nZVI were
158 mg/g and 138 mg/g, respectively. In a previous study, biochar was a commonly used
loading material for studying nZVI, nZVI/biochar (0.1 g/L) exhibited a removal rate of
approximately 30% toward 10 mg/L Cr (VI) [24]. nZVI@OS had a removal rate of about
40% under the same settings. Thus, nZVI@OS has a much greater Cr (VI) removal efficiency
than that of biochar-supported nZVI.

Figure 5c,d depict the Langmuir–Hinshelwood first-order kinetic model and the
pseudo-second-order kinetic model, respectively. Table 1 shows the fitted parameters and
correlation coefficients. By comparing the findings of the correlation coefficients (R2), it is
shown that the pseudo-second order kinetic model can better describe the process of Cr
(VI) elimination. The results reveal that rather than interfacial resistance, the transfer of
valence electrons determines Cr (VI) removal [41,42].

Table 1. Kinetic parameters of Langmuir-Hinshelwood first-order kinetics model and pseudo-second-
order kinetics model of S-nZVI@OS with different S/Fe ratios.

S/Fe Ratio Langmuir-Hinshelwood First-Order Kinetics Model Pseudo-Second Order Model

Kobs (min−1) R2 k2 (g/mg min) Qe (mg/g) R2

0.100 0.018 0.990 0.647 × 10−3 112.996 0.985
0.200 0.012 0.990 0.352 × 10−3 178.473 0.982
0.350 0.019 0.975 0.514 × 10−3 139.538 0.988
0.500 0.037 0.974 1.240 × 10−3 119.764 0.992

3.3. Effect of Initial Solution pH and Ionic Strength

Figure 6a shows the Cr (VI) removal capacity of OS, nZVI, S-nZVI@OS (OS:Fe = 1:3)
and S-nVI@OS (OS:Fe = 1:5) at the same initial concentration and different pH values. At
an initial pH of 2–3.5 in aqueous solution, the removal efficiency of Cr (VI) (20 mg/L) by
S-nZVI@OS (0.1 g/L, OS:Fe = 1:5) exceeded 84% in aqueous solutions with an initial pH of
2–3.5, while the removal efficiency by S-nZVI@OS (OS:Fe = 1:3) was 40–80%. Therefore, as
the ratio of OS to Fe increased, S-nZVI@OS was detrimental to the removal of Cr (VI). This
indicates that OS plays a role in the removal process by adsorption and that an increase
in the amount of OS decreases the reduction of S-nZVI. When the pH value is 3.5–9, the
removal rate of Cr (VI) by S-nZVI@OS decreases and the removal rate is lower than 32%.
Therefore, S-nZVI@OS had greater Cr (VI) removal capacity under acidic conditions. A
previous study reported that Cr (VI) removal by nZVI-based materials is an acid-mediated
process [43]. Figure 6b show the zeta potential of S-nZVI@OS at different initial pH was
investigated, and the results showed a value of 6.6 for pHZPC. It can be shown that the
S-nZVI@OS complex is stable in an aqueous solution under acidic conditions [24]. Acidic
conditions favor Cr (VI) removal since H+ accelerates iron corrosion and reduces the
material’s surface passivation.

Considering the actual situation of Cr (VI) removal, the ionic strength affects the
removal effect. Therefore, the effect of different NO3

− concentrations on the removal of Cr
(VI) was investigated in the pH range 2–8. As shown in Figure 6c, the removal of Cr (VI)
by S-nZVI@OS was clearly influenced by pH and the ionic strength (0.01 M NO3

−, 0.1 M
NO3

−) had no obvious effect, which confirmed that the removal process belonged to the
inner sphere surface complexation. Inner-sphere surface complexation implies that Cr (VI)
is adsorbed by functional groups on the surface of the adsorbent and then immobilised in
the interior of the hydration sheath [44]. Figure 6d depicts the changes in total Cr, Cr (VI),
and Cr (III) concentrations. The concentration of Cr (VI) drops in an acidic environment
while Cr (III) increases, showing that most of the Cr (VI) is transformed to Cr (III).
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3.4. Adsorption Isotherms and Thermodynamics

Figure 7a shows the isotherms for Cr (VI) adsorption at 298, 308, and 318 K on S-
nZVI@OS. The Cr (VI) adsorption capacity declined with increasing temperature, from
164.745 mg/g to 75.075 mg/g, indicating an exothermic adsorption mechanism. Langmuir
Equation (6) and Freundlich Equation (7) models were used to investigate the adsorption
equilibrium of S-nZVI@OS. The correlation coefficients are presented in Table 2. Table 3
lists the comparison of Cr (VI) removal by S-nZVI@OS and other different modified ma-
terials [45–52]. The adsorption performance of OS and the excellent reduction ability of
S-nZVI make S-nZVI@OS a potential and promising material to capture Cr (VI) from an
aqueous solution. According to the fitted results, the Langmuir model better described
the experimental data (Table 4). The free energy ∆G0 (kJ/mol), enthalpy change ∆H0

(kJ/mol), and entropy change ∆S0 (J/mol/K) were calculated using Equations (8) and (9) to
investigate the exothermic features of the adsorption process. Lower temperatures resulted
in significant and negative ∆G0 values, indicating that the process was spontaneous and
that lower temperatures were favorable. The calculation of ∆H0 < 0 and ∆S0 < 0 shows that
the adsorption process is spontaneous exothermic.
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Table 2. Isotherm parameters of S-nZVI@OS removal of Cr (VI).

T(K) Langmuir Model Freundlich Model

Qmax (mg/g) b (L/mg) R2 k (mg·g−1) n R2

298 164.745 21.328 0.999 143.314 12.402 0.908
308 126.582 4.463 0.994 104.921 14.760 0.760
318 75.075 11.684 0.998 66.567 17.077 0.925

Table 3. Comparison of Cr (VI) removal by various modified nZVI materials.

Adsorbents pH Qmax (mg/g) References

S-nZVI@OS 3.5 164.7 This work
Biochar-CMC-nZVI 5.6 112.5 [45]

nZVI/Cu 5.0 18.8 [46]
nZVI@HCl-BC 5.0 17.8 [47]
TP-nZVI-OB 2.0 95.5 [48]

SBC-nZVI 3.0 84.4 [49]
nGO-nZVI 7.0 21.7 [50]

Sepiolite/nZVI 6.0 43.9 [51]
CS-nZVI 4.0 101.8 [52]
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Table 4. Thermodynamic parameters of Cr (VI) removal by S-nZVI@OS at different temperatures
(298, 308, 318 K).

T (K) ∆G0 (kJ/mol) ∆H0 (kJ/mol) ∆S0 (J/mol/K)

298 −15.695
308 −14.562 −49.457 −113.294
318 −13.429

3.5. Effect of Material Ageing on Removal Efficiency

Agglomeration and anodization of the nZVI layer occur with age, reducing the surface
activity of nZVI and affecting Cr (VI) removal [53]. In the current study, the S-nZVI@OS
composite maintained a high Cr (VI) removal rate after 14 days (Figure 8). FeSX possibly
reduced the magnetic attraction between nZVI particles, thereby inhibiting particle ag-
glomeration. Moreover, the sulfide will inhibit the side reaction of the material with water,
which helps to preserve the high activity of the material. Comparing the TEM images
before and after the reaction, the structure of the material is almost unchanged before and
after the reaction. This further demonstrates the stability of the new composite S-nZVI@OS
in terms of Cr (VI) removal [54].
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4. Mechanism Analysis

The Fe 2p3/2 XPS spectra of S-nZVI@OS are shown in Figure 9b. Fe0 and Fe (III) are
represented by peaks with binding energies of 707.5 eV and 724.3 eV, respectively, whereas
Fe2+ is represented by peaks with binding energies of 711.6 eV and 721.9 eV [53]. The
spectrum of the fresh S-nZVI@OS (i.e., before reaction) exhibited the Fe0 characteristic peak.
The peaks of Fe0 and Fe2+ move to high binding energy peak positions in the spectrum of
S-nZVI@OS (i.e., after reaction). The peaks at 724.3 eV and 725 eV represent the production
of FeOOH and FeCr2O4. This suggests that the process occurs with the oxidation of Fe0

and the precipitation formation of FeOOH.
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The S 2p spectrum (Figure 9c) prior to the reaction shows peaks at 161.9, 164.3, 162.5,
and 169 eV, corresponding to S (-II), S (0), FeS2, and S (IV), respectively [55]. From the
fractional spectrum of S 2p before and after the reaction (Figure 9c), S is mainly present as
S (-II), FeS2, S (IV), and S (VI). Thus, S (-II) and S (0) were oxidized to S (IV)/S (VI) by Cr
(VI) under acidic conditions (pH = 3.5). This indicates that Cr removal was also based on a
reduction reaction.

The O 1s spectrum of S-nZVI@OS (Figure 9d) exhibited three peaks. Three peaks
appear at 530.1, 531.6 and 533.2 eV, which correspond to an oxide (O2−), a surface hydroxyl
group (-OH) and adsorbed water (H2O), respectively. Iron oxide and hydroxide compounds
existed on the S-nZVI@OS surface before the reaction. After the reaction, the intensity of
the oxide (O2−) peak increased, and it can be judged that the main product was Cr2O3.

Figure 9e shows the Cr 2p XPS spectrum. Three peaks with binding affinity of 578.7,
587, and 574 eV occur, with 578.7 eV corresponding to Cr (III)-Fe (III) and 587 and 574 eV
belonging to Cr (III) and Cr2S3, respectively [56]. The Cr (VI) binding energy weakens after
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the reaction, whereas the Cr (III)-Fe (III) and Cr (III) binding energies become significantly
stronger. These modifications suggest that Cr (VI) was reduced and forms Cr (III)-Fe (III)
complexes on the adsorbent surface.

The removal mechanism is shown in Figure 10. The elimination of Cr (VI) can be
separated into three steps, according to the analysis. Firstly, Cr (VI) can be trapped just on
material surface due to its substantial positive charge and porosity. Secondly, electrons are
transferred from Fe0, Fe2+, S2−, and S to Cr (VI), which is reduced to Cr (III). Fe0, Fe2+ and S
are oxidized to Fe2O3, Fe3O4, and SO4

2−. Finally, the metal oxides contained in OS will gen-
erate a large number of metal cations (Ca2+) under acidic conditions. Cations in the aqueous
solution are hydrolyzed to generate a large amount of OH-, thus generating (CrxFe(1−x))
(OH)3 and CrxFe(1−x) OOH precipitates. A considerable amount of H+ in the solution
is consumed during the electron transfer process. Therefore, the solution pH increased
from 3.5 to 5.8. In summary, the OS played an essential role in not only the dispersion,
maintenance, and minimization of S-nZVI particles but also the adsorption and precipita-
tion processes. The specific reaction process was presented as Equations (10)–(15) [56,57].
The combined action of Fe (0), S (0), Fe2+, and S2− removed Cr (VI). The reaction requires
fewer hydrogen ions than those associated with other materials, which makes S-nZVI@OS
advantageous. Furthermore, oxidized S, Fe (III), and Cr (III) were formed as sulfates and
precipitates, reducing the material’s passivation effect.

Cr2O2−
7 + 3Fe0 + 14H+ → 2Cr3+ + 3Fe2+ + 7H2O (10)

(1− x)Fe3+ + xCr3+ + 3H2O→
(

CrxFe(1−x)

)
(OH)3(s) + 3H+ (11)

(1− x)Fe3+ + xCr3+ + 2H2O→ CrxFe(1−x)OOH(s) + 3H+ (12)

HCrO−4 + 3Fe2+ + 7H+ → Cr3+ + 3Fe3+ + 4H2O (13)

Cr2O2−
7 + S0 + 5H+ → 2Cr3+ + SO2−

4 + 3H2O (14)

2Cr3+ + 3S2− → Cr2S3(s) (15)
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5. Conclusions

S-nZVI@OS, a ternary composite prepared in two steps, successfully removed Cr
(VI) from water. TEM and SEM results demonstrated that the particles were uniformly
dispersed, with minimal agglomeration. The Langmuir isotherm model well describes the
experimental data. The Langmuir–Hinshelwood first-order kinetic model and a pseudo-
second-order kinetic model agreed well with the kinetics of Cr (VI) removal. Under acidic
conditions (low solution pH), the new ternary composite S-nZVI@OS exhibits a powerful
removal of Cr (VI). In addition, S-nZVI@OS has shown excellent performance in terms
of stability. The highest removal rate was achieved at a solution pH of 3.5 with an S-
nZVI@OS dosage of 0.1 g/L. Adsorption isotherms were obtained at 298, 308 and 318 K.
The free energies ∆G0 (kJ/mol) were obtained as −15.695, −14.562 and −13.429 kJ/mol,
respectively, the enthalpy changes ∆H0 (kJ/mol) and entropy change ∆S0 (J/mol/K) were
−49.457 kJ/mol and −113.294 J/mol/K. The results showed that the lower temperature
was favorable for the reaction, and the corresponding adsorption capacity of S-nZVI@OS
was 164.7 mg/g at 298 K. XPS analysis shows that the process of S-nZVI@OS in the
removal of Cr (VI) is an integrated adsorption and reduction process. Self-alkaline loading
material OS not only has excellent adsorption performance, but also contributes to the
formation of (CrxFe(1−x)) (OH)3 and CrxFe(1−x) OOH precipitates through hydrolysis. To
summarize, OS-supported S-nZVI@OS is a low-cost, effective, and ecologically friendly Cr
(VI) removal material.
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