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ABSTRACT: A novel synthetic methodology, employing a
combination of the strain-promoted azide−alkyne cyclo-
addition and maleimide−thiol reactions, for the preparation
of permethylated β-cyclodextrin-linker-peptidyl conjugates is
reported. Two different bifunctional maleimide cross-linking
probes, the polyethylene glycol containing hydrophilic linker
bicyclo[6.1.0] nonyne-maleimide and the hydrophobic 5′-
dibenzoazacyclooctyne-maleimide, were attached to azide-
appended permethylated β-cyclodextrin. The successfully
introduced maleimide function was exploited to covalently
graft a cysteine-containing peptide (Ac-Tyr-Arg-Cys-Amide)
to produce the target conjugates. The final target compounds
were isolated in high purity after purification by isocratic preparative reverse-phase high-performance liquid chromatography.
This novel synthetic approach is expected to give access to many different cyclodextrin−linker peptides.

■ INTRODUCTION

Cyclodextrins (CDs) are cyclic oligosaccharides containing six,
seven, or eight (α-1,4)-linked D-glucopyranoside units, named
α-, β-, and γ- cyclodextrin, respectively.1 These macromolecules
have a hydrophilic exterior which makes them water-soluble
and a hydrophobic interior that can accommodate small
lipophilic molecules. As such, CDs are used as pharmaceutical
excipients that can solubilize various poorly soluble drugs
through the formation of water-soluble drug−CD complexes.
Hence, CDs are applied in the pharmaceutical industry2−5 to
promote the bioavailability, safety, stability, and solubility of
drug molecules.6 Moreover, CDs (mainly β-CDs as depicted in
Scheme 1) have been used for many years in biochemical
studies to extract cholesterol from plasma membranes.7−10

The functionality and applications of the cyclodextrins can be
further expanded by the addition of functional groups that
allow for cell and tissue specific targeting. The conjugation of
small peptides is especially interesting in this respect. However,
the synthesis of cyclodextrin−peptide conjugates with different
spacers/linkers presents a nontrivial scientific challenge, due to
the presence of multiple various reactive groups. Despite several
previous reports on the attachment of small peptides directly to
the CD core,11,12 there is as yet no flexible synthetic route that
allows for insertion of linkers of choice between the peptide
and CD. In this study, we have exploited the −SH of a cysteine-
based model peptide to successfully accomplish its covalent
grafting to an azide-appended permethylated β-cyclodextrin

(PMβCD) via hydrophilic and hydrophobic linkers, utilizing
the strain-promoted azide−alkyne cycloaddition (SPAAC)
reaction followed by the maleimide−thiol coupling.
As proof of concept, we applied a multistep strategy (Scheme

1, cartoon representation of β-CD reproduced from ref 13) to
use the polyethylene glycol (PEG)-containing hydrophilic
linker bicyclo[6.1.0]-nonyne-maleimide (BCN-Mal, derived
from BCN-PEG-maleimide 7) and the hydrophobic linker 5′-
dibenzoazacyclooctyne-maleimide (DIBAC-Mal, derived from
DIBAC-maleimide 11), with a model cysteine containing
peptide (Ac-Tyr-Arg-Cys-Amide) to provide the desired
conjugates by the final maleimide-cysteine coupling reaction
step. This model peptide is of interest because it contains the
phenolic hydroxyl and guanidine groups in addition to the
reactive thiol of cysteine. The reason for selecting PMβCD-N3

4 instead of βCD-N3 3 as the starting point for the conjugation
to access the target conjugates 10 and 13 (Scheme 1) is that
both the latter and model peptide 9 contain multiple reactive
(nucleophilic) groups which could give rise to side products.14

Previous studies by Shi et al.15,16 have shown that
permethylated CDs are soluble both in water and in organic
solvents and do not undergo side reactions during coupling.17

Thus, we envisaged that the use of permethylated azide-
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appended β-CD instead of its hydroxyl analogue will simplify
the synthetic approach. The mono-6-azido-permethylated β-
CD 4 was obtained from precursor β-CD 1 by a selective
tosylation of the primary hydroxyl group on the outer face to
give mono 6-OTs-β-CD 2,18 followed by azide displacement
resulting in hydroxyl azide-appended β-CD 3,19 and perme-
thylation of the remaining hydroxyl groups to afford the key
intermediate 4,14,20,21 which is the starting point for access to a
wide range of compounds of the β-CD family. As method for
the conjugation of the permethylated azide-appended β-CD 4
with the cross-linking reagent [either the hydrophilic BCN-Mal
7 (path A in Scheme 1) or the hydrophobic DIBAC-Mal 11
(path B in Scheme 1)] we chose a click reaction, viz., the
SPAAC reaction between permethylated azide-appended β-CD
and alkyne-appended BCN (or DIBAC), because it is metal-
free and the resultant product is therefore suitable for
application in living systems.22 The coupling of 4 with the
commercially available bifunctional hydrophilic cross-linking

reagent (BCN-Mal) 7 resulted in maleimide-functionalized
PMβCD 8 (path A). The model peptide 9 (Ac-Tyr-Arg-Cys-
Amide) was synthesized by standard Fmoc solid-phase peptide
synthesis (see Supporting Information for details) and reacted
with its terminal cysteine thiol to the maleimide in 8 to give the
target conjugate with hydrophilic linker PMβCD-Mal-BCN-
Peptide 10. Similarly, the introduction of the hydrophobic
linker DIBAC-Mal 11 was carried out using the same synthetic
approach (SPAAC reaction followed by maleimide−thiol
coupling to peptide 9) to afford the final target conjugate 13
(path B).

■ RESULTS AND DISCUSSION

Synthesis of mono-6-azido PMβCD 4. The synthesis of
key intermediate 4 has been reported22 but was modified to
improve the yield of the desired product. Regioselective
tosylation of a single hydroxyl group at the 6-position was
achieved according to a reported method18 by reacting β-CD 1

Scheme 1. Synthetic Routes to Obtain Maleimide-Functionalized PMβCD Derivatives and the Target Conjugates: (A) via
Hydrophilic Linker BCN-Mal; (B) via Hydrophobic Linker DIBAC-Mal
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with 1.2 equiv of tosyl chloride in the presence of 8 N NaOH
and water/acetonitrile as a solvent to afford the compound 2 in
a yield of 26%. 1H and 13C NMR corroborated the identity of
6-β-CD-OTs 2 (Figures S2 and S3). ESI-MS analysis confirmed
the formation of target compound 2, but also revealed the
presence of traces of impurities (unreacted and ditosylated β-
CD, Figure S1). It is not straightforward to remove these
impurities due to the high polarity of these compounds. Since
TLC, 1H NMR, ESI-MS, and LC-MS had proven the structure
and acceptable purity of the product, it was used in the next
step without further purification. The azidation step was
performed with excess sodium azide in water. After
precipitation in acetone followed by centrifugation, the
mono-6-azido β-CD (N3-βCD) 3 was obtained in a yield of
85%. ESI-MS showed the mass of the compound 3 (Figure S4),
and 1H and 13C NMR identified its chemical structure (Figures
S5 and S6). As in the case of 2, the presence of some β-CD,
remaining from the previous step, was apparent from the 1H
NMR spectrum of the target azide-appended CD, as confirmed
by LC-MS. After recrystallization from acetone, the azido-β-CD
intermediate was used subsequently without further purifica-
tion. The next step, the capping of all remaining hydroxyl
groups, was performed with excess methyl iodide (25.0 equiv)
in the presence of the strong base NaH (25.0 equiv) and
anhydrous DMF as a solvent compatible with this reaction. The
purity and the chemical structure of 4 were determined by LC-
MS, ESI-MS, 1H NMR, and 13C NMR (Figures S7, S8, S9, and
S10, respectively). Since the crude product showed a single
spot in TLC, it could only be purified by a prep-HPLC system
provided with two UV detectors at 254 and 215 nm. It eluted at
17.0 min (Figure S11) and the yield after this step was 34%.
Analytical HPLC (Figure S12) showed that compound 4 was
pure, and the impurities remaining from previous steps had
been effectively removed.
Synthesis of Maleimide-Functionalized Hydrophilic

Linker-Appended PMβCD 8. The linker BCN-Mal 7
possesses two functional ends, dibenzocyclooctyne moiety for
click reaction with azide functionalized compounds and
maleimide end for cysteine-maleimide conjugation reaction.
The starting materials for the preparation of 7, BCN-(PEO)3-
NH2 5 and Mal-NHS 6, were obtained from SynAffix B.V.
(Oss, The Netherlands). The bifunctional reagent was obtained
using PBS (pH 7.2) with DMSO or DMF as solvent (1:1 v/v).
The LC-MS and ESI-MS data showed the formation of the
product as a main peak (Figures S13 and S14), with only traces
of a side product in LC-MS. Without the buffer, only a small
amount of the target BCN-Mal is formed, and the unwanted
BCN-Mal-BCN (Figure S15) represents the dominant product;
this is formed due to a high pH value which causes the amine
group from BCN-(PEO)3-NH2 to attack both electrophilic
sites, the NHS and the maleimide moieties, in Mal-NHS. The
product 8 was obtained by SPAAC reaction in 42% yield after
purification by flash column chromatography on a Biotage
system. TLC analysis clearly indicated the yellow spot for the
double bond maleimide moiety after dipping in KMnO4 stain.
The formation of 8 was indicated by LC-MS and MALDI-TOF
MS analyses (Figures S16 and S17) and confirmed by 1H NMR
(Figure S18), showing a singlet around 6.7 ppm for the triazole.
IR analysis showed that the azide peak of 4 at 2100−2200 cm−1

completely disappeared after the reaction with BCN-Mal 7.
Synthesis, prep-HPLC Purification, and Character-

ization of the Peptide 9. The model peptide Ac-YRC-NH2
(9) was synthesized with a semiautomated peptide synthesizer

(Labortec SP 640, Bubendorf, Switzerland) with standard
Fmoc α-protection23 [see experimental protocol S6 and
Scheme 1 in the Supporting Information] from the protected
amino acids Fmoc-Cys(Trt)−OH, Fmoc-Arg(Pbf)−OH, and
Fmoc-Tyr(tBu)−OH. Coupling reactions of Fmoc amino acids
were achieved in DMF applying amino acid/HOBt/DIPCDI/
Breipohl resin in the molar ratio 3.0:3.6:3.3:1.0. Acetylation of
the N-terminus was achieved with Ac2O/DIPEA in DMF using
a molar ratio 1:1 (equiv). The coupling reactions and Fmoc
deprotections were monitored at intervals with the color Kaiser
test24,25 until completed. Upon prep-HPLC purification, the
product 9 gave a chromatogram with a major peak in addition
to a small peak representing its associated dimer form in MS as
determined by LC-MS and MALDI-TOF MS (Figures S19 and
S20), {calcd. [M + H]+ 482.2; obsd. 482.3}. The model peptide
was characterized and checked for purity by various analytical
techniques including 1H NMR, 13C NMR, prep-HPLC, and
analytical HPLC (Figures S21, S22, S23, S24, respectively).

Preparation, prep-HPLC Purification and Character-
ization of the PMβCD-Hydrophilic Linker-Peptide Con-
jugate 10. One of the most widespread specific covalent
coupling reactions is the conjugation of a protein or peptide
bearing a thiol moiety which can react with maleimide reagents.
The cysteine thiol can be efficiently and site-specifically labeled
with maleimides, disulfides, or haloacetyl compounds.26

Maleimide can be coupled to sulfhydryl groups when the pH
of the reaction is between 6.5 and 7.5. The formed thioether
linkage is stable but can be cleaved with reducing agents, such
as TCEP, dithiothreitol (DTT), and β-mercaptoethanol
(βME).
Based on the previously published procedures from our

group,27,28 it was our goal to access the target conjugates by
reacting PMβCD-BCN-Mal 8 with model peptide 9 at suitable
conditions (Scheme 1A). The conjugation of maleimide
attached to hydrophilic linker appended-PMβCD 8 with thiol
cysteine-based model peptide 9 was accomplished in PBS buffer
at pH 7.2 for 4 h at room temperature employing TCEP.HCl as
reducing agent and a small amount of DMF. It is essential to
degas the buffer for 1 h by allowing a flow of nitrogen, since a
cysteine-containing peptide is prone to oxidation. Also, a freshly
prepared stock solution of the odorless tris(2-carboxyethyl)-
phosphine reducing agent (TCEP-HCl) at pH 7 was used for
the reaction. This circumvents the problems of adding
TCEP.HCl in solid form which potentially results in a sharp
drop of pH.
However, as confirmed by LC-MS and ESI-MS analyses, the

conjugate 10 was not produced efficiently due to an impurity
which appeared at a retention time very close to that of the
main conjugate. It is probably from the starting material peptide
9 which is added in excess relative to the maleimide-attached
PMβCD 8 in the final reaction. It was decided to systematically
optimize the reaction conditions by variation of the buffer and
its pH values, reaction time, temperature, and the stoichiometry
of the reactants. Varying the pH in the range of 6−7.8 did not
result in reduction of the amount of impurity in the reaction
product, nor did raising the temperature to 37 °C at pH 7.2, or
adding the maleimide-attached PMβCD 8 in steps.
When we explored the effect of the molar ratio of 9 and 8 on

the reaction, we found that besides the stoichiometry other
factors were also important, viz., the PBS buffer (100 μM, pH
7.2), using a fresh solution (100 μM) of TCEP-HCl, and
incubation for 4 h at room temperature. The best results were
obtained when using 1.3 equiv of the model peptide relative to
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the Mal-appended PMβCD. The presence of the target
conjugate 10 in the product was supported by the observation
of a significant doubly charged peak [M+2H]2+ at 1206.3 in
ESI-MS (Figure S25) and the observation of the [M + H]+ and
[M + Na]+ adducts in MALDI-TOF analysis (Figure S26), and
further confirmed by its 1H NMR spectrum, in which the
absence of maleimide protons at 6.7 ppm indicates that the
addition of thiol peptide has taken place (Figure S27). LC-MS
for the crude product of the conjugation reaction gave a strong
peak at 1206.2 corresponding to the calculated mass of the
target compound 10, but also an unidentified impurity at
1090.6 (20% of strongest peak, Figure 1a). Attempted
separation by gradient prep-HPLC was not successful, but
the final conjugate could be purified by prep-RP-HPLC in
isocratic mode. Notably, the compound was successfully
separated from the impurity by this method as confirmed by
LC-MS analysis before and after purification (Figure 1b, Figure
S28).
Even after separation, it was not possible to establish the

identity of the impurity, as there was not enough material for
NMR analysis and the LC-MS and ESI-MS results were
insufficient to hypothesize a relevant structure. It could not be
correlated to any known structure originating from the
reactants, or to possible side products.
Preparation, RP-HPLC Purification, and Character-

ization of the PMβCD-Hydrophobic Linker-Peptide
Conjugate 13. In a parallel approach we explored cyclo-
dextrin−peptide conjugates with hydrophobic spacers. The
synthesis of maleimide attached to hydrophobic linker
appended PMβCD 12 was carried out identically to that of 8,
except for using the hydrophobic linker DIBAC-Mal 11, which
was used directly as obtained commercially. Intermediate 12
was synthesized and purified by a Biotage chromatographic
system. The mass of 12 was confirmed by MALDI-TOF MS
(Figure S30) and the formation of the triazole ring by 1H NMR
which showed a singlet at approximately 6.7 ppm (Figure S31).
Analysis by LC-MS revealed two very close chromatographic
peaks in a 1:1 ratio which obviously result from regioisomerism
(Figure S29). These regioisomers were not separated and used
as a mixture for the rest of the synthesis, since they exhibit
identical reactivity toward azides. The triazole isomers were
combined for the conjugation with peptide 9 to PMβCD-
hydrophobic linker-peptide 13. An excess (1.3 equiv) of the
model peptide 9 relative to the Mal-appended hydrophobic
linker PMβCD was used under the same conditions that
afforded 10 from 8 and 9. LC-MS analysis of the product of the
reaction of 12 and 9 showed the mass of the target conjugate
13 at 1174.8 [M+2H]+ (Figure 2b) as well as an unidentified
impurity at 1059.2 (Figure 2a), which is comparable to that
obtained for the side product of the reaction of 8 and 9 to give
10, although there were slight differences in the retention times
and the final yields. Likewise, the final target conjugate 13 with
the hydrophobic linker could be obtained in pure form after
isocratic prep-HPLC purification (Figure S32) in a yield of
14%. The final product was further confirmed by the
disappearance of the maleimide protons at 6.7 ppm in the 1H
NMR spectrum (Figure S33). The LC-MS analysis of the final
conjugate before and after prep-HPLC isocratic purification is
shown in Figure 2a and b, respectively.

■ CONCLUSIONS
The synthesis and characterization of the conjugates PMβCD-
BCN-Mal-peptide 10 and PMβCD-DIBAC-Mal-peptide 13

with hydrophilic and hydrophobic linkers have been success-
fully accomplished. We developed a robust and reliable

Figure 1. (a) LC-MS of the conjugate 10 before prep-RP-HPLC
isocratic purification. The main peak at 7.91 min (top trace) represents
the target conjugate as testified by the double- and triple-charged
molecular ions [M+2H]2+ 1206.2 and [M+3H]3+ 803.9, analyzed at
retention time 7.74−8.41 min (middle trace). The shoulder due to the
impurity at 8.34 min corresponds to m/z 1090.6, analyzed at retention
time 8.22−8.41 min (bottom trace). The relative intensities of the
peaks of target and impurity do not necessarily reflect the amounts
formed because of likely differences in the response factors. (b) LC-
MS of the conjugate 10 after prep-HPLC isocratic purification. The
main peak represents the target conjugate at 7.96 min as testified by
the double- and triple-charged molecular ions [M+2H]2+ 1206.2 and
[M+3H]3+ 803.9, analyzed at retention time 7.78−8.41 min.
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synthetic route toward modified cyclodextrins that can be
conjugated to peptides. These novel peptide-β-CD conjugates
can give rise to new developments in the field of cyclodextrin
derivatives, for example, in drug delivery. Remarkably, this is, to

the best of our knowledge, the only synthetic route toward a
combination of an azide-appended cyclodextrin and a peptide
via suitable hydrophilic and hydrophobic linkers. We consider
this novel methodology for the preparation of PMβCD-linker-
peptide derivatives to be a promising valuable research tool for
the development of interesting therapeutics.

■ EXPERIMENTAL PROCEDURES

General Methods. 1H NMR spectra were recorded on a
Varian Inova-400 (400 MHz) spectrometer at 300 K and
chemical shifts are given in parts per million (δ) relative to
tetramethylsilane as an internal reference (δ = 0.00 ppm).
Coupling constants are reported as J-values in Hz. The
following abbreviations are used to designate the multiplicities:
s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.
13C NMR spectra were recorded on a Bruker Avance III 500
MHz NMR and the chemical shifts are internally referenced to
the residuals selected solvent. Mass spectra were confirmed by
ESI-MS (Thermo Finnigan LCQ Advantage Max). Liquid
chromatography electrospray ionization mass spectrometry was
measured on a Shimadzu LCMS-QP8000 (Duisburg, Ger-
many) single quadrupole benchtop mass spectrometer
operating in a positive ionization mode. Infrared (IR) spectra
were recorded on a IR-ATR Bruker TENSOR 27 spectrometer;
only the absorption frequencies (cm−1) of major peaks are
reported. Optical rotations of samples were measured on a
Perkin & Elmer Polarimeter 241 using a 10 cm, 1 mL cell. All
reactions were magnetically stirred and monitored by TLC on
Kieselgel 60 F254 (Merck, Darmstadt, Germany); Spots were
visualized under UV light (254 nm) and were stained with
ninhydrin, 2,4-dinitrophenylhydrazine (DNP), or aqueous
KMnO4 (depending on the reaction), followed by heating on
a hot plate. Rf values were obtained with solvent mixtures
indicated. Unreacted TCEP reagent and degassed PBS buffer
(pH 7.2) were removed by size exclusion chromatography
using a Sephadex G10 column. The model peptide was
synthesized on a semiautomated peptide synthesizer (Labortec
SP 640, Labortec AG) by applying the Fmoc-protocol. Accurate
molecular weights of the model peptide and compounds were
confirmed by ESI-MS technique using a Micromass Platform II
(Altrincham, United Kingdom) single quadrupole benchtop
mass spectrometer operating in a positive ionization mode. The
mass of each compound was measured and the observed
monoisotopic [M + H] + values were correlated with the
calculated [M + H]+ values by use of (ChemBioDraw Ultra 14)
Cambridge software program. Other adducts [M + Na]+ and
[M+K]+ have also been detected and identified. The room
temperature in the reactions is in the range 20−25 °C.
Compounds 8 and 11 were purified by flash column

chromatography on a Biotage Isolera One chromatography
system (silicycle 4g cartridge, size 230−400 mesh 40−63 μm,
Quebec, Canada) using a 15% methanol/dichloromethane
gradient. Analytical HPLC was performed on a Shimadzu LC-
20A Prominence system (Shimadzu, ‘s Hertogenbosch, The
Netherlands) equipped with a C18 ReproSil column, 150 × 3
mm, particle size 3 μm (Screening Devices, Amersfoort, The
Netherlands). Lyophilization was achieved using an ilShin
Freeze-Dryer (ilShin, Ede, The Netherlands).

Compound Characterization. The identity of the
compounds was confirmed and further characterized by TLC,
1H NMR, 13C NMR, LC-MS, Maldi-Tof MS, ESI-MS, IR, and
optical rotation [α]D, see Supporting Information for details.

Figure 2. (a) LC-MS of the conjugate 13 before prep-HPLC isocratic
purification. The main peak represents the target conjugate at 8.13 min
(top trace) with its corresponding formation of double-charged
molecular ion [M+2H]2+ 1174.8, analyzed at retention time 7.75−8.17
min (middle trace), and the minor peak the overlapping impurity at
8.55 min with its corresponding mass formation 1059.2, analyzed at
retention time 8.45−8.71 min (bottom trace). The relative intensities
of the peaks of target and impurity do not necessarily reflect the
amounts formed because of likely differences in the response factors.
(b) LC-MS of the conjugate 13 after prep-HPLC isocratic purification.
The main peak represents the target conjugate at 8.01 min with its
corresponding formation of double-charged molecular ion [M+2H]2+

1174.8, analyzed at retention time 7.86−8.40 min.
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Reverse-Phase HPLC Characterization of the Final
Conjugates 10 and 13. Both final conjugates were purified
on a Phenomenex Gemini-NX 3u C18 110A reversed-phase
column (150 × 21.2 mm) with HPLC system using an isocratic
elution at a constant flow rate of 10 mL/min at 30 °C. The
analytical procedure for both conjugates was as follows: in the
isocratic phase, the acetonitrile concentration was kept at 40%
for 25 min, followed by a gradient from 40% to 100% over 3
min. Conjugates 10 and 13 elute at 15.5 and 20.4 min,
respectively. Buffer A: 0.1% (v/v) TFA in water; Buffer B:
CH3CN containing 0.1% (v/v) TFA. All the samples were
filtered through a 0.22-μm syringe filter before injection.
LC-MS Characterization and Analytical HPLC Analysis.

LS-MS analysis for all the compounds was performed on a
Thermo Finnigan LCQ-Fleet ESI-ion trap (Thermofischer,
Breda, The Netherlands) equipped with a Phenomenex
Gemini-NX C18 column, 50 × 2.0 mm, particle size 3 μM
(Phenomenex, Utrecht, The Netherlands). An acetonitrile/
water gradient containing 0.1% formic acid was used for elution
(5−100%, 1−20 min, flow 0.2 mL min−1).
Analysis of Purified Compounds and the Model

Peptide by MALDI-TOF Mass Spectroscopy. The purified
compounds and lyophilized fractions of model peptide were
analyzed by matrix assisted laser desorption/ionization time-of-
flight mass spectrometer (Bruker Biflex III Maldi-Tof MS,
Germany). 10 μL of the required compound was mixed with 10
μL of the supernatant (1:1) Maldi matrix solution (α-cyano-4-
hydroxycinnamic acid; 5.0 mg weighed in an Eppendorf vial
and dissolved with acetonitrile/water 125.0 μL:125.0 μL (v/v);
α-CHCA). From this mixture, 5 μL was spotted onto a stainless
steel Maldi target plate (MTP target frame III of Bruker,
Germany). Sample spots were left to dry for 30 min at ambient
temperature prior to analysis by the technique. The samples
were analyzed in positive-ion mode using the reflection method
in the molecular weight range 400−4000. All the pure targeted
compounds and the model peptide revealed the corresponding
peaks.
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