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Chemokines are small chemotactic cytokines that are involved in the regulation of 
immune cell migration. Multiple functional properties of chemokines, such as pro- 
inflammation, immune regulation, and promotion of cell growth, angiogenesis, and 
apoptosis, have been identified in many pathological and physiological contexts. Human 
immunodeficiency virus (HIV) infection is characterized by persistent inflammation and 
immune activation during both acute and chronic phases, and the “cytokine storm” is 
one of the hallmarks of HIV infection. Along with immune activation after HIV infection, 
an extensive range of chemokines and other cytokines are elevated, thereby generating 
the so-called “cytokine storm.” In this review, the effects of the upregulated chemokines 
and chemokine receptors on the processes of HIV infection are discussed. The objective 
of this review was to focus on the main chemokines and chemokine receptors that have 
been found to be associated with HIV infection and latency. Elevated chemokines and 
chemokine receptors have been shown to play important roles in the HIV life cycle, 
disease progression, and HIV reservoir establishment. Thus, targeting these chemokines 
and receptors and the other proteins of related signaling pathways might provide novel 
therapeutic strategies, and the evidence indicates a promising future regarding the 
development of a functional cure for HIV.
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iNTRODUCTiON

Chemokines are low-molecular-weight proteins that belong to the cytokine superfamily and induce 
immune cell trafficking by binding to their corresponding receptors (1). Currently, chemokines are 
classified into four major subfamilies: CXC, CC, XC, and CX3C, and 17 CXC chemokines, 28 CC 
chemokines, 2 XC chemokines, 1 CX3C chemokine, and approximately 20 chemokine receptors 
have been found (2–5). Most chemokines exert their biological functions by binding to chemokine 

Abbreviations: HIV, human immunodeficiency virus; AIDS, acquired immunodeficiency syndrome; ART, antiretroviral 
therapy; GPCR, G protein-coupled receptor; NK, natural killer; SIV, simian immunodeficiency virus; DC, dendritic cell; 
APOBEC3A and APOBEC3G, apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3A and 3G; hBD2, human 
β-defensin 2; MDM, monocyte-derived macrophage; PBMC, peripheral blood mononuclear cell; ERM, ezrin–radixin–moesin; 
F-actin, filamentous actin.
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receptors, which are G protein-coupled receptors (GPCRs) with 
seven transmembrane domains, to promote cell survival and 
proliferation and act as guides for cell homing and migration (6). 
In addition to their most highly recognized roles in cell migra-
tion, these small chemoattractant molecules have multiple other 
functional properties (7). Chemokine expression increases when 
there is tissue damage, and most chemokines are recognized 
as pro-inflammatory factors; they have been shown to exert 
regulatory functions in a wide range of pathological and physi-
ological contexts, such as hypersensitivity reactions, infection, 
angiogenesis, inflammation, tumor growth, and hematopoietic 
development (3, 8, 9). Given their critical roles in inflammation, 
many chemokines and chemokine receptors have been identified 
as potential therapeutic targets in a wide range of inflammatory 
diseases (10).

Human immunodeficiency virus (HIV) infection severely 
impacts the host immune system in many ways, such as 
causing the specific loss of CD4+ T  cells, elevated immune 
activation and inflammation, and dysfunction of multiple 
immunocytes (11). During chronic HIV infection, impair-
ment of the integrity of the gastrointestinal mucosa results 
in the microbial translocation, which is a possible cause of 
chronic systemic immune activation (12, 13). Accompanied 
by aberrant activation of the immune system, pro-inflamma-
tory cytokines (including chemokines) are upregulated and 
are associated with HIV disease progression and mortality 
(14, 15).

What is more, during the early phase of infection, HIV may 
induce increased cytokine secretion (including chemokine 
secretion) via the innate immune response, promote immune 
activation and lead to a “cytokine storm” (16, 17). Ndhlovu 
et  al. showed that immune activation occurs within 1–3  days 
of hyperacute HIV infection, and the “cytokine storm” can 
be observed before the peak viremia (16, 18). Multiple kinds 
of cytokines (including chemokines) have been shown to be 
elevated in the “cytokine storm,” such as interleukin (IL)-15, 
interferon (INF)-α, CXCL10 (known as INF γ-induced protein 
10, IP-10), IL-8, and fractalkine (16, 19, 20). For instance, the 
chemokine CXCL10 is significantly elevated in 100% of HIV-
infected individuals during early HIV infection and impacts 
on the subsequent disease progression (16, 21–23). Also, IL-8 
(CXCL8) is elevated in acute HIV infection, but more slowly than 
CXCL10 (16), and it has been reported that high IL-8 concentra-
tions in the genital tract are correlated with a low CD4+ T cell 
count during acute HIV infection (24). Irrespective of whether 
the infection is in the acute or chronic phase, the levels of many 
chemokines are upregulated, and the expression of chemokine 
receptors is altered. What is the effect of these changes on viral 
replication, CD4+ T cells depletion, immune function, disease 
progression, and HIV reservoir establishment? All these issues 
need to be reviewed.

The goal of this review was to summarize current knowledge 
from recent studies that have identified novel roles of chemokines 
during HIV infection and latency and provide an insight into 
the signaling mechanisms of chemokines and their receptors, 
highlighting potential therapeutic targets, and helping to frame 
the current and future immune therapy approaches.

CHeMOKiNeS AND CHeMOKiNe 
ReCePTORS ReLATeD TO Hiv 
RePLiCATiON AND DiSeASe 
PROGReSSiON

Recently, researchers have reported that chemokines and chem-
okine receptors play critical roles in viral infection. Alterations 
of chemokine concentrations and chemokine receptor expres sion 
contribute to persistent immune activation, which further impacts 
on the life cycle of HIV and subsequent disease progression.  
Here, we summarize the chemokines and chemo kine receptors 
associated with HIV replication and disease progression.

CXCR4 and CCR5
Both CXCR4 and CCR5 are GPCRs. CXCR4 is specifically 
activated by chemokine CXCL12 (stromal cell-derived factor 1) 
and participates in physiological activities such as chemotaxis, 
cell proliferation and survival, and intracellular calcium flux 
(25,  26). Natural ligands for CCR5 include CCL3 (MIP-1α), 
CCL4 (MIP-1β), CCL5 (RANTES), CCL8 (MCP-2), CCL11 
(eotaxin), CCL14 (HCC1), and CCL16 (HCC4) (27, 28). CCR5 
interacts with its ligands to regulate chemotaxis and cell activa-
tion (27). The HIV envelope glycoprotein (gp120) binds to the 
target cell by interacting with CD4 molecules with high affinity, 
but it is not sufficient for HIV entry. In the post-binding stage, 
CXCR4 or CCR5, acting as a co-receptor with CD4, is necessary 
for the fusion of the viral envelope with the cell membrane (29, 
30). CXCL12 and CCL5, which are ligands for CXCR4 and CCR5, 
respectively, can competitively inhibit HIV infection (31, 32). 
CXCR4 was the first reported HIV co-receptor; it was identified 
in 1996, the same year that CCR5 was identified as another co-
receptor for HIV entry. The identification of the two co-receptors 
dramatically accelerated the exploration of HIV physiology and 
pathogenesis and laid the foundations for new therapeutic and 
preventive strategies (33).

CCR5 is the predominant receptor for the entry of CCR5-
tropic viruses into cells, and lack of the CCR5 receptor on the 
cell surface has been reported to provide natural resistance 
against HIV transmission, which led to the functional cure of 
the “Berlin patient” (34–36). The “Berlin patient” went into 
remission, with no detectable viral load, due to the transplanta-
tion of bone marrow from a CCR5 delta32 (Δ32) homozygous 
donor whose CCR5 gene had a 32-bp deletion. This led to the 
production of a non-functional gene product, so CCR5 recep-
tors could not be expressed on the cell surface (36). The case 
of the “Berlin patient” provides evidence that targeting the 
co-receptor CCR5 to eliminate HIV is possible (37), and so 
this approach is being recognized as a new treatment strategy. 
Accordingly, the CCR5 receptor antagonists such as maraviroc 
and cenicriviroc have emerged as new entry inhibitors (38, 39), 
and CCR5-targeting drugs have exhibited excellent potency and 
low toxicity in clinical trials (40). In spite of the fact that strictly 
CCR5-tropic viruses are present among nearly all founder and 
transmitter virus populations, the viruses in approximately 
50% of HIV-1 subtype B patients will spontaneously develop 
into CXCR4-tropic viruses as the disease progresses, and the 
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presence of CXCR4-tropic viruses is associated with worse 
clinical prognosis (41).

Accordingly, as an HIV infection progresses, the viral tropism 
usually changes to include more CXCR4 tropism, so the CXCR4 
receptor gradually plays increasingly vital roles, especially in 
the entry process. As a consequence, CXCR4 provides an alter-
native approach for combating HIV (38). At present, several 
kinds of CXCR4 antagonists have been reported. One type is 
non-peptide small-molecule antagonists such as AMD3100, 
AMD3465, and AMD070. AMD070 has been assessed in a phase 
II trial due to its better oral bioavailability, safety, and the fact 
that it is well tolerated. Another kind of CXCR4 antagonist is 
peptide analogs, such as isothioureas, KRH, indole, piperidine, 
and purine CXCR4 antagonists (42–46). However, there is still 
a long way to go before CXCR4 antagonists are used in clinical 
treatment.

CXCL10 and CXCR3
C–X–C motif chemokine 10 (CXCL10) is also known as IP-10 
(47, 48). The biological function of CXCL10 is to induce 
chemotaxis, cell growth, angiogenesis, and apoptosis by bind-
ing to its surface chemokine receptor CXCR3, and CXCL10 
is recognized as an inflammatory chemokine (49). Moreover, 
CXCL10 plays an important role in various pathological states. 
CXCL10 had been reported to act as a marker for the diagnosis 
of tuberculosis (50, 51) and hepatitis B (52, 53) and to promote 
tumor progression, such as in pancreatic cancer progression 
(54). Recently, studies have shown that CXCL10 also plays a 
role in HIV infection. Jiao et  al. revealed that CXCL10 was 
the only cytokine, among 26 cytokines, that was significantly 
elevated during the early stages of HIV infection, and it was 
positively associated with disease progression (21). It has been 
demonstrated that CXCL10 levels were significantly increased 
in untreated HIV-infected patients and could not be reduced 
to normal levels by antiretroviral therapy (ART); moreover, 
persistently high levels of CXCL10 are associated with immu-
nological treatment failure following ART in HIV-infected 
patients (55, 56). In HIV-exposed seronegative sex workers, 
significantly lower expression of CXCL10 has been associated 
with strong protection of the mucosal immune system against 
HIV infection (57). Also, high systemic CXCL10 levels before 
infection were revealed to be associated with rapid HIV pro-
gression, and the level of systemic CXCL10 during primary 
HIV infection is positively associated with HIV DNA levels 
and viral load and negatively associated with CD4+ T cell count 
(22, 56).

CXCR3 is a GPCR with seven transmembrane-spanning 
domains, the ligands of which include CXLCL9 (MIG), CXCL10 
(IP-10), and CXCL11 (I-TAC). Foley et  al. demonstrated that 
CCR5+CD4+ T  cells express CXCR3 receptors, which could 
be recruited by CXCL10 and CXCL11 to local HIV-infected 
lymph nodes (23). This recruitment may enhance the retention 
of T cells in HIV-infected lymphoid organs, which leads to sus-
tained disruption of the peripheral T cell response and elevated 
T cell susceptibility to HIV due to prolonged exposure to high 
viral concentrations, contributing to the immunopathology of 
acquired immunodeficiency syndrome (23).

CCL19/CCL21 and CCR7
The chemokines CCL19 and CCL21 are abundant in lymphoid 
organs, and they regulate the homing of naïve and central memory 
T cells to lymph nodes by binding to the receptor CCR7 (58, 59). 
However, they activate different signal transduction pathways. 
CCL21 mediates the majority of migratory events (through 
CCR7), whereas CCL19 seems to play a supplementary role in 
migration and provides additional signals such as promoting cell 
survival (60). Despite the fact that CCL19 and CCL21 are mainly 
produced in secondary lymphoid tissue, CCL19 and CCL21 
production in non-lymphoid organs has been observed during 
inflammatory and infectious diseases (61, 62). In HIV-infected 
individuals, elevation of plasma CCL19 has been demonstrated 
during acute HIV infection (0–3 months), chronic HIV infection 
(24 months), and after ART use for 9–12 months (63). Damås 
et al. reported that serum levels of CCL19 and CCL21 positively 
correlate with plasma HIV RNA levels and negatively correlate 
with CD4 cell count (59). They also observed that CCL19 and 
CCL21 were sustained at high levels among patients who 
were virologic non-responders to ART. Moreover, the levels of 
CCL19 and CCL21 were lower in patients with no HIV disease 
progression compared with those with disease progression (59). 
Therefore, dysregulation of CCL19 and CCL21 levels during HIV 
infection might profoundly influence HIV disease progression 
and treatment.

CCR7, the receptor for CCL19 and CCL21, is expressed at high 
levels on central memory and naïve T cells, and it plays a vital 
role in the homing of T cells to the peripheral lymphoid organs. 
CCR7 is one of the most prominent chemokine receptors in the 
adaptive immune system (58). Hayasaka et al. demonstrated that 
gp120-induced CXCR4 signaling can upregulate CCR7 function 
to promote CCR7-dependent CD4+ T cell migration, possibly by 
promoting CCR7 homo- and CXCR4/CCR7 hetero-oligomers 
formation on the surface of CD4+ T cells (64).

However, most other researchers hold that CCR7 is down-
regulated in HIV infection. Ramirez et  al. reported that HIV 
viral protein U can downregulate CCR7 on CD4+ T cells, which 
impairs their migration toward CCL19 (65). Similarly, Perez-
Patrigeon et al. demonstrated that, in HIV-infected subjects, the 
proportion of CCR7hi T cell subsets is decreased, and, in viremic 
patients, CCR7-dependent chemotactic responses are signifi-
cantly decreased (66). Impairment of CCR7-induced migration 
might indirectly promote HIV infection by prolonging the 
duration of the CD4+ T cell presence in peripheral tissue, such as 
mucosal tissue, which may have a high virus titer and productively 
infected cells (66). On the other hand, CCR7 downregulation also 
impairs cell migration to the peripheral blood, thereby disrupting 
peripheral immune function.

C–C Motif Chemokine Ligand 20 (CCL20) 
and CCR6
C–C motif chemokine ligand 20, which is also known as liver 
and activation-regulated chemokine and macrophage inflam-
matory protein-3α, has a strong chemotactic effect on immature 
dendritic cells (DCs) and lymphocytes, and weakly attracts neu-
trophils (67, 68). Lee et al. and Baba et al. suggested that CCL20 
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was upregulated during inflammation and elicited its effects on its 
target cells by binding to and activating the chemokine receptor 
CCR6 (69, 70). During HIV infection, CCL20 has been shown 
to remain elevated throughout the course of the disease; the 
median CCL20 serum level was approximately 3.3-fold higher in 
HIV-infected individuals than in uninfected individuals and was 
negatively correlated with CD4+ T cell count (63, 71).

Further study showed that CCL20 is constitutively produced 
by the primary epithelial cells of female genital organs, and it is 
upregulated when female genital organs are exposed to healthy 
seminal plasma, which acts as an inflammatory factor (72). 
Elevated CCL20 further enhances the recruitment of Langerhans 
cell precursors, which are permissive to HIV infection (73). In 
addition, saliva is a complex cocktail that is composed of mul-
tiple physiologic molecules, including chemokines (74, 75), and 
CCL20 in saliva might also contribute to sexual transmission of 
HIV during oral sex (76). These findings indicate that CCL20 
might accelerate heterosexual transmission of HIV.

During the acute and posttreatment phases of HIV infec-
tion, the significantly increased plasma CCL20 may be a reason 
for the low DC level in circulating blood due to recruitment 
of myeloid dendritic cells to peripheral sites to fight the virus 
(63). In a simian immunodeficiency virus (SIV)-macaque 
model, CCL20 was found to be released from epithelial cells 
after vaginal exposure to SIV. CCL20 might recruit CCR6+ plas-
mocytoid dendritic cells (pDCs) to the region just beneath the 
cervical epithelium and then produce cytokines, such as IFN-α, 
CCL3, and CCL4. These molecules are capable of recruiting 
CCR5+CD4+ T cells, which are highly susceptible to SIV infec-
tion, to the local area (77, 78). These data suggest that CCL20 
can promote SIV infection indirectly. However, other research-
ers hold opposite opinions. Ghosh et  al. reported that when 
primary uterine and fallopian tube tissues were treated with 
CCL20 and HIV at the same time, HIV infection was inhibited, 
but these results were not observed when CCL20 was added 
before or after infection (79). Their data indicate that CCL20 
has an endogenous anti-HIV effect on the female reproductive 
tract. However, they did not reveal the exact mechanism of 
this phenomenon. Similarly, Shang et al. demonstrated that in 
the genital tract epithelia of non-human primates, the pDCs 
recruited by CCL20 can release IFN-α and CCL4, which might 
inhibit viral entry but fail to control the infection (77). Although 
the effect of CCL20 on HIV infection is still controversial, most 
studies support the theory that CCL20 promotes HIV infection 
and disease progression.

CCR6 (CD196), a receptor for CCL20, is mainly expressed on 
memory T  cells, DCs, some B  cell subsets, natural killer (NK) 
cells, and γδ T cells (80–82). In addition to mediating chemotaxis 
involving CCR6-expressing cells, it may act as an important 
target of HIV. CCR6+ T  cells, including memory, TH17 and 
α4β7+ T cells, have been shown to be highly susceptible to HIV 
infection (83). Recently, CCR6 has been identified as a weaker 
independent co-receptor for the HIV entry process, but this has 
only been confirmed in the HP-2 cell line in an in vitro study (84), 
and no evidence of CCR6 acting as an HIV co-receptor has been 
demonstrated in vivo yet. Human β-defensin 2 (hBD2) is also a 
ligand of CCR6, and hBD2 binding to CCR6 has been shown to 

confer direct anti-HIV activity (85). Moreover, hBD2-induced 
CCR6 activation has also been found to directly inhibit HIV 
infection during the postentry phase, through apolipoprotein 
B mRNA-editing enzyme-catalytic polypeptide-like 3G, which 
causes interference with HIV reverse transcription (83). These 
observations indicate that selectively targeting CCR6+ cells may 
serve as a novel prevention and treatment strategy in the future.

C–C Motif Chemokine Ligand 2 (CCL2)  
and CCR2
C–C motif chemokine ligand 2, which is also referred to as mono-
cyte chemoattractant protein 1, binds to its receptor, CCR2, and 
plays multiple physiological roles. CCL2 is produced by several 
types of cells, and monocytes/macrophages are the major source 
among leukocytes (86, 87). CCL2 is a chemoattractant for CD4+ 
T cells, monocytes/macrophages, and NK cells, recruiting them 
to the sites of infection and inflammation. At the same time, 
CCL2 is an important factor during monocyte differentiation 
to macrophages (88). Macrophages play an important role in 
the pathogenesis of HIV-1 infection (89), as indicated by the 
fact that HIV has been shown to be able to replicate in human 
macrophages in vitro (90, 91).

As CCL2 is an inflammatory chemokine, the CCL2/CCR2 
axis has been suggested to be involved in HIV-associated neu-
rologic disorders (92, 93). Several researchers have reported 
an upregulation of plasma CCL2 and its transcript levels in 
HIV infection (94–96). In addition, it has been observed 
that CCL2 is elevated during HIV infection, and it promotes 
viral replication in infected macrophages (97, 98). Moreover, 
neutralizing CCL2 using antibodies restricts HIV replication in 
macrophages, suggesting that CCL2 is involved in a postentry 
process of the viral life cycle, rather than an entry process. 
Interestingly, researchers have further illuminated that CCL2 
is negatively associated with apolipoprotein B mRNA-editing 
enzyme-catalytic polypeptide-like 3A expression, which helps 
to unravel the possible mechanism of CCL2’s effect on HIV 
infection (98). In the context of HIV infection, in addition 
to its role in cell migration and inflammation, CCL2 directly 
promotes viral replication in T lymphocytes, peripheral blood 
mononuclear cells, and macrophages (98–100). Campbell and 
Spector identified that when resting CD4+ T cells were exposed 
to CCL2, upregulation of CXCR4 expression occurred, and the 
elevated CXCR4 expression increased infection by CXCR4-
tropic HIV (100). These results suggest that HIV infection 
upregulates CCL2 gene expression and secretion, and CCL2 
may in turn represent an important factor that enhances HIV 
spread and infection.

CHeMOKiNeS AND CHeMOKiNe 
ReCePTORS PLAY CRiTiCAL ROLeS  
iN Hiv LATeNCY

Although the control of HIV replication by ART allows the 
immune system to be partially restored and delays disease pro-
gression, curing HIV infection still remains unachievable with 
the currently available ART drugs. HIV latency is the major 
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obstacle to achieving a “sterilizing” cure. It is known that resting 
memory CD4+ T  cells, monocytes, and some tissue cells can 
act as “shelter” for HIV. Among them, resting memory CD4+ 
T cells are the most important reservoir, because of their resting, 
homeostatic proliferation and long-lived characteristics. The 
infection level in resting memory CD4+ T cells, involving HIV 
entry and integration, might determine the size of the viral res-
ervoir. Once an HIV reservoir has been established, it is difficult 
to eliminate using current treatment strategies. As mentioned 
earlier, chemokines and chemokine receptors play important 
roles in HIV replication and disease progression, and next we 
will discuss their effects on the HIV reservoir and new ways to 
clear the HIV reservoir.

CCL19 and CCL21
CCL19 and CCL21 are constitutively expressed chemokines in 
lymphoid organs, and they have been demonstrated to be associ-
ated with HIV infection and disease progression (as mentioned 
earlier). As is well known, resting memory CD4+ T cells are the 
major constituent cells involved in HIV reservoirs, and they 
mainly reside in and travel between secondary lymphoid tis-
sues, in which resting memory CD4+ T cells are more efficiently 
infected by HIV than those in the blood (101). Furthermore, 
CCR7-expressing resting CD4+ T cells are the main subset latently 
infected with HIV (102, 103).

Therefore, the levels of CCL19 or CCL21 (ligands for CCR7) 
in both peripheral and secondary lymphoid tissues might impact 
on the interaction between HIV and resting memory CD4+ 
T  cells. Damås et  al. found that HIV-infected patients with 
advanced immunodeficiency had higher serum CCL19 levels, 
and elevated CCL19 levels were associated with higher mortality 
(104). Moreover, Saleh et al. and Cameron et al. suggested that 
CCL19 and CCL21 contribute greatly to HIV latency in resting 
CD4+ T cells by promoting HIV entry and integration (101, 105). 
Similarly, Anderson et al. revealed that CCL19 enhanced both T- 
and M-tropic viral latency establishment in resting CD4+ T cells, 
and the M-tropic virus was more efficient (106). Regarding 
the related signaling mechanism, Saleh et al. suggested nuclear 
factor-κB signaling was involved in HIV reservoir establishment 
(107). These studies have provided novel insights into the effect 
of chemokines and receptors on HIV latency.

CXCL12 and CXCR4
CXCL12 is the natural ligand of CXCR4, and CXCR4 is a co-
receptor for T-tropic HIV infection. The physiological function of 
CXCL12 is to bind to CXCR4, driving progenitor cells to migrate 
to the bone marrow, and it can also cause cells to migrate to 
peripheral tissues during certain pathological conditions (108). 
To some degree, activation of the signaling pathway mediated 
by gp120/CXCR4 mimics the signal transduction mediated by 
CXCL12/CXCR4 (109). Both CXCL12 and gp120 can combine 
with CXCR4 to induce signaling in memory CD4+ T cells, and 
further promote the activation of cortical actin. As a result, there 
is a competition between HIV gp120 and CXCL12 for the CXCR4 
receptor (32, 110). It has been proved that gp120 causes impairment 
of the T cell response to CXCL12-induced chemotaxis, whereas 

CXCL12 inhibits infection by CXCR4-tropic virus (32, 111).  
In this way, CXCL12 might inhibit CXCR4-tropic infection of 
memory CD4+ T cells and further inhibit the establishment of 
HIV latency.

According to these findings, CXCL12 and CXCR4 are 
regarded as targets for new methods of inhibiting CXCR4-tropic 
HIV infection of resting CD4+ T cells. Guo et  al. found that a 
tyrosine kinase inhibitor, genistein, could efficiently inhibit 
HIV infection of resting CD4+ T cells, while being harmless to 
cells at experimental concentrations (110, 112). HIV infection 
of resting CD4+ T  cells is also inhibited by sunitinib, another 
tyrosine kinase inhibitor, which is used as an antineoplastic drug 
in clinical settings (110). By inhibiting HIV infection of resting 
CD4+ T cells, these drugs may have the ability to reduce the HIV 
reservoir size at the beginning of the infection. These findings 
suggest that additional related methods could be developed to 
cure HIV.

CXCR3
Given the high systematic CXCL10 levels during the early 
phase of HIV infection, and the fact that CXCR3 expression 
might indirectly promote HIV infection (as mentioned earlier), 
the relationship between CXCR3+ cells and the HIV reservoir 
needs further exploration. Khoury et al. demonstrated that the 
frequency of cells harboring integrated HIV DNA was positively 
associated with CXCR3+ expression on memory CD4+ T  cells, 
irrespective of whether these cells were CCR6 positive or negative 
(113). Meanwhile, a subset of CD4+ T cells co-expressing CXCR3 
and CCR6 become preferentially enriched for HIV DNA in HIV-
infected ART-treated individuals (113). Similarly, Gosselin et al. 
identified CXCR3+CCR6+ T cells to be highly permissive to HIV 
replication (114). In conclusion, CXCR3 might act as a marker 
of the HIV reservoir and may be useful as a target for reservoir 
elimination.

POSSiBLe MeCHANiSMS OF 
CHeMOKiNe-ReLATeD ACTiN 
ACTivATiON iN THe PROMOTiON OF  
Hiv iNFeCTiON AND eSTABLiSHMeNT  
OF LATeNCY

The effects of chemokines and their receptors on HIV replication 
and latency have been demonstrated, but studies of the related 
mechanisms are limited. During hyperacute HIV infection, pro-
inflammatory cytokines (including chemokines) are upregulated 
before the peak viremia, and concurrently, a proviral reservoir 
is quickly established within days of the acute HIV infection 
(115, 116). Chemokines interacting with their related receptors 
induce actin activation, which can promote HIV entry and 
integration in resting CD4+ T  cells (105, 117). The activation 
state of actin is regulated by many factors, including two signal-
ing pathways discussed here. These pathways might be valuable 
targets for actin regulation and combating HIV infection. The 
possible mechanisms of chemokine-induced actin activation in 
the promotion of HIV infection and establishment of latency are 
illustrated in Figure 1.
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FiGURe 1 | Possible mechanisms and signaling pathways of chemokines, chemokine receptors, and other proteins affecting the modulation of actin during human 
immunodeficiency virus (HIV) infection. HIV gp120 binding to the CXCR4 or CCR5 co-receptor, thereby mimicking the CXCL12/CXCR4 interaction, induces 
actin-related signaling. In addition, CXCL10, CCL19, CCL21, C–C motif chemokine ligand 20 (CCL20), and C–C motif chemokine ligand 2 (CCL2), which are 
elevated during HIV infection, bind to their receptors and thereby activate actin-related signaling (56, 69, 100, 105). Moesin (118, 119), filamin-A (120), and gelsolin 
(121) also promote actin-related signaling pathways. Two major actin-related signaling pathways, such as LIMK1–cofilin (122) and WAVE2–Arp2/3 (123), induce 
polymerization and depolymerization of actin, further leading to rearrangement of the cytoskeleton, and thus benefit HIV fusion, entry, nuclear integration, release, 
and, ultimately, transmission. By contrast, Slit2N binding to Robo1 (124) could inhibit the two major actin-related signaling pathways. R10015 (125), CK548 (126), 
Abl kinase inhibitor (127), genistein (110, 112), and sunitinib (110) can also inhibit actin-related signaling.
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Actin Plays Crucial Roles in Hiv infection 
and establishment of Latency
As a major intracellular component, actin has functions related 
to cell motility, cell signaling, and maintenance of cell junctions 
and cell shape. Moreover, the relatively static filamentous actin 
(F-actin) forms dense network structures, acting as a physiologi-
cal barrier to pathogens (117). For this reason, it seems that it 
would not be easy for pathogens to transfer from the cell surface 
to the nucleus after infection. Likewise, cortical actin is the first 
barrier that HIV encounters during the entry and integration 
processes. The barrier in resting memory CD4+ T cells is much 
stronger than that in active cells, which have high levels of actin 
depolymerization (117).

To overcome this barrier, HIV gp120, imitating the chemokine 
CXCL12, binds to the co-receptor CXCR4 or CCR5 on resting 
memory CD4+ T cells, which leads to the activation of actin and 
allows the virus to break through the barrier, promoting viral 
entry, early DNA synthesis, and nuclear migration (122, 128). It 
has been found that signal transduction involving the chemokine 
co-receptor CXCR4, but not CD4, is required for HIV latent 
infection of resting T  cells (117). Regarding CXCR4-tropic 
HIV, CXCR4 has been reported to be an absolute requirement 
for infection of resting CD4+ T cells purified from HIV-positive 

patients’ blood (117). Without the interaction of CXCR4 and 
gp120, actin could not be activated to enhance the HIV infection, 
and therefore, the activation of actin is crucial for the establish-
ment of the HIV infection.

Although HIV gp120 could interact with its co-receptors 
(CXCR4 or CCR5) to depolymerize/polymerize actin, we should 
not ignore the fact that chemokines binding to their receptors 
also induce signaling that causes actin depolymerization/polym-
erization. Therefore, some chemokines might also contribute 
to the promotion of HIV infection, transmission, and reservoir 
establishment. As reported by Cameron et  al., CCL19 and 
CCL21 modulate HIV entry and integration via their effect on 
cytoskeletal rearrangement and cortical actin activation; when 
actin depolymerization was inhibited, decreased HIV DNA 
integration in CCL19-treated resting CD4+ T cells was observed 
(105). Besides these two chemokines, it is speculated that other 
chemokines might also active actin after binding to their recep-
tors and enhance the infection efficiently.

effect of Signaling Pathways  
on Actin Regulation
To date, two signaling pathways have been reported to be associ-
ated with actin activation: the LIMK1–cofilin pathway (122) and 
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the WAVE2–Arp2/3 pathway (123). In the LIMK1–cofilin signal-
ing pathway, cofilin and LIMK1 are the two major factors that 
regulate actin. Cofilin is an actin-binding protein; it is also known 
as the cortical actin-depolymerizing factor, as it depolymerizes 
actin filaments (129). In resting CD4+ T cells, the primary form of 
cofilin is phosphorylated cofilin, which is inactive. However, once 
HIV gp120 binds to a chemokine receptor on the resting CD4+ 
T cells, cofilin is dephosphorylated and becomes active within a 
few minutes, and it subsequently induces actin depolymerization 
(117, 130). The initiation of this signaling pathway ensures that 
HIV accomplishes its life cycle, including virus fusion, entry, 
reverse transcription, integration, and subsequent transcription. 
It has been demonstrated that when resting CD4+ T cells were 
treated with CCL19, cofilin phosphorylation and corresponding 
actin dynamics were observed within minutes, which further pro-
moted HIV DNA integration (105). LIM domain kinase (LIMK) 
has been reported to be a kinase that phosphorylates and thereby 
inactivates cofilin (129). In recent years, LIMK was reported to 
be involved in the process of HIV infection, because cofilin is the 
only known substrate for LIMK, and LIMK1 was demonstrated to 
be a direct modulator of actin polymerization (131). These results 
drew much attention from researchers. Vorster et al. corroborated 
that LIMK1 is involved in the early stages of HIV infection, as they 
observed that within 1–3 min after HIV gp120 binding to CXCR4, 
rapid LIMK activation in resting CD4+ T cells occurred (132).

In addition to the LIMK1-cofilin signaling pathway, the 
WAVE2–Arp2/3 signaling pathway also regulates actin activ-
ity during HIV infection (126). Rac belongs to the Rho family, 
and it is particularly important in the regulation of HIV fusion. 
Arp2/3 is a complex downstream of Rac that polymerizes actin 
(133, 134). The major role of the Arp2/3 complex is to regulate 
actin branching and nucleation, and which is directly activated by 
WAVE2 (135). The WAVE2–Arp2/3 signaling pathway is involved 
in the early steps of HIV infection (126). Harmon et al. proved 
that HIV Env-mediated fusion and entry were WAVE2–Arp2/3-
signaling dependent (136). In brief, HIV gp120 binds to CD4 and 
a co-receptor to active GTPases in the Rho family, which further 
affects the actin cytoskeleton and promotes many processes of 
HIV infection (137). The cortical actin activation modulated by 
the two signaling pathways is important event in the initiation of 
HIV infection.

In line with the activation of actin induced by the two signal-
ing pathways mentioned earlier, several inhibitors of the proteins 
involved in the pathways have been demonstrated to reduce HIV 
infection, such as Slit2N (124), R10015 (125), CK548 (126), and 
an Abl kinase inhibitor (127). Slit2, a ~200 kDa secreted glyco-
protein, can regulate immune functions and inhibit the migra-
tion of various immunocytes induced by chemotactic signals 
(138, 139). Its N-terminal fragment (approximately 120  kDa), 
termed Slit2N, can bind to Robo1 to inhibit gp120/co-receptor-
induced cytoskeletal rearrangements associated with LIMK- and 
cofilin-regulated actin polymerization in activated and resting 
CD4+ T cells (124). Moreover, R10015, a small-molecule LIMK 
inhibitor, can inhibit viral DNA synthesis, nuclear migration, 
and virion release (125); CK548 can inhibit the Arp2/3 complex 
and decrease the branching of actin filaments (126, 140); and Abl 
kinase inhibitor can inactive WAVE2 to inhibit HIV entry (127). 

These inhibitors should be further studied with regard to their 
potential clinical applications.

effect of Other Molecules  
on Actin-Related Signaling Pathways
Proteins in the ezrin–radixin–moesin (ERM) family have been 
widely studied as regulators of cancer progression-related signal-
ing that are involved in cell adhesion, migration, and polarity 
(141). ERM proteins appear to act as cross-linkers between the 
plasma membrane and actin (142). Moesin, a member of the 
ERM family, is not only correlated with cancer progression, but 
also plays a key role in HIV infection (143). During the early steps 
of HIV infection, phosphorylated (activated) moesin induces 
actin filaments to attach to the plasma membrane, which is neces-
sary for CD4 and co-receptor CXCR4 clustering and interaction 
(144). Moesin facilitates HIV adhesion and entry during the 
very early steps of HIV infection. Once gp120 binds to CD4, 
moesin-induced actin redistribution and rearrangement at the 
plasma membrane leads to CD4 and CXCR4 interaction and co-
localization, which lay the foundation for subsequent fusion and 
entry of the HIV virus (118, 119). In addition, moesin also acts 
as a nucleation factor for F-actin polymerization (144). Given 
that moesin plays important roles in HIV infection, decreasing 
its activity may be useful for inhibiting HIV invasion (144).

Filamin-A, an adaptor protein that can link the actin cytoskel-
eton to HIV receptors, is another factor that affects HIV invasion 
due to its functional role in RhoA-dependent signaling pathway 
activation. Filamin-A phosphorylates cofilin (thereby activating 
it), and further organizes the arrangement of F-actin, which may 
facilitate HIV infection (120). As a consequence, regulation the 
activity of filamin-A could affect HIV invasion. Gelsolin is an 
actin adaptor with filament-severing activity, and overexpressing 
and silencing gelsolin have been shown to impair efficient HIV 
fusion and infection due to disruption of cortical actin (121). 
At the same time, overexpressing and silencing gelsolin impairs 
gp120-induced actin rearrangement and viral receptor capping. 
As a result, regulating either the gelsolin expression level or its 
filament-severing activity might be useful strategies for fighting 
HIV (121).

HiGH LeveLS OF CHeMOKiNeS iMPAiR 
LYMPHOCYTe FUNCTiONS

In both acute and chronic HIV infection, the alteration of 
chemokine levels benefits HIV infection and latency. In addition 
to these effects on HIV, elevated chemokines also impair the 
immune system by directly suppressing immune cell functions. 
For instance, high levels of plasma CXCL10 suppress T cell func-
tion in HIV-infected subjects (56). Our previous study suggested 
that CXCL10 could also suppress NK  cell function by binding 
to CXCR3 during HIV infection (145). Innate and adaptive 
immune cell dysfunction may severely impact HIV transmission 
and disease progression. Lane et al. demonstrated that CXCL10 
treatment led to increased HIV DNA accumulation in monocyte-
derived macrophages and peripheral blood lymphocytes (146). 
Adaptive and innate immunity are both influenced by CXCL10, 
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to different degrees, during HIV infection. More attention should 
be paid to the high levels of multiple chemokines, which may 
cause immune system dysfunction.

The frequency of CXCR3+ and CCR6+ central memory T cells 
in blood was demonstrated to be positively correlated with soluble 
plasma CD14, a marker of chronic systemic immune activation 
(147). In other words, chronic immune activation, induced by 
chronic HIV infection, might contribute to the accumulation of 
these cells in the peripheral blood. Moreover, persistent immune 
activation could cause the impairment of the CCR6+ and CXCR3+ 
Th cell response to CCL20 and CXCL10, preventing the migra-
tion of the Th cells to lymphoid organs (147). As more HIV DNA 
has been detected in CCR6+ and CXCR3+ cells, the disrupted 
migration of these susceptible cells might be responsible for the 
prevention of HIV clearance. However, by exploring the under-
lying mechanism, researchers have revealed that impairment of 
cell migration during HIV infection is at least in part due to the 
hyperactivation of cofilin and inefficient actin polymerization 
(147). Overall, inhibition of chemokines by antibodies or antago-
nist might protect immune cell function and help to increase the 
ability of the immune system to control virus by itself.

CONCLUSiON

When HIV invades the human body, it uses multiple mecha-
nisms to ensure its survival and reproduction. However, the host 
immune system presents various barriers to make virus survival 
and reproduction difficult. The cytoskeleton is composed of 
cortical actin not only maintains the cell shape but also acts as 
a physiological barrier to pathogens. Generally, it is difficult for 
pathogens to traverse the cross-linked actin, but HIV utilizes 
gp120 to bind CXCR4 or CCR5, thereby mimicking signaling 
induced by their respective ligands. As a result of the activation 
of the signaling pathway, the cortical actin is rearranged, which 
makes the cell “open the door” to HIV. Regardless of whether 
the HIV infection involves the early and late phase, persistent 
inflammation occurs, with high levels of cytokines (including 
chemokines). This disrupts the immune system’s fight against 
the virus, thereby favoring the virus. Chemokines may activate 
chemotaxis signaling pathways, which further activate actin 
and allow HIV to infect cells more easily. Multiple chemokines 

elevated during HIV infection, independent of gp120, are enough 
to activate the actin-related signaling pathway to promote HIV 
infection and latency. The chemokines also suppress the function 
of innate and adaptive immune cells and prevent cell migration 
and homing, all of which decrease viral clearance. In essence, 
chemokines and chemokine receptors serve as accomplices to 
HIV during HIV infection and latency. However, only a few 
chemokines had been studied in HIV infection; other relevant 
chemokines remain unresearched and need to be further studied 
in terms of HIV pathogenesis and signaling pathway targets for 
prevention and treatment.

The existence of HIV reservoirs remains a major obstacle to 
curing HIV, and chemokines and chemokine receptors might 
influence its establishment, suggesting that they might be prom-
ising therapeutic targets. The related mechanism regarding the 
effect of actin on HIV infection and latency was discussed, along 
with several small-molecule drugs that have been shown to effi-
ciently inhibit HIV fusion, entry, integration, and release, thereby 
providing new immune therapy strategies against HIV infection.

Thus, we put forward a therapeutic strategy based on HIV 
pathogenesis related to chemokines and chemokine receptors. 
At the start of an HIV infection or at ART withdrawal (as 
immune reconstruction occurs), patients should be treated with 
antibodies against certain chemokines, chemokine receptor 
antagonists or inhibitors of the actin-related signaling pathway, 
to suppress HIV replication and control rebound virus by ena-
bling a functional immune response, and ultimately to achieve 
a functional cure.
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