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Abstract: This research describes an eco-friendly green route for the synthesis of AgNPs using an
aqueous extract of Lythrum salicaria. Taguchi design was used to optimize the synthesis method,
taking into account various working conditions. The optimum parameters were established using a
3 mM AgNO3 concentration, a 1:9 extract:AgNO3 volume ratio, a pH value of 8, 60 °C temperature,
and 180 min reaction time. The synthesized AgNPs were characterized using UV-Vis and FTIR
spectroscopy, and TEM and EDX analysis. The SPR band at 410 nm, as well as the functional groups
of biomolecules identified by FTIR and the EDX signals at ~3 keV, confirmed the synthesis of spherical
AgNPs. The average AgNPs size was determined to be 40 nm, through TEM, and the zeta potential
was−19.62 mV. The antimicrobial assay showed inhibition against S. aureus and C. albicans. Moreover,
the results regarding the inhibition of lipoxygenase and of peroxyl radical-mediated hemolysis assays
were promising and justify further antioxidant studies.

Keywords: Taguchi design; FTIR; EDX; antifungal; lipoxygenase; erythrocyte hemolysis

1. Introduction

Noble metal (e.g., Pt, Ag, Au) nanoparticles have gained researchers’ attention due
to their multiple benefits in various fields, such as medicine, the food industry, material
science, physics, and chemistry. In the biomedical field, noble metal nanoparticles are ver-
satile agents used in drug delivery, diagnosis, radiotherapy enhancement, photo-ablation
procedures, and hyperthermia studies [1,2]. The photophysical metal properties, such
as facile synthesis in different shapes and sizes, easy derivatization with chemical and
biomolecular ligands, biocompatibility, and high stability, represent the most appropriate
attributes of nanoparticles, recommending them to industry [3]. Among such nanopar-
ticles, silver nanoparticles (AgNPs) have gained special attention, due to their superior
electrical conductivity, chemical stability, controlled geometry, catalytic and antibacterial
properties [4]. AgNPs are used for many medical applications, including sensing devices,
coating materials, catheters, bone cement and wound dressings [5].

Several methods can be applied for AgNPs synthesis, each presenting advantages and
disadvantages. A general classification divides them into bottom-up and top-down tech-
niques. In the top-down category, the principle relies upon reducing the size of bulk mate-
rial by mechanical milling, laser ablation or sputtering. Although the final product presents
uniform physico-chemical properties, these methods also involve high energy consumption.
The bottom-up techniques use molecules or atoms to prepare nanoparticles through various
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procedures that can be either physical and chemical (vapor deposition, chemical reduction,
spray/flame pyrolysis, electrodeposition, supercritical fluid precipitation, microwaves)
or biological (using bacteria, fungi, yeast, algae, plant extracts). Nowadays, biological
methods are of high interest as they allow the overcoming of several drawbacks, such as
using unsafe organic solvents that may be dangerous to human life and the environment,
complicated synthesis procedures with many intermediate steps, expensive equipment
or reagents, and high energy consumption. Thus, synthesis using plant material presents
the advantages of lack of pathogenicity and production of homogenous nanoparticles.
Secondary metabolites in plant extracts, such as polyphenols, flavonoids, terpenoids and
alkaloids, reduce the metallic precursor and stabilize the surface. The reaction between the
plant extract and the silver salt proceeds under the influence of reaction conditions, such
as silver ions concentration, temperature, pH and period of time for magnetic stirring [6].
Through this process, eco-friendly nanoparticles are generated [7]. Using a plant extract for
synthesizing AgNPs designed for drug delivery also confers the advantages of easy access
to the bloodstream and cells that accumulate at the target site, and high biocompatibility,
allowing sustained drug release. Even so, the method has disadvantages, and the most
discussed is the degree of toxicity, which is not fully understood and quantified [8,9].

Lythrum salicaria L. (purple loosestrife) is a native Eurasian flowering plant that is nowa-
days naturalized in most temperate areas of the world, being a member of the Lythraceae
family [10]. This species has been known in folk medicine for its multiple biological activ-
ities for centuries. Internal administration of powdered herb and liquid forms (infusion,
decoction, extract, syrup) may treat dysentery, chronic and acute diarrhea, chronic intesti-
nal catarrh, hemorrhoids and eczema. It also presents external use in eye inflammation,
sinusitis, varicose veins, bleeding gums and ulcerations [11]. The chemical composition of
the aerial part of L. salicaria includes polyphenols, along with nonpolar constituents, such
as steroids (β-sitosterol; daucosterol), triterpenes (oleanolic acid; corosolic acid; ursolic acid;
betulinic acid), phthalates (isobutyl phthalate), coumarins (buntansin; peucedanin) and al-
kaloids (lythranine; lythranidine; lythramine). Polar phytochemicals in L. salicaria belong to
the class of ellagitannins (vescalagin; castalagin; salicarinin A/B/C; pedunculagin; lythrine
A/B/C/D), flavonoids (luteolin; orientin; apigenin; vitexin; rutin), anthocyanins (malvidin
3,5-di-O-glucoside; cyanidin 3-O-glucoside), and phenolic acids (ellagic acid; caffeic acid;
chlorogenic acid; ferulic acid; gallic acid; syringic acid; vanillic acid). The rich composition
in biologically active principles justifies the several promising activities shown in in vitro
and in vivo studies. Oral administration of extracts from the aerial part/flowering top of
L. salicaria, obtained using various solvents (water, ethanol, hexane, chloroform) tested on
animal models, proved to have antidiarrheal and anti-inflammatory activities, along with a
hypoglycemic effect [11,12]. Moreover, L. salicaria extracts showed remarkable antioxidant,
antimicrobial and antitumoral activities [13–15].

Successful biological AgNPs synthesis using L. salicaria extract has recently been
reported in the literature, although the studies were conducted in order to incorporate
the nanoparticles in nanohybrids, with cellulose, chitosan and lignocellulose [16]. Other
comparative research was conducted on AgNPs synthesized using aerial parts and root
extracts [17]. Thus, the novelty of the present study is associated with AgNPs synthesis
via a L. salicaria aqueous extract, establishing optimal reaction conditions, for the first time,
using the Taguchi design. Applying the Taguchi model to optimize AgNPs synthesis is an
advantage, since it is a fast and efficient method that provides information on different pa-
rameters and levels in the same experiment. Here, we characterized the synthesized AgNPs
using physico-chemical attributes and microbiological and antioxidant activities. In order
to achieve valuable physico-chemical data, UV-Vis Spectroscopy, Dynamic Light Scattering
(DLS), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray analysis (EDX)
and Fourier Transform Infrared (FTIR) spectroscopy were used. Moreover, to the best of
our knowledge, the present study is the only one that has used, for antioxidant activity
testing, the determination of the inhibition of lipoxygenase and of peroxyl radical-mediated
hemolysis for AgNPs obtained using L. salicaria aqueous extract.
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2. Materials and Methods
2.1. Obtaining of Extracts

For the preparation of the L. salicaria extract, 10 g of plant material, as grounded
aerial part (purchased from a local natural and biological products market), were added to
100 mL distilled water, at an adjusted temperature of 40 °C, while continuously stirring
at 500 rpm for 30 min. After the mixture was cooled at room temperature, filtration was
carried out using a Whatman filter paper no. 1 and the filtrate was stored at 4 °C for
further experiments.

2.2. Preparation and Optimization of Nanoparticles

The Taguchi design was used to study AgNPs synthesis conditions in an experiment
that uses minimal resources and, in our case, tested five parameters. AgNPs were synthe-
sized by adding different concentrations of extract to silver nitrate (AgNO3) solution, in
various volume ratios. These mixtures were subjected to magnetic stirring at 500 rpm, at
different adjusted pH values, using 1 M HCl and 1 M NaOH, at different temperatures
and time intervals. The change in color was monitored and the maximum absorbance was
recorded in the 300–600 nm range by UV-Vis spectroscopy. The analysis was performed
in triplicate.

The formed AgNPs were separated by centrifugation at 8000 rpm for approximately
30 min. After removing the supernatant, the AgNPs were purified by washing three times
with distilled water and eventually dried at 40 °C until constant mass.

The theoretical concentration of AgNPs in the colloidal synthesis mixture was cal-
culated using a mathematical method [18,19]. Firstly, the average number of atoms per
nanoparticle (N) was determined through Equation (1):

N =

(
πρD3NA

)
6M

(1)

where π = 3.14, ρ = 10.5 g/cm3 (density of face centered cubic silver), D = 133.5 × 10−7 cm
(average diameter of nanoparticles), M = 107.868 g/mol (atomic mass of silver) and
NA = 6.023 × 1023 mol−1 (Avogadro’s number).

Secondly, the molar concentration of nanoparticles in the resulting colloidal mixture
(C) could be calculated only by considering that all silver ions (Ag+) were entirely converted
to AgNPs in the biosynthesis process. Equation (2) was applied for the determination of C:

C =
NT

(NVNA)
(2)

where NT = total amount of Ag atoms added as AgNO3 (3.0 mM = 0.003 M), N = average
number of atoms per nanoparticle, V = reaction volume (0.22 L) and NA = Avogadro’s
number [18,19].

2.3. AgNPs Characterization

Regarding the physico-chemical characterization of AgNPs, the change in mixture
color was initially visually monitored and then the UV-Vis spectra were recorded, observing
the presence of the peak due to surface plasmon resonance (SPR). The absorbances were
recorded with a Jasco V-530 UV-Vis double beam spectrophotometer (Tokyo, Japan) in the
300–600 nm range. The functional groups involved in the green synthesis of AgNPs were
analyzed by FTIR spectroscopy (Bruker Vertex 70 spectrophotometer, Bruker, Billerica, MA,
USA) in the 4000–310 cm−1 range, comparing the extract and AgNPs’ spectra. The other
characteristics of AgNPs were examined by the following: DLS (the hydrodynamic diame-
ter and the zeta potential), using a Delsa Nano Submicron Particle Size Analyzer (Beckman
Coulter Inc., Fullerton, CA, USA); TEM (dimensions and morphology), using a Hitachi
High-Tech HT 7700 Transmission Electron Microscope (Hitachi High-Technologies Cor-
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poration, Tokyo, Japan; EDX (elemental composition), using a Quanta 200 Environmental
Scanning Electron Microscope (ESEM) with EDX (FEI Company, Brno, Czech Republic).

Furthermore, the total phenolic content of the L. salicaria extract (diluted correspond-
ingly) and supernatant (after the first separation of AgNPs) was performed using a pre-
viously described UV-Vis spectrophotometric method, with gallic acid as standard [20].
The analysis was performed in triplicate and the results were expressed as mg gallic acid
equivalents (GAE) per mL sample.

2.4. Antimicrobial Testing

The synthetized AgNPs and the corresponding extract were investigated for antimicro-
bial activity, using disk diffusion methods [21,22], against different bacterial (Staphylococcus
aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853) and fungal (Candida albicans ATCC
90028) pathogens, obtained from the Culture Collection of the Department of Microbiology,
“Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania. Standard culture
mediums, such as Mueller–Hinton agar (Biolab) for fungi and Mueller–Hinton agar (Oxoid)
for bacteria, were used. After the samples and positive controls (discs containing 5 µg
ciprofloxacin and 25 µg fluconazole, respectively) were applied, the plates were incubated
at 35 °C for 24 h. All experiments were conducted in triplicate, and, after the inhibition
zones were measured (mm), the mean ± standard deviation was calculated. The Minimal
Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) or Minimal
Fungicidal Concentration (MFC), were determined by the broth microdilution method.
Subsequent double dilutions of the tested samples in Mueller-Hinton broth were inoculated
with the suspension of the microorganism test.

2.5. Antioxidant Activity

The antioxidant activities of the samples (AgNPs and extract) were determined using
15-lipoxygenase (LOX) inhibition and peroxyl radical-mediated hemolysis inhibition assays.
Regarding the first method, after the mixture of lipoxygenase (in pH 9 borate buffer solution)
and samples were left to stand in the dark at room temperature for 10 min, linoleic acid (in
pH 9 borate buffer solution) was added, and the absorbances were recorded at 234 nm [23].
The second method focused on the determination of the inhibition capacity of erythrocyte
hemolysis, mediated by peroxyl free radicals [24]. Samples treated with a solution of
2,2′-azobis-(2-amidinopropane) dihydrochloride (AAPH) (in phosphate buffer pH 7.4) and
an erythrocyte suspension (10 % in 0.9 % saline) were maintained for 3 h at 37 °C, cooled
to room temperature, diluted with phosphate buffer (pH 7.4) and, eventually, centrifuged
for 10 min. Simultaneously, a control solution containing only AAPH and erythrocyte
suspension was prepared. The absorbances were recorded at 540 nm. All experiments were
performed in triplicate and gallic acid was used as standard. For samples that showed
an activity of more than 50 %, the EC50 value was also calculated and expressed as µg
extract/mL final solution.

3. Results
3.1. Taguchi Design Experiment for Optimization of Reaction Parameters

The optimization of parameters for more efficient AgNPs synthesis was based on an L9
orthogonal array design, a method that combines mathematical and statistical principles in
order to obtain a predictive knowledge of a complex process with several variables, but with
a reduced number of attempts [25,26]. This design presents several advantages over the
traditional more laborious and time-consuming optimization methods. In the traditional
methods each variable is evaluated one by one, while the others remain constant, and,
therefore, data on what happens when variables change simultaneously is not obtained [27].

The model was obtained using variables presented in Table 1 at levels 1, 2 and 3.
Table 1.
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Table 1. The tested parameters and the levels set according to the chosen design.

Factor
Levels

1st 2nd 3rd

A AgNO3 concentration M 1 3 5
B Extract:AgNO3 ratio 1:9 5:5 9:1
C pH 3 5 8
D Reaction temperature (°C) 20 40 60
E Reaction time (minutes) 60 120 180

In order to process the data, the S/N ratio was calculated using Equation (3). The S/N
ratio measures the quality characteristic deviating from the desired value, and represents
the ratio of the target value (signal) to the standard deviation for the response variable
(noise), which can be calculated by selecting the formula corresponding to the quality
characteristic “larger is better”.

S/N ratio [dB] = −10 log
[
(1/y1

2 + 1/y2
2 + 1/y3

2 + . . . + 1/yn
2
)

/n] (3)

where: n = number of experiments, yi = response variable for the experiment (absorbance) [26,27].
The obtained results for the S/N ratio are presented in Table 2. Each line in the matrix

contains the numbers corresponding to the level at which the factors A, B, C, D and E are
expressed in

Table 2. Taguchi L9 orthogonal array design.

Level
Factors Average of

Absorbance
S/N Ratio

A B C D E

L1 1 1 1 1 1 0.1165 −18.67
L2 1 2 2 2 2 0.2727 −11.28
L3 1 3 3 3 3 0.9084 −0.83
L4 2 1 2 2 3 1.5108 3.58
L5 2 2 3 3 1 1.2177 1.71
L6 2 3 1 1 2 0.5525 −5.15
L7 3 1 3 3 3 1.7779 4.99
L8 3 2 1 1 2 0.1066 −19.44
L9 3 3 2 2 1 0.4146 −7.64

Taking into account the average value of absorbance and the S/N ratio calculated for
each level, the optimal synthesis conditions were A3B1C3D3E3 (line L7, A at level 3, B at
level 1, C, D and E at level 3), followed by A2B1C2D2E3 (L4), and, therefore, we could say
that, in both cases, a volume ratio of 1:9 extract:AgNO3 and 180 min reaction time were
optimal. The average S/N ratio for each level is presented in Table 3 and the main effect
of each variable is graphically represented in Figure 1. In order to establish the optimal
synthesis conditions, the maximum S/N value was investigated.

Table 3. S/N response values.

S/N Ratio Average

Level 1 Level 2 Level 3

A −10.26 0.04 −7.36
B −3.36 −9.67 −4.54
C −14.42 −5.11 1.95
D −14.42 −5.11 1.95
E −8.20 −11.95 2.58
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Considering the S/N ratio, the optimum conditions for AgNPs synthesis were A2B1C3D3E3,
with a 3 mM AgNO3 concentration, 1:9 extract:AgNO3 ratio, a pH value of 8, 60 °C temper-
ature and 180 min reaction time.

To the best of our knowledge, the present study is the only one that has used the
Taguchi model to establish the reaction conditions for AgNPs synthesized using an L. salicaria
extract. Moreover, the traditional optimization of synthesis can be found in a single study
carried out by Srećković et al., which led to the following conditions: 20 mM AgNO3
concentration, 25 °C, pH 12, and 30 min reaction time [17]. In both cases, the synthesis was
optimal at alkaline pH, which can be explained by the change in dissociation constants
values for functional groups involved in the reduction process, which leads to an increase
in the availability of compounds for the synthesis process [28].

3.2. Physico-Chemical Characterization of AgNPs

AgNPs synthesis by means of green methods represents the focus of scientists, given
that they imply lower costs and ease in the monitoring and sampling processes. Moreover,
plants are easy to grow and safe to handle, and, implicitly, this type of eco-friendly syn-
thesis could replace chemical techniques for obtaining AgNPs [29]. The steps implied by
AgNPs synthesis are represented by the reduction of Ag+ and agglomeration of colloidal
nanoparticles with oligomeric clusters formation [30].

The first indicator of AgNPs synthesis is noticed through visual observation, but the
formation of nanoparticles must be confirmed by other methods as well. Therefore, we
continued monitoring the color change by means of UV-Vis spectroscopy (Figure 2).

As seen in the inset of Figure 2, the initial color of the extract was yellow, changing to
dark brown after adding AgNO3 under specific conditions. When analyzing the UV-Vis
spectra, no absorption peak was observed in the 300–600 range for either the extract or
AgNO3 solution, but a distinct peak at 410 nm was revealed for the obtained colloidal
solution. This peak could be due to excitation of SPR [31], which could determine the
optical, physical and chemical properties of AgNPs [29]. The presence of a single SPR peak
could explain the spherical shape of AgNPs [32]. The obtained results were in accordance
with other studies focusing on AgNPs synthesized using L. salicaria extracts, in which the
SPR band was observed at 415 nm [16] or in the 396–415 nm range [17]. The calculated
concentration of AgNPs in the colloidal solution was found to be 2 × 10−10 mol/L.
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Differences in the position and appearance of the peak, even for the same plant species,
can be explained by different harvesting areas, different conditions for extract preparation
and for AgNPs synthesis. Nonetheless, these conditions can also lead to modifications
in the shape and size of AgNPs. A wide peak generally indicates larger particles [29].
Moreover, their shape can be predicted considering the position of the SPR band, for
example, in the 400–490 nm range, the particles are spherical [33].

The mechanism of AgNPs synthesis is explained through biomolecules present in the
extract (polyphenols, phenolic acids, phytosterols, alkaloids, proteins, enzymes, sugars,
etc.), which are compounds capable of donating electrons, so the reduction process from
Ag+ to Ag0 can take place. This process is generally followed by agglomeration of free
silver atoms and, eventually, by the formation of the AgNPs colloidal solution. Such
biomolecules also participate in the functionalization and stabilization of AgNPs [34,35].
For example, there are many studies that demonstrate that phenolic acids are some of the
most important bioactive substances that participate in AgNPs synthesis and even more in
the process of stabilization of nanoparticles, therefore, having a synergistic effect. Yee-Shing
Liu et al. [36] combined their research with that of other studies and proposed a mechanism
for AgNPs formation using caffeic acid, one of the phenolic acids present in rice husk
extract, along with gallic, protocatechuic, ferulic, vanillic and syringic acids. Caffeic acid in
alkaline medium releases electrons, that are transferred to Ag+, which is reduced to Ag0.
On the other hand, caffeic acid is transformed into a free radical which, in turn, reduces
another Ag+ and is converted to ortho-quinone. By the coupling of two free radicals of
caffeic acid, an oxidative dimer is formed which releases 4 electrons that participate in
the reduction of Ag+, being transformed into quinone. The formed quinones can bind to
AgNPs and cause steric hindrance, thus, stabilizing the particles [36]. Flavonoids can also
donate electrons or hydrogen and the keto form of the nucleus reduces Ag+ to Ag0 [33].
Thus, the total phenolic content of the extract used for synthesis (in suitable dilution)
and of the first collected supernatant, were measured, so as to estimate the amount of
such compounds involved in the synthesis process. If, initially, the phenolic content of
the extract was 1.2404 mg GAE/mL, after the first separation, the supernatant only had
a remaining content of 0.1122 mg GAE/mL, which could confirm the participation of
bioactive compounds in the synthesis process.

Other examples of biosubstances involved in AgNPs synthesis are triterpenes. Aazam
et al. [37] proposed a mechanism for the synthesis of AgNPs using ursolic acid, the main
constituent of an Ocimum sanctum extract. Following the redox reaction, the -OH group
of the ursolic acid structure deprotonates and oxidizes with the formation of a radical,
promoting the reduction of silver from Ag+ to Ag0. Further agglomeration and formation
of oligomeric clusters occurs. During these steps, several species of AgNPs can be formed,
given that Ag+ reacts with Ag0, forming Ag2

+, which dimerizes to Ag4
+2.
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In order to highlight the functional groups and, implicitly, the compounds that partici-
pate in AgNPs synthesis, FTIR analysis was used. Figure 3 presents the comparative FTIR
spectra of the extract and of the corresponding AgNPs.
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The FTIR spectrum of the extract shows a broad absorption peak at 3452 cm−1, which
was related to the stretching vibration of -OH groups found in alcohols and phenols and
to the N-H stretching from amides. The peaks at 2924 cm−1 and 2854 cm−1 corresponded
to C-H stretching and bending vibrations of CH3 and CH2 (alkanes) [19,28]. The bands
detected at 1736 cm−1 and 1624 cm−1 were connected to the vibration of C=O from amides
and carboxylic groups, and -C=C- aromatic rings, respectively [38]. The bands at 1452 cm−1

and 1364 cm−1 could be attributed to stretching vibrations of CO of carboxylic acids
or esters, to bending vibration of N-H in amides or to stretching vibrations of N-H in
secondary amines, or to the C-N stretch vibration of aromatic amines. Furthermore, the
1184 cm−1 and 1038 cm−1 bands could be attributed to the C-O stretching vibrations of
alcohols, esters, ethers and carboxylic acids from terpenoids and flavonoids and to the
C-O-C stretching of aromatic ethers and polysaccharides [39,40]. The peaks found in the
600–900 cm−1 range corresponded to CH out of plane bending vibrations and the peak
at 524 cm−1 could be responsible for C=C torsion and ring torsion of phenyl, or to C-N
stretch from secondary amines and amides [40,41]. Generally, similar peaks, but also shifts,
reduction or disappearance of peaks, from the extract spectrum could be observed in the
FTIR spectra of AgNPs. The disappearance of peaks could be explained by the participation
of these groups only in the reduction process, while modifications in peak position and
intensity could indicate the involvement of the corresponding groups not only in the
reduction, but also in the stabilization processes [39]. Therefore, biomolecules, such as
phenolic acids, flavonoids, terpenoids and proteins, could participate in the reduction and
stabilization of AgNPs. The obtained results were comparable to those obtained by Samira
Mohammadalinejhad et al. and by Srećković et al. [16,17]. The first of the aforementioned
groups of researchers suggested that polyphenols are involved in the reduction process,
while flavonoids, polyphenols, tannins and gallic acid are responsible for the reduction
process, as well as for the stabilization of nanoparticles.

The morphological analysis of AgNPs was examined by TEM (Figure 4) and the
corresponding histogram can be found in Figure 5a.
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Figure 4 exhibits a good distribution of spherical AgNPs, with a relative uniformity
in size, in the 40 nm range. The presence of a grey cloud region around AgNPs can be
explained by the presence of organic compounds on the surface of nanoparticles, with a
role in stabilizing their surface, thus, preventing possible agglomeration [36]. The negative
zeta potential (the charge around a moving particle in the colloidal solution in electric field)
of −19.62 mV could have been due to biomolecules found on the AgNPs surfaces, that
might determine a repulsion between particles and implicitly prevent agglomeration [33].
This value was in accordance with that obtained by Samira Mohammadalinejhad et al. [16],
namely −20 mV.

The DLS analysis revealed an average AgNPs hydrodynamic dimension of 133.5 nm
(Figure 5b). Other authors obtained values in the 20–138 nm range [17] or an average of
50 nm [16]. The TEM analysis measured only the average diameter of the metallic silver
core so it did not include any coating/stabilizing agent. On the other hand, the DLS analysis
measured the dynamic fluctuation and velocity of particles in suspended clusters, meaning
the metallic silver core and the molecules that were attached to the surface nanoparticles,
which could, depending on the structure, undergo a process of solvation and expansion in
solution. Therefore, the hydrodynamic diameter estimated by DLS was larger than the size
estimated by TEM [33,42,43].

The quantitative elemental structure of AgNPs was investigated by EDX analysis
(Figure 6).

Data analysis revealed that EDX spectra of AgNPs mainly contained a specific and
intense peak at 3 keV for Ag (37.52 wt %), but also C (18.83 wt %), O (24.49 wt %) and
small quantities of N, Br, Si, Cl and K. Consequently, the results confirmed the synthesis
of AgNPs. The presence of other elements might be related to the breakdown of capping
agents from the surface of nanoparticles.
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3.3. Antimicrobial Activity

Firstly, the disk diffusion method was used, which is a routine, simple and low-cost
antimicrobial susceptibility test. The antimicrobial activity was assessed using two bacterial
strains, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) and a
fungal strain, Candida albicans (C. albicans). The results are presented in Table 4.

Table 4. Antimicrobial activity of the extract and of the corresponding AgNPs.

Sample/Standard
Diameter of Inhibition Zones (mm) ± SD

S. aureus
ATCC 25923

P. aeruginosa
ATCC 27853

C. albicans
ATCC 90028

Extract 12.00 ± 0.00 NA * 19.06 ± 0.05
AgNPs 14.00 ± 0.00 NA * 21.00 ± 0.00
Ciprofloxacin 30.00 ± 0.00 30.33 ± 0.57 NT **
Fluconazole NT ** NT ** 29.00 ± 0.00

* NA—no activity detected; ** NT—not tested.

The AgNPs presented better activity, compared to the extract against the Gram-positive
bacteria and pathogenic yeast. However, no activity was detected for either in the case of
the Gram-negative bacteria.

Further, the broth microdilution method was applied, in order to determine the MIC and
MBC values, and since it represents a standardized method, the results could be of clinical
relevance [44]. Implicitly, the MIC and MBC/MFC values of samples against S. aureus ATCC
25923 and C. albicans ATCC 90028 were determined and are presented in Table 5.

Table 5. MIC and MBC/MFC values of the extract and of the corresponding AgNPs.

Samples
S. aureus ATCC 25923 C. albicans ATCC 90028

MIC (mg/mL) MBC (mg/mL) MIC (mg/mL) MFC (mg/mL)

Extract 0.62 1.25 0.15 1.25
AgNPs 0.31 0.62 0.03 0.31

MIC was the lowest concentration of the sample at which bacterial growth was com-
pletely inhibited after 24 h incubation at 37 ◦C. In the study carried out by Srećković
et al. [17], the MIC value obtained for AgNPs was 0.31 mg/mL for S. aureus and 0.62 for
C. albicans. In our study, we obtained the same value for S. aureus, but for C. albicans the
value was smaller (0.03 mg/mL).

To the best of our knowledge, the MBC value for AgNPs synthesized from L. salicaria
has not been reported until now. The highest dilution showing 100 % inhibition was
0.62 mg/mL for S. aureus and 0.31 for C. albicans. For both tested microorganisms, the
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obtained results for MIC and MBC/MFC for the synthesized AgNPs were better than those
obtained for the extract.

Indeed, most literature studies show better antibacterial activity of AgNPs on Gram-
negative bacteria than on Gram-positive bacteria [45]. However, there are several research
works that prove the contrary, as in our case. For example, Yage Xing et al. obtained better
antibacterial activity on S. aureus, compared to E. coli for AgNPs formed using mango
peel [46]. A similar example is that of AgNPs synthetized using olive leaves extract [47]. An
explanation for the higher susceptibility in the case of Gram-positive bacteria, compared to
Gram-negative bacteria, could be related to the differences between the wall structures of
the two types of bacteria. The cell wall of Gram-positive bacteria consists of a thick peptido-
glycan layer with teichoic acid and lipoteichoic acid, while the Gram-negative bacterial cell
wall is more complex, containing an extra outer lipid membrane, with lipopolysaccharides,
which could make the entrance of hydrophobic substances more difficult [48]. Therefore,
a reason for better antimicrobial action in the case of Gram-positive bacteria could be
represented by the more facile interaction between AgNPs and bacteria [49].

Moreover, the antimicrobial activity depends on the size and shape of AgNPs. Nanopar-
ticles of smaller sizes, with a diameter of approximately 1–10 nm, have a higher sur-
face:volume ratio and more efficient antimicrobial activity, interacting preferentially with
bacteria [50]. Truncated triangular AgNPs have the strongest biocidal action compared to
those that are spherical or rod shaped [51].

The mechanism surrounding the antibacterial activity has not been fully elucidated,
but several explanations are possible, taking into account that AgNPs can adhere to, or can
pass through, cell walls/membranes of microorganisms, or induce cellular toxicity and
ROS generation, or modulate cell signaling.

The first proposed mechanism is that, following the electrostatic attraction between
AgNPs and the cell membrane, nanoparticles tend to adhere to the membrane, which leads
to alteration of the structure and rupture of the cell wall. Moreover, the interaction between
AgNPs and sulfur-containing proteins found in the cell wall can lead to a chain reaction,
starting with structural modifications, affecting the transport process and increasing perme-
ability, which leads to cell content (ions, proteins, reducing sugars) leakage and, sometimes,
ATP synthesis inhibition.

The second mechanism consists of the penetration of AgNPs inside the cell and
nucleus, which can modify cellular functioning by interacting with the cell structure or
biomolecules. Therefore, the destabilization and denaturation of proteins containing thiol
groups can occur via interaction with silver ions, or AgNPs, and silver ions can interact with
disulfide bonds, thus, blocking the active binding site, leading to functional deficiencies in
microorganisms. Moreover, AgNPs can interact with DNA, and through the reaction of
Ag+ ions with nucleic acids, can lead to the destruction of the double helix structure.

For the third mechanism, a high concentration of Ag+ ions produce cellular oxida-
tive stress by generation of radicals and ROS. Free radicals can cause destruction of the
mitochondrial membrane and can interact with lipids, enhancing lipid peroxidation. ROS
generation can lead to hyperoxidation of lipids, proteins and DNA.

The last possible mechanism focuses on the modulation of the cellular signal system,
which can lead to modifications in bacterial growth, as well as affect the processes at
molecular and cellular levels [52,53].

3.4. Antioxidant Activity

Given that Srećković et al. [17] determined the antioxidant potential of an L. salicaria
extract, and of the corresponding AgNPs, by DPPH and ABTS scavenging activity meth-
ods, and the results showed for the extract from the aerial parts slightly better activ-
ity (86.38 ± 0.13 µg/mL by DPPH method and 65.33 ± 2.08 µg/mL by ABTS test) versus
AgNPs (>100 µg/mL by DPPH and 141.66 ± 17.05 µg/mL by ABTS test) [17], we proposed
the use of other methods, with different principles. Therefore, our study focused on the



Life 2022, 12, 1643 12 of 16

determination of lipoxygenase inhibition and of peroxyl radical-mediated hemolysis inhibi-
tion capacities, in the 0.1562–5 mg/mL range. The results are presented in Tables 6 and 7.

The inhibition of lipoxygenase, which was determined using the modified Malterud
method [23], can be explained by polyphenolic compounds present in the extract that
have the ability to block the activity of lipoxygenase, which catalyzes the oxidation of
linoleic acid, thus, reducing the absorbance measured at 234 nm. The inhibition activity
was calculated using the following formula:

Activity (%) = (AE − AEI)× 100/AE (4)

where AE is the difference between the absorbances of the enzyme solution without inhibitor
at 90 and 30 s and AEI is the difference between the absorbances of the enzyme-inhibitor
solution at 90 and 30 s, respectively.

Table 6. 15-LOX inhibition capacity (%) and EC50 values of the extract and AgNPs.

Sample 0.1562 mg/mL 0.3125 mg/mL 0.625 mg/mL 1.25 mg/mL 2.5 mg/mL 5 mg/mL EC50 (µg/mL
Final Solution)

Extract 8.87 ± 0.55 12.22 ± 0.53 18.88 ± 0.30 29.38 ± 1.04 45.43 ± 1.38 72.30 ± 1.75 46.90 ± 1.74 a

AgNPs 31.07 ± 0.58 41.29 ± 0.69 51.48 ± 0.44 63.93 ± 1.66 74.55 ± 1.36 98.09 ± 0.20 9.40 ± 0.30 b

Gallic acid 17.23 ± 1.69 28.15 ± 2.32 47.23 ± 1.58 61.15 ± 1.80 72.14 ± 2.81 89.25 ± 1.74 11.98 ± 0.97 a

a p < 0.0001 (extremely statistically significant) extract vs. gallic acid; b p > 0.01 (statistically significant) AgNPs vs.
gallic acid.

Table 7. Inhibition of erythrocyte hemolysis mediated by peroxyl free radicals and EC50 values of the
extract and AgNPs.

Sample 0.1562
mg/mL

0.3125
mg/mL

0.625
mg/mL

1.25
mg/mL

2.5
mg/mL

5
mg/mL

EC50 (µg/mL
Final Solution)

Extract 4.09 ± 0.18 7.92 ± 0.39 14.01 ± 0.56 21.67 ± 0.84 30.56 ± 1.04 38.26 ± 0.95 -
AgNPs 11.05 ± 0.31 16.58 ± 0.46 23.59 ± 0.63 35.51 ± 0.42 46.98 ± 0.97 57.45 ± 0.89 213.94 ± 13.4 a

Gallic acid 26.48 ± 0.21 37.19 ± 0.14 49.63 ± 0.17 60.04 ± 0.01 73.51 ± 0.06 82.01 ± 0.01 44.83 ± 0.49
a p < 0.0001 (extremely statistically significant) AgNPs vs. gallic acid.

Lipoxygenases (5-, 12-, 15-lipoxygenase) are metalloenzymes that contain ferrous or
ferric ions in their catalytic center, depending on the stage of the redox reaction (oxidation
or reduction) [54]. Lipoxygenases catalyze the oxidation of unsaturated fatty acids with the
formation of lipid peroxides, which can cause the spread of oxidation reactions or cause the
oxidation of lipids, proteins, nucleic acids, thereby affecting their biological properties [55].
Uncontrolled activation of these enzymes causes oxidative stress and inflammation, and
can lead to neurodegenerative diseases, atherosclerosis, diabetes or cancer [56]. AgNPs
show a more intense antioxidant activity compared to the extract, the EC50 value being also
slightly better than that of gallic acid. Their influence on lipoxygenase is most probably
achieved through changes in the spatial structure of the enzyme or of its active center [56].

Antioxidant compounds can also block the peroxyl radical synthesis induced by
AAPH, with consequent protection of the erythrocyte membrane. The reduction in the
concentration of peroxyl radicals determines the decrease of the absorbance measured at
540 nm [24]. The erythrocyte hemolysis inhibition was calculated using the formula:

Activity (%) = 100× (AAAPH − AS)/AAAPH (5)

where AS is the absorbance of the sample and AAAPH is the absorbance of the positive control.
AAPH is a prooxidant compound that causes the oxidation of hemoglobin to methe-

moglobin, consequently inducing hemolysis, and possibly affecting the lipophilic structure
of the erythrocyte membrane [57]. The synthesized AgNPs were more active compared to
the extract. However, both the extract and AgNPs can block the prooxidant and hemolytic
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action of AAPH, without causing hemolysis in its absence. Blocking AAPH activity is done
mainly by compounds that have both hydrophilic groups, that are capable of interacting
with AAPH, but also lipophilic structures that allow passage through the erythrocyte
membrane and block the intracellular action of AAPH [57]. Such compounds also have a
protective effect on subcellular structures, proteins and DNA and can, thus, block patho-
logical phenomena caused by oxidative stress [58]. Generally, the prooxidant action of
peroxyl radicals generated by AAPH is blocked by compounds with hydroxyl groups that
are capable of neutralizing and stabilizing the formed radicals [59].

4. Conclusions

In the present study, AgNPs were obtained via a simple and eco-friendly method,
using a robust design, namely the Taguchi method, in order to identify the optimal synthesis
parameters, which was achieved, for the first time, for such nanoparticles. AgNPs were
successfully synthesized using AgNO3 as a precursor and an L. salicaria extract as a reducing
and capping agent, as demonstrated by FTIR analysis, which also revealed the functional
groups found in the extract that are responsible for the obtaining of AgNPs. Moreover, the
synthesis was confirmed through the presence of the SPR band, by both visual observation
of color change and UV-Vis spectroscopy. The presence of silver was highlighted by EDX
analysis, and the negative zeta potential indicated a stable AgNPs colloidal solution. The
formed nanoparticles showed antimicrobial activity against S. aureus and C. albicans. The
novelty of the research consisted of, besides establishing the optimal reaction conditions
using the Taguchi design, testing the antioxidant activity through inhibition of lipoxygenase
and peroxyl radical-mediated hemolysis, which showed promising results for the formed
nanoparticles, as well as for MBC testing. Therefore, further studies are justified, with the
synthesized AgNPs being potential resources for nanotechnological applications.
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Abbreviation

Abbreviation Meaning
AAPH 2,2′-azobis-(2-amidinopropane) dihydrochloride
ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
AgNPs Silver nanoparticles
AgNO3 Silver nitrate
FTIR Fourier transform infrared spectroscopy
DLS Dynamic light scattering
DPPH 2,2-diphenyl-1-picrylhydrazyl
EDX Energy dispersive X-ray analysis
EC50 Half maximal effective concentration
GAE Gallic acid equivalents
LOX 15-lipoxygenase assay
MIC Minimum inhibitory concentration
MBC Minimum bactericidal concentration
NA Avogadro’s number
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ROS Reactive oxygen species
ESEM Environmental scanning electron microscope
SPR Surface plasmon resonance
TEM Transmission electron microscopy
UV-Vis Ultraviolet-visible
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