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Abstract

Purpose: To develop a new three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) data analysis
method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D
dataset to improve the discrimination between early glaucomatous and healthy eyes.

Methods: 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes) were scanned with SD-OCT.
Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL) segmentation
and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points,
this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size,
shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost
adaptive boosting) to automatically identify diseased eyes. For discriminating performance assessment, area under the
curve (AUC) of the receiver operating characteristics of the machine classifier outputs were compared with the conventional
circumpapillary RNFL (cpRNFL) thickness measurements.

Results: The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively,
p = 0.031, Jackknife test) when glaucoma suspects were discriminated from healthy, while no significant difference was
found when confirmed glaucoma eyes were discriminated from healthy eyes.

Conclusions: A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and
even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of
glaucomatous damage.
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Introduction

Optical coherence tomography (OCT) is a rapidly evolving

technology and has gained a significant clinical impact in

ophthalmology.[1–4] One of the major OCT applications is

glaucoma assessment by measuring retinal nerve fiber layer

(RNFL) thickness in circumpapillary and macula regions. Many

studies showed that the current OCT quantitative assessment has

excellent glaucoma discriminating ability. [1,3,5,6].

Spectral-domain (SD-) OCT’s fast scanning speed allows three-

dimensional (3D) volume scanning of the retina, which may offer

detailed and accurate quantitative analysis of the retinal structure.

However, despite the rich information embedded in 3D OCT

images, current standard quantitative structural OCT measure-

ment is mostly limited to several hundred sampling points along a

3.4 mm circle diameter centered at optic nerve head, which does

not take full advantage of the 3D dataset (over 20,000 sampling

points). This sampling pattern was chosen mostly to allow

compatibility with legacy data obtained using time-domain (TD-)

OCT. The limited tissue sampling might lead to situations where

early signs of structural changes are not detected when located

outside the sampled circle (Fig. 1).

In addition to the circumpapillary RNFL (cpRNFL) thickness

measurements, most SD-OCT devices provide the color coded

thickness deviation map to highlight locations of structural damage

(Fig. 1). These maps are generated by avaraging the mean RNFL
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thickness within a fixed number of neighboring sampling points

(fixed-number super pixels) and comparing this measurement with

age-matched normative databse. However, there is no quantitative

summary of this super pixel analysis, and therefore clinicians’

subjective interpretation is required.

In the clinical practice, subjects are often classified into three

major groups: healthy, glaucoma suspect or glaucoma. Classifying

subjects as ‘‘suspect’’ has important clinical advantage because

some of these subjects posses pre-perimetric glaucoma character-

istics. With the paucity of functional indication of glaucoma,

correctly identifying glaucoma suspect based on their structural

features is of upmost importance as it would allow timely

adjustemt of clinical management. However, detection of pre-

perimetric disease is still posing a significant challenge. [7,8] We

hypothesize that a comprehensive use of the full 3D OCT data

would improve detection of early glaucoma. The purpose of this

study was to develop a novel 3D SD-OCT data analysis technique

utilizing the full 3D dataset to improve the ability to detect

glaucomatous structural damage at early stages. The new method

uses variable-size super pixel mapping with a machine classifier

analysis to quantitatively assess the full 3D OCT data. Unlike the

conventional super-pixel analysis, which uses a fixed number of

points, the newly developed variable-size super pixel is defined as a

cluster of homogeneous adjacent pixels with variable size, shape

and number. In this paper, we investigate whether the variable-

size super pixel analysis is better suited for handling individual eye

characteristics that might lead to improved glaucoma diagnosis

predominantely in early disease stage.

Methods

Ethics Statement
This study was obtained the Institutional Review Board (IRB)

approval named ‘‘Optical Coherence Domain Reflectometry and

Optical Coherence Tomography Measurements of Intraocular

Structure’’.

Subjects and Image Acquisition
This study was conducted with healthy, glaucoma suspect and

glaucomatous eyes with a wide range of disease severity selected

from the Pittsburgh Imaging Technology Trial (PITT). One

hundred and ninety-two eyes of 96 subjects (44 healthy, 59

glaucoma suspect and 89 glaucomatous eyes) were enrolled to test

the glaucoma discrimination performance. An independent

dataset, including 46 eyes of 46 healthy subjects (randomly

selected one eye for each subject), was used as the normative

database. Institutional Review Board (IRB) approval was obtained

for the study and all participants gave their consent to participate

in the study. The study adhered to the Declaration of Helsinki and

Health Insurance Portability and Accountability Act regulations.

Exclusion criteria for the study included history of ocular

trauma or surgery (except for uncomplicated cataract or glaucoma

surgery) and disease or treatment that might affect the visual field

(e.g., stroke, central nervous sytem tumors) or retinal thickness

(diabetes melitus, chronic steroid treatment).

All subjects had a comprehensive ophthalmic evaluation,

reliable visual field (VF) and 3D SD-OCT scan all acquired

Figure 1. An example of conventional circumpapillary retinal nerve fiber layer (cpRNFL) analysis as provided by Cirrus HD-OCT. (A)
Overlay of RNFL thickness deviation map on the OCT fundus image with focal wedge defect (red arrows) predominantly outside the 3.4 mm diameter
circle sampling (red circle). (B) Corresponding 2D RNFL thickness map, RNFL focal defect is marked with red arrows. (C) cpRNFL thickness profile along
the 3.4 mm diameter circle is within the normal range (green range). Red arrow pointing to the approximate location of the RNFL wedge defect. (D)
The RNFL thickness measurement is summarized in 4 quadrants and 12 clock hours with all sectoral measurements within the normal range.
doi:10.1371/journal.pone.0055476.g001
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within 6 months of each other. The ophthalmic evaluation

included medical history, best-corrected visual acuity, manifest

refraction, intraocular pressure (IOP) measurement, gonioscopy,

slit-lamp examination before and after pupil dilation, and VF

testing. VF was considered reliable if false negatives, false positives

and fixation losses were less than 30%. All subjects had 3D OCT

scans centered at the optic nerve head (ONH) (Cirrus HD-OCT;

Carl Zeiss Meditec, Inc., Dublin, CA; ONH cube 2006200 scan

protocol).

Clinical Diagnosis
Eyes were defined as healthy if there was no history of

glaucoma, IOP#21 mmHg, the ONH did not meet the criteria

for glaucomatous optic neuropathy (GON), as described below,

and VF was normal.

Eyes were defined as glaucomatous if there was both GON and

glaucomatous VF loss. GON was defined if either one of the

following criteria was met: inter eye cup-to-disc (C/D) ratio

asymmetry .0.2, accounting for disc size; rim thinning or

notching; cup to disc ratio $0.6; RNFL wedge defect or disc

hemorrhage. Glaucomatous VF was diagnosed if any of the

following findings were evident on two consecutive VF tests: a

glaucoma hemifield test outside normal limits, pattern standard

deviation (PSD) ,5%, or a cluster of three or more non-edge

points in typical glaucomatous locations (arcuate scotoma, nasal

step, paracentral scotoma or temporal wedge), all depressed on the

pattern deviation plot at a level of p,0.05, with at least one point

in the cluster depressed at a level of p,0.01.

Glaucoma suspect eyes had IOP between 22 to 30 mmHg and/

or GON features all in the presence of a normal VF test.

Figure 2. Normative database normalization with 46 healthy eyes. (A, B) mean and standard deviation (SD) of retinal nerve fiber layer (RNFL)
thickness measurement at each sampling point (A-scan), without normalization. (C, D) mean and SD of RNFL thickness measurement after
normalizing individual’s retinal nerve fiber bundle path location to population’s average location. The variations of RNFL thickness were larger at
superior temporal and inferior temporal regions (brighter blue in B) because of the population variation of the bundle locations. After aligning the
bundle locations and normalizing the RNFL thickness map, the RNFL thickness variations at these two regions were markedly reduced (dark blue in
D).
doi:10.1371/journal.pone.0055476.g002
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3D SD-OCT Data Analysis
Super pixel mapping is a partitioning of image into a number of

close-to-homogenous segments with variable sizes and shapes. The

features of these variable-size super pixels were then extracted and

used as the input for machine classifier analysis in order to

generate a key index output for each image. The procedure to

generate the index output included the following steps: compar-

ison with normative database, feature map generation, super pixel

mapping, feature extraction, and classification.

1. Normative Database. A normative database was assem-

bled to measure the RNFL thickness deviation at each sampling

point in the 3D dataset. Retinal layer segmentation, which was

optimized for 3D SD-OCT dataset [9] was applied on each 3D

OCT image to obtain the RNFL thickness and reflectivity at every

single sampling point (total 2006200 points). All segmented 3D

OCT datasets were visually evaluated to ensure the correct

segmentation. Any OCT scan with .8% consecutive B-scan from

the total number of B-scans that showed segmentaion error or

.12% cumulative segmentation error was excluded from the

study. ONH margin was automatically detected on the OCT

fundus image using a software program of our own design. [10]

Major retinal nerve fiber bundle path at each hemi-field on each

RNFL thickness map was automatically detected. Each RNFL

thickness map was then normalized by aligning the bundle

location at each hemi-field to a reference position (population’s

average bundle location) for the comparison with the normative

database in order to minimize spatial variability in RNFL

thickness, especially at superior temporal and inferior temporal

regions (Fig. 2). The RNFL thickness map normalization was

processed on the concentrated circles with different radii started

from the ONH center. For each subject, the ONH center was first

aligned at a reference center point. At each concentrated circle,

two average bundle location (superior and inferior) were computed

from the normative database. Each subject’s RNFL thickness

profile at the given circle was normalized by strenching/shrinking

so the subject’s bundle location would coincide with the

population average bundle location. The entire RNFL thickness

Figure 3. Flowchart of converting a 3D OCT image into a 2D feature map.
doi:10.1371/journal.pone.0055476.g003

Figure 4. Super pixel segmentation on 3D OCT images. (A) Analysis output in a healthy eye, (B) glaucoma suspect, and (C) glaucomatous eye.
Abnormally thin retinal nerve fiber layer is marked with small super pixels.
doi:10.1371/journal.pone.0055476.g004
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map was normalized by repeating this process at all concentrated

circles.

2. 2D Feature Map Generation. Each 3D OCT image

(200620061024 voxels) was converted to a 2D feature map

(2006200 pixels) as follows. RNFL thickness and reflectivity along

Table 1. Super pixel features used as inputs for the machine learning classifier.

Super Pixel Features Healthy Glaucoma Suspect Glaucoma

Number of super pixels Total number of super pixels 151.8659.5 187.5664.4 250.8659.4

Total number of small super pixels with
‘‘Tmin,size,T1’’

66.1654.0 97.0655.1 150.9654.3

Total number of super pixels with ‘‘size.T2’’ 40.5614.3 31.3614.7 18.3611.9

Numbers of super pixels with the RNFL
thickness at pre-defined ranges:

0–30 mm 41.4653.0 67.1656.4 139.3675.8

75–120 mm 26.367.4 26.667.0 16.569.6

120–165 mm 4.563.1 1.462.0 0.661.2

Numbers of super pixels with the size at
pre-defined ranges:

30–120 pixels 65.9654.0 98.1656.0 152.7653.5

360–420 pixels 7.164.4 5.063.3 3.762.5

420–540 pixels 15.467.6 11.566.5 6.564.4

Mean, Standard
deviation, 3rd and 4th

central moments

Super pixel RNFL thickness

55.9615.1 mm 48.2612.9 mm 34.8610.9 mm

27.464.0 mm 24.9962.8 mm 21.864.0 mm

0.960.3 0.8960.2 1.1960.4

3.260.8 3.1960.7 4.2961.8

Super pixel size

288.86102.9 231.1691.5 163.3650.5

204.2642.9 191.3653.2 141.9654.3

0.961.2 1.761.1 2.560.8

4.864.3 7.165.2 11.866.3

Super pixel RNFL thickness with
‘‘Tmin,size,T1’’

47.1622.8 mm 40.0616.0 mm 26.669.2 mm

21.767.5 mm 21.266.6 mm 17.663.9 mm

1.360.8 1.460.6 1.860.5

5.463.4 5.562.3 7.763.0

Super pixel RNFL thickness with ‘‘size .T2’’

70.9611.7 mm 65.268.6 mm 52.3613.1 mm

27.065.5 mm 22.863.5 mm 18.167.0 mm

0.660.2 0.660.4 0.860.5

2.460.4 2.660.8 2.961.3

Distributions The value of each bin in the normalized
histogram distribution of super pixel
RNFL thickness

Figure 5A Figure 5A Figure 5A

The value of each bin in the normalized
histogram distribution of super pixel size

Figure 5B Figure 5B Figure 5B

Average RNFL thickness Thickness at 3.4mm circle 105.3618.6 mm 96.1615.5 mm 72.3619.3 mm

Thickness at entire scan region 89.5615.9 mm 79.0613.3 mm 61.8615.1 mm

Thickness at entire scan region excluding
ONH region

88.0615.6 mm 78.4613.5 mm 61.1615.2 mm

Data reported as Mean 6 SD.
Tmin,T1, T2– Thresholds of minimal super pixel size, small super pixel size and large super pixel size respectively, RNFL – retinal nerve fiber layer, ONH – optic nerve
head.
doi:10.1371/journal.pone.0055476.t001
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with the blood vessel mapping were extracted from each image

(Fig. 3). The normalized RNFL map after applying the bundle

path correction were compared with the normative database point

by point to obtain a deviation map, with the cut-off value set to

mean value minus stardard deviation (SD). Unlike the conven-

tional setting of cut-off value, i.e., mean value - 2SD in most OCT

devices, this new setting is more sensitive to identify the case at the

border of the normative database, which might be an indicator of

the structural changes at the early stage. With this new setting, the

RNFL data lower than the bottom 15.9% of the normative

database was set with higher probability for the further process,

comparing with the bottom 2.3% using the conventional setting.

The internal reflectivity of retinal nerve fiber layer has been

proved to be useful in glaucoma assessment. [11] The RNFL

internal reflectivity, was calculated by taking the average

reflectivity within the RNFL along each A-scan, with each voxel’s

reflectivity normalized to its A-scan’s saturation before the

averaging. Retinal blood vessel generated shadow at retina nerve

fiber layer, which was noise in the RNFL thickness computation.

Moreover, the vessel patterns varied randomly among subjects. To

minimize the vessel effect on the RNFL thickness map, the retinal

blood vessels in the 3D dataset were automatically detected using a

3D boosting algorithm [12] and filled out. The RNFL thickness of

each pixel located at the blood vessel region was replaced by a

value computed from all the non-vessel pixels on the RNFL

thickness map using bi-linear interpolation. The final feature map

is a function of the RNFL thickness and interal refleciviy after

accounting for the blood vessls and the deviation map.

3. Variable-size super pixel segmentation. Variable size/

shape super pixels were automatically mapped on the 2D feature

map by grouping homogeneous neighboring pixels using a ncut

algorithm. [13] The ncut algorithm is to partition an image into

dozens to thousands of small regions (called super pixels) by

grouping neighboring pixels, where pixels within a partitioned

region have homogenous properties while different partitioned

regions have maximal differences in their properties. One hundred

super pixels were initially segmented on the feature map. The size

of each super pixel was automatically adjusted with the pre-

defined criteria based on the pathologic contexts of glaucoma. To

be more sensitive to RNFL thinning (glaucomatous damage),

smaller super pixels were assigned to thinner RNFL. Each initially

segmented super pixel was recursively partitioned into N more

super pixels, while N was a function of mean, standard deviation,

size, and deviation to the normative database of the given super

pixel compared with global mean and standard deviation of the

2D feature map, written as:

N~

1, if h(Zsp,ssp,Nsp,Devsp)~1

a1(Zmax{Zsp)=(Zmax{Zavg)|(Nsp=Nmin),

if h(Zsp,ssp,Nsp,Devsp)~0 and Zsp§Zavg

a2(Zavg{Zsp)=Zavg|(Nsp=Nmin),

if h(Zsp,ssp,Nsp,Devsp)~0 and ZspvZavg

8>>>>>>>><
>>>>>>>>:

ð1Þ

where Zsp,ssp,Nsp,Devsp represented the average RNFL thick-

ness, RNFL standard deviation, size and average deviation of the

given super pixel, Nmin was a pre-defined minimal size of super

pixel, Zavg and Zmax were the average and maximal thickness with

the entire 2D RNFL thickness map. h was defined with a series of

criteria with ‘‘IF’’, ‘‘logical AND’’, ‘‘logical OR’’ and ‘‘logical

NOT’’ operations, which corresponded to different super pixel

conditions need further partition or not, written as:

Figure 5. Normalized histogram distribution of super pixel. (A) RNFL thickness and (B) super pixel size for healthy (H), glaucoma suspect (GS),
and glaucomatous (G) eyes.
doi:10.1371/journal.pone.0055476.g005

Table 2. Characteristics of the study participants.

Healthy
n = 44

Glaucoma
Suspect
n = 59

Glaucoma
n = 84 p-value

Age (years) 54.868.9 61.969.6 66.968.7 ,0.001*

Male/female 5/18 13/24 21/30 0.269{

MD (dB) 20.0961.28 20.4561.64 25.8865.80 ,0.001{

Values are means 6 standard deviation.
MD – visual field mean deviation, * –ANOVA with linear model, { – Chi square
test, { – ANOVA with mixed effects models.
doi:10.1371/journal.pone.0055476.t002
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h~

0, if (Zspw1:1|Zavg), and (Nspw2|Nmin),

and (Devspv0:95) and (ssp§0:2|savg)

0, if (ZspvZavg), and (NspwNmin), and (Devspv0:95)

1, Otherwise

8>>>>><
>>>>>:

ð2Þ

a1 and a2were two constants chosen based on the segmentation

logic, which were used to control the number of segments

partitioned in the given super pixel. For a1, because super pixel

RNFL thickness was thicker than the average RNFL thickness, this

super pixel was further partitioned only if its standard deviation

was large enough. We wanted the super pixel partitions into

several big segments, and recursively partitions into small segments

in the following iterations. Therefore, a1 was set to 0.2 to lower the

number of the segments. For a2, since the super pixel RNFL

thickness was thinner than the average RNFL thickness, we

wanted to partition the super pixel into many small segments.

Therefore, a2 was set to 1.2 to higher the number of segments.

The stability is an important parameter in ncut algorithm to

control the super pixel segmentation result. It was set to a small

value, i.e., 20.1, to let the 100 initial super pixels have more

flexible boundaries. In the recursive partition processing, to make

Figure 6. The receiver operating characteristic curves (ROCs) computed with the machine classifier method and Cirrus HD-OCT
software generated mean cpRNFL thickness. (H) healthy eyes, (G) glaucomatous eyes, (GS) glaucoma suspect eyes.
doi:10.1371/journal.pone.0055476.g006
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the super pixels having smooth boundaries and compact shapes,

the stability variable was set to a relatively large value, i.e. 20.006.

In summary, the super pixel number and size were automat-

ically adjusted by initial segmentation and recursive partition. The

segmented feature map provided a qualitative analysis with more

natural representation, in which damaged areas tended to have

smaller super pixels, while normal regions had larger super pixels

(Fig. 4).

4. Feature Extraction. Super pixel map provided a qualita-

tive representation of the structural damage. To summarize the

map as quantitative disease indices, a total of 68 super pixel

features were extracted and used as the inputs of machine learning

classifiers analysis (Table 1). Three thresholds, Tmin, T1, and T2

were set to 50, 133, and 400 pixels respecitvely based on the

experiments to obtain two sub-groups of super pixel with large size

and small size. The features were calculated from all super pixels

together with two sub-groups.

5. Glaucoma Classification. Glaucoma classification was

performed by implementing LogitBoost adaptive boosting algo-

rithm, [14] which was designed as a supervised two-class machine

classifier. Because the machine classifier was a two-class classifier,

only two of the three clinical groups (healthy, glaucoma suspects,

and glaucoma) were used to train the classifier each time. The

output of the classifier was a continuous number ranging from

negative (health) to positive (disease) value. Ten-fold cross

validation was used to train and test the machine classifier.

Statistical Analysis and Evaluation
The software performance was evaluated by the area under the

receiver operating characteristics (AUCs) of the machine classifier

outputs, for discriminating between healthy and diseased eyes.

AUCs were compared with those of the conventional method of

diagnosis – the mean and best quadrant measurements of the

circumpapillary RNFL (cpRNFL) thickness generated by Cirrus

HD-OCT software. If both eyes had the same clinical diagnosis,

one eye was randomly selected from each subject to compute

AUCs. AUCs were compared using the Jackknife method, [15]

which is equivalent to the method of DeLong et al. [16] Sensitivity

at the 85% specificity was calculated for each of the machine

classifier outputs and compared with the measurements of

conventional cpRNFL analysis.

Results

One hundred and ninety-two eyes of 96 subjects (44 healthy, 59

glaucoma suspect and 89 glaucomatous eyes) qualified for the

study. The characteristics of the study participants were summa-

rized in Table 2. Five glaucomatous eyes (5 subjects; 5.2%) were

excluded from the study due to retinal layer segmentation failure.

Examples of the results of super pixel mapping are given in

Fig. 4. The super pixel boundaries were superimposed on the

processed grey scale RNFL thickness map, where a brighter pixel

intensity corresponded to a thicker RNFL. Different super pixel

distribution patterns are evident in the various stages of

glaucomatous damage. The population’s average distributions of

super pixel RNFL thickness and size for healthy, glaucoma

suspects, and glaucomatous eyes are illustrated in Fig. 5.

Glaucoma discriminating performance was assessed with three

different grouping combinations: healthy vs glaucoma+glaucoma

suspects (HvGGS), healthy vs glaucoma suspects (HvGS), and

healthy vs glaucoma (HvG). Table 3 gives the performance of

cpRNFL thickness measurements in global and 4 quadrants.

Comparing with the conventional cpRNFL thickness, machine

classifier provided better AUCs and higher sensitivities (Table 4

and Fig. 6). The AUC for HvGS was statistically significantly

higher with the super pixels analysis than the conventonal

cpRNFL thickness (0.855 vs 0.707, respectively, p = 0.031,

Jackknife test), while no significant difference was detected with

HvGGS and HvG. Comparing with the best quadrant measure-

ments, i.e., the inferior quadrant, the machine classifier showed

higher sensitivities for HvGGS and HvGS without reaching

statistical significance (Table 5).

Discussion

Current standard quantitative glaucoma analysis using 3D SD-

OCT have substantial room for improvement especially for

detection of early glaucoma. [7,8] One possible reason is that only

a small fraction of the 3D dataset is used in the analysis. We

suggest a new 3D OCT data analysis method, using machine

Table 3. Area under the receiver operating characteristic
curves (AUCs) of conventional circumpapillary RNFL (cpRNFL)
thickness measurements in global and four quadrants from
Cirrus HD-OCT software.

Retinal nerve fiber layer thickness

Mean Temporal Superior Nasal Inferior

HvGGS 0.812 0.638 0.781 0.604 0.862

HvGS 0.707 0.598 0.639 0.519 0.807

HvG 0.872 0.656 0.844 0.614 0.916

HvGGS – healthy vs glaucoma+glaucoma suspects, HvGS – healthy vs glaucoma
suspects, HvG – healthy vs glaucoma.
doi:10.1371/journal.pone.0055476.t003

Table 4. Area under the receiver operating characteristic curves (AUCs) computed with machine classifier and Cirrus HD-OCT
software generated mean cpRNFL thickness.

cpRNFL thickness Boosting machine classifier

AUC
Sensitivity at the 85%
Specificity AUC AUC Difference{ [95% CI]

Sensitivity at the 85%
Specificity

HvGGS 0.812 45.5% 0.847 0.035 [20.053, 0.122] 90.9%

HvGS 0.707 45.5% 0.855 0.148* [0.013, 0.283] 86.4%

HvG 0.872 63.6% 0.903 0.031 [20.035, 0.098] 81.8%

{Difference with RNFL thickness AUC, * statistically significant.
HvGGS – healthy vs glaucoma+glaucoma suspects, HvGS – healthy vs glaucoma suspects, HvG – healthy vs glaucoma, CI – confidence interval.
doi:10.1371/journal.pone.0055476.t004

3D SD-OCT Glaucoma Detection

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e55476



learning technique based on variable-size super pixel mapping to

quantitatively summarize the full 3D dataset and automatically

identify glaucomatous eyes. We demonstrated that this method

was better at discriminating glaucoma suspect eyes from healthy

eyes (HvGS) comparing with mean cpRNFL thickness, and

performed at least as well for HvG and HvGGS. The improved

performance in discriminating early disease is because this method

is tailored to detect localized damage that typically occurs at early

stage of glaucoma. However, in late stage of the disease, a

globalize damage is more common where the variably sized super

pixel analysis has the same performance as the cpRNFL analysis.

There are several advantages of variable size/shape super pixel

machine classifier analysis. First, flexible size and shape super pixel

processing provides more natural representation to fit the variable

spatial architecture of the structural damages. Many ocular

diseases demonstrate areas of pathologic change with measureable

differences from unaffected areas when considering features such

as retinal layer thickness, internal reflectivity, etc.[6,17–19] These

pathologically affected areas usually share similar characteristics

but with variable magnitude in variable shape and size. Therefore,

variable-size super pixel segmentation efficiently depict this natural

representation by grouping similar neighboring sampled points

based on the homogeneity of various features. Second, super pixel

processing is computationally efficient. Super pixel mapping

reduces the number of data points from over 20,000 sampling

points down to a few hundred super pixels by condensing the

redundant information. This is a common approach for handling

such a high density data with the balance of preserving meaningful

information and improving the computational efficiency. More-

over, machine classifier provides an efficient and optimized way to

combine dozens of super pixel features together with global RNFL

features into one key index to automatically identify diseased eyes.

The performance of the software was based on the combination of

super pixel processing and machine learning technique. Our study

showed that the new super pixel analysis method quantitatively

summarize the full 3D OCT dataset, which outperformed the

conventional cpRNFL analysis in terms of discriminating ability

and diagnostic sensitivity for early glaucoma detection.

To make this super pixel analysis sensitive to the localized

damages, we set a criterion of super pixel mapping so that smaller

super pixel corresponded to the thinner RNFL. With the natural

distribution of the retinal nerve fiber, the RNFL is thicker in

superior-temporal and inferior-temporal areas and thinner in

temporal and nasal areas. In our method, the deviation from the

normative database was used to partially control the super pixel

mapping (Equation 1 and 2). Therefore, although temporal and

nasal areas had relatively thinner RNFL thickness, they would not

have smaller super pixels if the RNFL thickness was within the

range of the normative database.

In the glaucoma classification step, both local features (super

pixel feautres) and glocal features (global RNFL measurements)

were used to train and test the boosting machine classifier. Global

featuares, such as cpRNFL, were able to discriminate most

glaucomatous eyes. Local features were able to enhance localized

glaucomatous damages for eyes at the early stages of the disease.

Therefore, combining both glocal and local featuares in the

machine classifier improved the diagnostic sensitivity comparing

with the conventional cpRNFL measurement. Including more

features and applying feature selection operation may further

enhance the performance of the machine classifier.

Searching the literature, we were able to find only one

publication where glaucoma strctural analysis used the informa-

tion from the entire 3D dataset. [7] In that study, 2D RNFL

deviation map was analyzed and subjectively graded into 5

different groups. Compared with conventional cpRNFL analysis,

this analysis provided additional spatial and morphologic infor-

mation of RNFL damage, and significantly improved the

diagnostic sensitivity for glaucoma detection. This is consistent

with the result of our super pixel analysis study that analyzed the

full 3D dataset providing more localized and detailed information

of structural damages, and showing the potential to detect

structural damage in early stages of the disease. The advantages

of our method are the fully automated process and advanced data

analysis compared to the subjective grading system used in the

previous study. The expansion of this analysis will be including the

distribution, shape and spatial locations of the localized structural

changes with the super pixel and machine classifier analysis, which

may further improve the performance of the 3D data analysis.

In this study we used only one SD-OCT device out of a variety

of devices that are commercially available. However, the

conceptual approach can be applied to any of these devices.

In conclusion, the super pixel processing with machine classifier

analysis generated from 3D SD-OCT data has the potential to

improve early detection of glaucomatous structural damages. This

method can be easily extended to other ocular diseases by

modifying the features corresponding to the various pathologic

contexts.
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Table 5. Area under the receiver operating characteristic curves (AUCs) computed with machine classifier and Cirrus HD-OCT
software generated cpRNFL thickness in inferior quadrant.

Inferior cpRNFL thickness Boosting machine classifier

AUC
Sensitivity at the 85%
Specificity AUC AUC Difference{ [95% CI] Sensitivity at the 85% Specificity

HvGGS 0.862 72.7% 0.847 20.015 [20.097, 0.066] 90.9%

HvGS 0.807 72.7% 0.855 0.048 [0.093, 0.189] 86.4%

HvG 0.916 81.8% 0.903 20.013 [20.082, 0.056] 81.8%

{Difference with inferior RNFL thickness AUC.
HvGGS – healthy vs glaucoma+glaucoma suspects, HvGS – healthy vs glaucoma suspects, HvG – healthy vs glaucoma, CI – confidence interval.
doi:10.1371/journal.pone.0055476.t005
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