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Abstract

Many virus-encoded proteins have intrinsically disordered regions that lack a stable, folded three-dimensional structure.
These disordered proteins often play important functional roles in virus replication, such as down-regulating host defense
mechanisms. With the widespread availability of next-generation sequencing, the number of new virus genomes with pre-
dicted open reading frames is rapidly outpacing our capacity for directly characterizing protein structures through crystal-
lography. Hence, computational methods for structural prediction play an important role. A large number of predictors fo-
cus on the problem of classifying residues into ordered and disordered regions, and these methods tend to be validated on a
diverse training set of proteins from eukaryotes, prokaryotes, and viruses. In this study, we investigate whether some pre-
dictors outperform others in the context of virus proteins and compared our findings with data from non-viral proteins. We
evaluate the prediction accuracy of 21 methods, many of which are only available as web applications, on a curated set of
126 proteins encoded by viruses. Furthermore, we apply a random forest classifier to these predictor outputs. Based on
cross-validation experiments, this ensemble approach confers a substantial improvement in accuracy, e.g., a mean 36 per
cent gain in Matthews correlation coefficient. Lastly, we apply the random forest predictor to severe acute respiratory syn-
drome coronavirus 2 ORF6, an accessory gene that encodes a short (61 AA) and moderately disordered protein that inhibits
the host innate immune response. We show that disorder prediction methods perform differently for viral and non-viral
proteins, and that an ensemble approach can yield more robust and accurate predictions.

Key words: intrinsically disordered proteins; protein disorder prediction; virus proteins; ensemble classifier; machine
learning.

1. Introduction

For almost a century, it was assumed that proteins required a
properly folded and stable three-dimensional or tertiary struc-
ture in order to function (Lichtenthaler 1995; Necci et al. 2018;
Uversky 2019). More recently, it has become evident that many
proteins and protein regions are disordered, which are referred
to as intrinsically disordered proteins (IDPs) and intrinsically
disordered protein regions (IDPRs), respectively. Both IDPs and

IDPRs can perform important biological functions despite
lacking a properly folded and stable tertiary structure (Wright
and Dyson 1999; Uversky 2019).

These kinds of proteins are an important area of research
because they play major roles in cell regulation, signaling, dif-
ferentiation, survival, apoptosis, and proliferation (Kozlowski
and Bujnicki 2012; Katuwawala, Oldfield, and Kurgan 2019).
Some are also postulated to be involved in disease etiology and
could represent potential targets for new drugs (Uversky,
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Oldfield, and Dunker 2008; Hu et al. 2016). Virus-encoded IDPs
facilitate multiple functions such as adaptation to new or dy-
namic host environments, modulating host gene expression to
promote virus replication, or counteracting host-defense mech-
anisms (Gitlin et al. 2014; Xue et al. 2014; Mishra et al. 2020).
IDPRs may be more tolerant of non-synonymous mutations
than ordered protein regions (Walter et al. 2019), which may
partly explain why virus genomes can tolerate high mutation
rates (Tokuriki et al. 2009; Sanjuán et al. 2010). Viruses also have
very compact genomes with overlapping reading frames
(Cotmore et al. 2005; Holmes 2009), in which mutations may po-
tentially modify multiple proteins. This may confer viruses a
greater capacity to acquire novel functions and interactions
(Belshaw, Pybus, and Rambaut 2007). Overlapping regions tend
to be more structurally disordered when compared to non-
overlapping regions (Rancurel et al. 2009).

Several experimental techniques are available to detect IDPs
and IDPRs. The most common methods identify either protein
regions in crystal structures that have unresolvable coordinates
(X-ray crystallography) or regions in nuclear magnetic reso-
nance (NMR) structures that have divergent structural confor-
mations (Ferreon et al. 2010; DeForte and Uversky 2016;
Katuwawala, Oldfield, and Kurgan 2019). Other experimental
techniques include circular dichroism (CD) spectroscopy and
limited proteolysis (LiP) (Necci et al. 2018). The challenge, how-
ever, is that these methods are very labor-intensive and difficult
to scale up to track the rapidly accumulating number of unique
protein sequences in public databases (Ferreon et al. 2010;
Katuwawala, Oldfield, and Kurgan 2019). At the time of this
writing, over 60 million protein sequences have been deposited
in the Uniprot database, yet only 0.02 per cent of these sequen-
ces have been annotated for disorder (Katuwawala, Oldfield,
and Kurgan 2019). As a result, numerous computational techni-
ques that could potentially predict intrinsic disorder in protein
sequences have been developed. These techniques work based
on the assumptions that compared to IDPs and IDPRs, ordered
proteins have a different amino acid composition as well as lev-
els of sequence conservation (Dunker et al. 2001; Uversky 2002).
To date, about sixty predictors for intrinsic disorder in proteins
have been developed (Atkins et al. 2015; Necci et al. 2018; Liu,
Wang, and Liu 2019), which can be broadly classified into three
major categories. The first category, the scoring function-based
methods, predict protein disorder solely based on basic statis-
tics of amino acid propensities, physio-chemical properties of
amino acids, and residue contacts in folded proteins to detect
regions of high energy. A second category is characterized by
the use of machine learning classifiers (e.g. regularized regres-
sion models or neural networks) to predict protein disorder
based on amino acid sequence properties. The third category
are meta-predictors that predict disorder from an ensemble of
predictive methods from the other two categories (Li et al. 2015;
Necci et al. 2018; Katuwawala, Oldfield, and Kurgan 2019).

Different predictors of intrinsic disorder are developed on a
variety of methodologies and will inevitably vary with respect
to their sensitivities and biases in application to different pro-
tein sequences. As a result, it has been relatively difficult to
benchmark these methods to identify a single disorder predic-
tion method that can be classified as the most accurate relative
to the others (Atkins et al. 2015). The DisProt database is a good
resource for obtaining experimental data that has been manu-
ally curated for disorder in proteins, and can be used for bench-
marking the performance of disorder predictors. As of 27 April
2020, the Disprot protein database contained n¼ 3,500 proteins
of which 126 were virus-encoded proteins that have been

annotated for intrinsic disorder as a presence–absence charac-
teristic at the amino acid level (Piovesan et al. 2017; Hatos et al.
2020). Previously, Tokuriki et al. (2009) reported preliminary evi-
dence that when compared to non-viruses, viral proteins pos-
sess many distinct biophysical properties including having
shorter disordered regions. We are not aware of a published
study that has previously benchmarked predictors of intrinsic
disorder specifically for viral proteins. Here, we report results
from a comparison of twenty-one disorder predictors on viral
proteins from the DisProt database to firstly determine which
methods work best for viruses, and secondly to generate inputs
for an ensemble predictor that we evaluate alongside the pre-
dictors used individually.

2. Methods
2.1 Data collection

The Database of Protein Disorder (DisProt) (DisProt, 2000) was
used to collect virus protein sequences annotated with intrinsi-
cally disordered regions, based on experimental data derived
from various detection methods; e.g., X-ray crystallography,
NMR spectroscopy, CD spectroscopy (both far and near UV), and
protease sensitivity. DisProt records include the amino acid se-
quence and all disordered regions annotated with the respec-
tive detection methods as well as specific experimental
conditions. At the time of our study, DisProt contained 3,500
author-verified proteins, of which all viral proteins were col-
lected for the present study. A total of 126 virus proteins were
obtained, derived from different detection methods. Similarly, a
set of 126 non-viral proteins was sampled at random without
replacement from the protein database for comparison.

We evaluated a number of disorder prediction programs and
web applications. From the methods tested, we selected a sub-
set of predictors favoring those that were developed more re-
cently, are actively maintained, and performed well in previous
method comparison studies (Necci et al. 2018; Nielsen and
Mulder 2019). Where alternate settings or different versions
based on training data were available for a given predictor, we
tested all combinations. Our final set of 21 prediction methods
tested were: SPOT-Disorder2 (Hanson et al. 2019), PONDR-FIT
(Xue et al. 2010), IUPred2 (short and long) (Mészáros, Erd}os, and
Dosztányi 2018), PONDR (VLXT, XL1-XT, CAN-XT, VL3-BA, and
VSL2 variants) (Peng et al. 2006), Disprot (VL2 and variants VL2-
V, -C and -S; VL3, VL3H, and VSLB) (Vucetic et al. 2003), CSpritz
(short and long) (Walsh et al. 2011), and ESpritz (variants trained
on X-ray, NMR, and Disprot data) (Walsh et al. 2012). Although
several other predictor models have been released online, the
respective web services were unavailable or broken over the
course of our data collection.

To obtain disorder predictions from the methods that were
only accessible as web applications, i.e., with no source code or
compiled binary standalone distribution, we wrote Python
scripts to automate the process of submitting protein sequence
inputs and parsing HTML outputs. We used Selenium in con-
junction with ChromeDriver (v81.0.4044.69) (ChromeDriver:
WebDriver for Chrome 2000) to automate the web browsing and
form submission processes. For each predictor, we imple-
mented a delay of 90 s between consecutive protein sequence
queries to avoid overloading the webservers hosting the respec-
tive predictor algorithms with repeated requests. Due to issues
with the Disprot webserver, we were only able to obtain predic-
tions for the non-viral protein data set for thirteen of the
predictors.
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We converted each DisProt record to a binary vector corre-
sponding to ordered/disordered state of residues in the amino
acid sequence. To compare results between disorder prediction
algorithms, we dichotomized continuous-valued residue predic-
tions, i.e., intrinsic disorder probability, by locating the thresh-
old that maximized the Matthews correlation coefficient (MCC)
for each predictor applied to the DisProt training data. This opti-
mal threshold was estimated using Brent’s root-finding algo-
rithm as implemented by the optim function in the R statistical
computing environment (version 3.4.4). In addition, we calcu-
lated the accuracy, specificity, and sensitivity for each predictor
from the contingency table of DisProt residue labels and dichot-
omized predictions.

2.2 Ensemble classifier training and validation

To assess whether the accuracy of existing predictors could be
further improved on the virus-specific data set, we trained an
ensemble classifier on the outputs of all predictors as features.
Specifically, we used the random forest method implemented
in the scikit-learn (version 0.23.1) Python module (Pedregosa
et al. 2011), which employs a set of de-correlated decision trees
and averages their respective outputs to obtain an ensemble
prediction (Breiman 2001). To reduce bias, random forests fit the
same decision trees to many bootstrap samples of the training
data, and each committee of trees ‘votes’ for a particular classi-
fication (Hastie, Tibshirani, and Friedman 2001). By splitting the
trees based on different samples of features, random forests re-
duce the correlation between trees and the overall variance.

We split the viral protein data into random testing and train-
ing subsets, with 30 per cent of protein sequences reserved for
testing. Due to class imbalance in the data (i.e. only a minority
of residues are labeled as disordered), we used stratified ran-
dom sampling using the ‘StratifiedShuffleSplit’ function in the
scikit-learn module. This function stratifies the data by label so
that a constant proportion of labels is maintained in the train-
ing subset. Continuous-valued outputs from each predictor
were normalized to a zero mean and unit variance. Thus, we
did not apply the dichotomizing thresholds to these features
(predictor outputs) when training the random forest classifier.

We used five-fold cross-validation to tune the four hyper-
parameters of the random forest classifier; namely: (1) the num-
ber of decision trees; (2) the maximum depth of any given deci-
sion tree; and the minimum number of samples required to
split (3) an internal node or (4) a leaf node. To further minimize
the effect of class imbalance in our data, we used over-sampling
to balance the data with synthetic cases (Japkowicz 2000). As
suggested in Hemmerich, Asilar, and Ecker (2020), we applied an
over-sampling procedure at every iteration of the cross-
validation analysis to avoid over-optimistic results. We used
the Python package imbalanced-learn (Lemaı̂tre, Nogueira, and
Aridas 2017) to over-sample the minority class (residues in in-
trinsically disordered regions) using the synthetic minority
oversampling technique (SMOTE) (Chawla et al. 2002). SMOTE
generates new cases by sampling the original data at random
with replacement, evaluates each sample’s k nearest neighbors
in the feature space, and then generates new synthetic samples
along the vectors joining the sample to one of the neighboring
points. Over-sampling enables decision trees to be more gener-
alizable by amplifying the decision region of the minority class.

Using the optimized tuning parameters, we fit the final
model on all of the training data. We applied this final model to
generate predictions on the reserved testing data and calculated
the MCC, sensitivity, specificity, and accuracy. We repeated this

process ten times with randomly generated seeds to split the
data into training and testing subsets, and averaged these per-
formance metrics across replicates.

2.3 Comparison to non-viral data

To characterize how the performance of individual disorder pre-
dictors might vary among proteins from viruses and non-
viruses, we computed the root mean square error (RMSE) for all
continuous-valued predictions relative to the Disprot label (0, 1).
We visualized this error distribution using principal component
analysis (PCA). As well, we trained a support vector machine
(SVM) on the RMSE values to determine whether the virus/non-
virus labels were separable in this space. We used the default
radial basis kernel with the C-classification SVM method imple-
mented in the R package e1071 (Chang and Lin 2011), with hun-
dred training subsets sampled at random without replacement
for half of the data, and the remaining half for validation.

2.4 Data availability

We have released the data generated in this study and Python
scripts for automating queries to the disorder prediction web
servers under a permissive free software license at https://
github.com/PoonLab/tuning-disorder-virus.

3. Results and discussion
3.1 Viral and non-viral proteins have similar levels of
disorder

We obtained 126 viral and 126 randomly selected non-viral pro-
tein sequences from the DisProt database. The sequences were
already annotated manually by a panel of experts for the pres-
ence or absence of disorder at each amino acid position, based
on experimental data (Hatos et al. 2020). Supplementary Tables
S1 and S2 summarize the composition of the viral and non-viral
protein datasets, respectively. The viral protein data set repre-
sents twenty-two virus families and forty-eight species. Not
surprisingly, human immunodeficiency virus type 1 was dispro-
portionately represented in these data with sixteen entries cor-
responding to seven different gene products. Similarly, the non-
viral protein data set was predominated by seventy-five human
proteins, followed by twenty-three proteins from the yeast
Saccharomyces cerevisiae. We found no significant difference in
amino acid sequence lengths between viruses and all other
organisms (Wilcoxon rank-sum test, P¼ 0.60), with median
lengths of 355 [interquartile range, IQR: 145–846] and 395 [203–
729] amino acids, respectively. Furthermore, the dispersion in
sequence lengths was significantly greater among viral proteins
relative to the nonviral proteins (Ansari-Bradley test, P¼ 0.0028).
There was no significant difference in the proportion of residues
in disordered regions between the viral and non-viral data
(Wilcoxon P¼ 0.97). The mean proportions were 0.30 (interquar-
tile range, IQR [0.07–0.42]) for viral and 0.30 [0.07–0.47] for non-
viral proteins, and similar numbers of proteins exhibited com-
plete disorder (13 and 9, respectively).

3.2 Divergent predictions of disorder in viral proteins

Our first objective was to benchmark the performance of differ-
ent predictors of intrinsic protein disorder to determine which
predictor conferred the highest accuracy for viral proteins.
These predictors generate continuous-valued outputs that gen-
erally correspond to the estimated probability that the residue
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is in an intrinsically disordered region. To create a uniform
standard for comparison to the binary presence-absence labels,
we optimized the disorder prediction thresholds as a tuning pa-
rameter for each predictor for the viral and non-viral datasets,
respectively (Supplementary Tables S3 and S4). Put simply, resi-
dues with values above the threshold were classified as disor-
dered. We used both the MCC (ranging from �1 to þ 1
(Boughorbel, Jarray, and El-Anbari 2017)) and area under the
receiver-operator characteristic curve (AUC, ranging from 0 to 1)
to quantify the performance of each predictor.

These quantities were significantly correlated (Spearman’s
q ¼ 0:95; P ¼ 5:2� 10�6) and identified ESpritz.Disprot,
CSpritz.Long, and SPOT.Disorder2 as the most effective predic-
tors for the viral proteins (Fig. 1A). ESpritz.Disprot obtained the
highest overall values for both MCC and AUC (0.46 and 0.85, re-
spectively). We note that SPOT.Disorder2 has recently been
reported to exhibit a high degree of prediction accuracy for pro-
teins of varying length (Hanson et al. 2017). In contrast, the pre-
dictors Disprot-VL2-V, PONDR-XL1, and PONDR-CAN performed
very poorly on the viral dataset with MCC < 0.2 and AUC < 0.65.
VL2-V is a ‘flavour’ of the VL2 predictors which were allowed to
specialize on different subsets of a partitioned training set; for
example, V tended to call higher levels of disorder in proteins of
Archaebacteria (Vucetic et al. 2003). Similarly, PONDR-XL1 was
optimized to predict longer disordered regions and PONDR-CAN
was trained specifically on calcineurins (a protein phosphatase)
that is known to perform poorly on other proteins (Romero et al.
2001).

Figure 1B compares the MCC values for non-viral and viral
protein data sets. Predictors exhibited substantially less varia-
tion in MCC for the non-viral data—put another way, the major-
ity of predictors were more accurate at predicting disorder in

viral proteins. The entire set of MCC, AUC, sensitivity, and spe-
cificity values for both data sets are summarized in
Supplementary Tables S3 and S4. To examine potential differ-
ences among predictors in greater detail, we calculated the
RMSE for each protein and predictor and used a principal com-
ponents analysis to visualize the resulting matrix (Fig. 2). The
PCA indicated that the different predictors did not exhibit mark-
edly divergent error profiles at the level of entire proteins.
However, an SVM classifier trained on a random half of these
data obtained, on average, an AUC of 0.75 (n¼ 100, range ¼ 0.65–
0.83), indicating that the viral and non-viral protein labels were
appreciably separable with respect to these RMSE values.

3.3 Ensemble prediction

Ensemble classifiers are expected to perform better than their
constituent models because they can reduce overfitting of the
data by the latter (Attia 2012). Although multiple predictive
models of protein disorder employ an ensemble approach, none
of them has been trained specifically on viral protein data. We
trained a random forest classifier on the outputs of the predic-
tors used in our study using ten random training subsets of the
viral protein data. Next, we validated the performance of this
ensemble model in comparison to these individual predictors to
determine if training on viral data conferred a significant ad-
vantage. We found that the ensemble classifier performed sub-
stantially better, with a mean MCC of 0.72 (range 0.62–0.86). This
corresponded to a roughly 27 per cent improvement relative to
ESpritz.Disorder, the best performing disorder predictor on
these data (Fig. 1).

To examine the relative contribution of the different predic-
tors used as inputs for the ensemble method, we evaluated the
feature importance of each input (Fig. 3)—roughly the
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prevalence of that feature among the decision trees comprising
the random forest. We observed that the individual accuracy of
a predictor did not necessarily correspond to its feature impor-
tance. Specifically, the best predictors (ESpritz.Disprot,

CSpritz.Long, and SPOT-Disorder.2) tended to be assigned
higher importance values. On the other hand, both Disprot-
VL2.C and Disprot-VL2.V also displayed high importance de-
spite having some of the worst accuracy measures when evalu-
ated individually (Fig. 1).

3.4 Example: SARS-CoV-2 accessory protein 6

To illustrate the use of our ensemble model on a novel protein,
we applied this model and the twenty-one individual predictors
to the accessory protein encoded by ORF6 in the novel 2019 co-
ronavirus that was first isolated in Wuhan, China (designated
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)).
ORF6 is one of the eight accessory genes of this virus. Its protein
product is involved in antagonizing interferon activity thereby
suppressing host immune response (Yuen et al. 2020). The pro-
tein is predicted to be highly disordered, particularly in its C-ter-
minal region that contains short linear motifs involved in
numerous biological activities (Giri et al. 2020). We used a heat-
map (Fig. 4) to visually summarize results from the ensemble
method and individual predictors, mapped to the ORF6 amino
acid sequence. Overall, most predictors assigned a higher prob-
ability of disorder in the C-terminal region of the protein, with
the conspicuous exception of PONDR-XL1 and PONDR-CAN,
which did not predict any disordered residues in this region. We
also observed considerable variation among predictors around
this overall trend. Although the PONDR-XL1 predictor is docu-
mented to omit the first and last fifteen residues from disorder
predictions, we observed that only fourteen residues were
reported this way—this treatment was also obtained for
PONDR-CAN, although it was not a documented behavior of
that predictor.
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3.5 Concluding remarks

IDPRs play an essential role in many viral functions (Mishra
et al. 2020). It is therefore important to predict these
regions accurately in order to make biological inferences
from sequence variation. In this study, we found that disor-
der is as prevalent in virus proteins as non-virus proteins,
and that predictive models of intrinsic disorder exhibit dif-
ferent biases when evaluated on viral versus non-viral pro-
teins. Moreover, we show that the inherent variation
among different predictors can yield discordant results
when applied to the same virus protein sequence, and that
this variation can be mitigated using an ensemble learning
approach.

Though our results suggest that an ensemble method can
yield more accurate predictions of intrinsic disorder—or at least,
predictions that were more concordant with an expert-curated
database of intrinsic protein disorder (Hatos et al. 2020)—we
note that many of these predictors could only be accessed
through web applications. Requiring access to a number of on-
line resources that are not always available (due, for example,
to a local network outage) presents a significant obstacle to the
practical utility of an ensemble learning approach. Hence, we
encourage researchers in the field of disorder prediction to sup-
port open science by releasing their source code or compiled bi-
naries for local execution.

Data availability

All data and scripts are released under a permissive free license
(MIT) at https://github.com/PoonLab/tuning-disorder-virus.

Supplementary data

Supplementary data are available at Virus Evolution online.
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