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An important question in neuropathology involves determining the antigens that
are targeted during demyelinating disease. Viral infection of the central nervous sys-
tem (CNS) leads to T-cell responses that can be protective as well as pathogenic. In the
Theiler’s murine encephalomyelitis virus (TMEV) model of demyelination it is known
that the immune response to the viral capsid protein 2 (VP2) is critical for disease
pathogenesis. This study shows that expressing the whole viral capsid VP2 or the min-
imal CD8-specific peptide VP2121-130 as “self” leads to a loss of VP2-specific immune
responses. Loss of responsiveness is caused by T cell-specific tolerance, as VP2-specific
antibodies are generated in response to infection. More importantly, these mice lose
the CD8 T-cell response to the immunodominant peptide VP2121-130, which is critical for
the development of demyelinating disease. The transgenic mice fail to clear the infec-
tion and develop chronic demyelinating disease in the spinal cord white matter. These
findings demonstrate that T-cell responses can be removed by transgenic expression
and that lack of responsiveness alters viral clearance and CNS pathology. This model
will be important for understanding the mechanisms involved in antigen-specific T-cell
deletion and the contribution of this response to CNS pathology.

Brain Pathol 2007;17:184–196.

INTRODUCTION

Immunologic tolerance has been
defined in many ways and can be acquired
through several different mechanisms. T-
cells that encounter peripheral antigen in
the absence of co-stimulation are either
rendered anergic to that particular antigen
or develop into T regulatory cells (41).
During thymic development T cells are
selected for their recognition of self anti-
gens in the context of major histocompat-
ibility complex (MHC) molecules where a
majority of high affinity clones are then
deleted from the population of thymic
emigrants (10). Recent evidence has sug-
gested that a portion of these high affinity
clones may assume an alternative pathway
that results in the development of antigen-
specific T regulatory cells (1). From the
perspective of autoimmune disease how-
ever, the goal of tolerance induction is to
abrogate a specific T-cell response that is
initiating or perpetuating an immune-
mediated pathology, while leaving the

remainder of the T-cell repertoire intact.
The manipulation of antigen-specific T
cells is being used as therapy for a number
of autoimmune diseases, including diabe-
tes, myasthenia gravis and multiple sclero-
sis (MS) (19, 34). These therapies have
been used to modulate T cell receptor/
MHC/peptide interactions in both a
peptide-specific and a peptide-non-specific
manner in the hopes of inducing non-
responsiveness to the target antigen. The
precise mechanisms that lead to the thera-
peutic effect, however, have not been
identified. Several hypotheses have been
proposed, including deletion, anergy or the
induction of T regulatory cells (8, 39). A
consensus has not been reached and fur-
ther study into the mechanism of tolerance
induction is needed to verify the optimal
treatment strategy.

Our laboratory uses the Theiler’s murine
encephalomyelitis virus (TMEV) model of
multiple sclerosis to study the mechanisms
involved in immune-mediated demyelina-

tion. Intracranial infection with TMEV
leads to an encephalitis that is resolved in
all strains of mice, however, certain strains
develop a chronic infection and demyeli-
nation in the spinal cord white matter (30).
The MHC has been shown to be critical
for TMEV-induced immunopathology,
particularly the H-2D region of the class
I locus (29). H-2Db mice resolve the
encephalitis associated with TMEV infec-
tion and generate a robust CD8+ T-cell
response that leads to viral clearance (20).
In contrast, mice of the H-2f,m,s,q,u haplo-
types resolve the encephalitis associated
with infection but fail to clear the virus and
develop a chronic infection in the spinal
cord that is associated with axonal demy-
elination in the spinal cord white matter
(30).

The viral capsid protein viral protein 2
(VP2) has been shown to be targeted by
the immune system during TMEV infec-
tion. These responses include B-cell
responses as observed by VP2-specific anti-
body (4), CD4 T-cell responses which
secrete IFN-γ (14) as well as CD8 T-cell
responses that have cytolytic activity (3).
One peptide antigen from VP2, however,
has been shown to be critical for resistance
to TMEV infection. The peptide VP2121-130

(FHAGSLLVFM) of TMEV is an immu-
nodominant peptide recognized by CD8+
T cells in the context of H-2Db (12) and
its recognition is essential for the protec-
tion from viral persistence. Further, deple-
tion of antigen-specific CD8+ T cells
before infection using VP2121-130 peptide
blocked the resistance to TMEV-induced
demyelination, demonstrating the impor-
tance of this antigen for viral clearance and
susceptibility to demyelination (20).
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To test whether we could delete antigen-
specific T cells using a genetic approach we
generated mice that express the whole VP2
capsid or the VP2121-130 peptide as self
antigens. We chose the whole VP2 protein
as well as the antigenic peptide so that
we could rule out the possibility that
sequences flanking the VP2121-130 peptide
would be necessary for presentation on
MHC class I molecules in the thymus. Our
hypothesis was that expression of these
transgenes in mice would lead to toleriza-
tion of T cells reactive to these antigens
and that this would lead to a change in
neuropathology.

This model allows us to monitor the
induction of tolerance by assessing the
presence of pathology not usually seen in
resistant mice. Although previous studies
have been able to demonstrate depletion of
antigen-specific T cells using peptides (5),
evidence has also emerged that peptide
therapy may not be effective at deleting T
cells (28, 38). In addition, peptide therapy
is being used as a method to promote
antigen-specific T-cell activation and
immunity (6) and this therapy in an
inflammatory setting could potentially
generate an adverse immune response (2,
13, 15, 27). Therefore, it is important to
understand the mechanisms involved in
the deletion of an antigen-specific response
to self antigen expressed in the thymus,
especially when considering what is known
about the limitations and heterogeneity of
peptide therapy.

This study shows that transgenic expres-
sion of the capsid protein VP2 and the
immunodominant peptide VP2121-130 led
to deletion of VP2 and VP2121-130 specific
CD8+ T cells from the inflammatory infil-
trate isolated from the brains of infected
mice. We demonstrate that deletion of
these epitope-specific T cells had a dra-
matic effect on the ability of resistant mice
to clear virus from the central nervous sys-
tem (CNS) and show that this results in
the development of demyelination in the
spinal cord white matter. Further, we show
that while antibody responses to TMEV
during infection were not changed in VP2
transgenic mice, these mice were unable to
generate VP2-specific antibodies when
immunized with recombinant VP2 pro-
tein, demonstrating a potential defect in
CD4 T helper cell responses or B cell
responses. Our findings are the first to

demonstrate an epitope-specific transgenic
deletion of CD8+ T cells that influences
pathologic sequelae. These findings will be
important in trying to better understand
the mechanisms underlying the deletion of
antigen-specific T cells.

MATERIALS AND METHODS

Virus and infection. The Daniels strain
of TMEV was used for all experiments.
Mice were injected intracranially with
2 × 105 plaque forming units of TMEV in
a volume of 10 µL. Analyses were per-
formed on day 7 and day 45 post TMEV
inoculation.

Mice. All non-transgenic FVB mice
were obtained from Jackson Laboratory
(Bar Harbor, ME). FVB Db mice were pro-
vided by Dr Larry Pease (20).

Generation of transgenic mice. Trans-
genic mice were generated by cloning
TMEV cDNA into the eukaryotic expres-
sion vector pUB6 which contains an
upstream human ubiquitin c promoter
(Invitrogen, Carlsbad, CA). Complemen-
tary DNAs were directionally cloned from
the TMEV clone pDAFL3 (24) using a
BamHI site on the 5′ end of the cloned
fragment and an EcoRV site on the 3′ end.
All constructs were cloned while maintain-
ing the HisTag included in the vector,
thereby allowing the possibility of identi-
fying these genes by using this marker. The
VP2121-130 construct was cut with Bgl II
and Nsp I to release an expression frag-
ment of length 1567 base pairs which
contained minimal vector sequence. This
construct encoded a 33 amino acid frag-
ment that included the 10 amino acids
comprising the immunodominant peptide
plus 5 amino acids on the carboxyl and
amino terminal ends to exclude the possi-
bility that flanking amino acids may be
necessary for loading the fragment onto
class I molecules in the endoplasmic retic-
ulum. In addition, the start codon in the
context of an appropriate Kozak sequence
were added on the 5′ end, which gave an
additional methionine and aspartic acid
residue on the amino terminus of the con-
struct. Further, an additional 11 amino
acids were added on the carboxy terminus,
which included a 5 amino acid linker
attached to the 6XHisTag. VP2 and 3D

constructs were cut with Bgl II and Pvu
II to yield fragments of 2352 bp and
2935 bp. The VP2 construct encoded a
279 amino acid product which included
the 267 amino acids of VP2. The 3D poly-
merase construct encoded a fragment that
included all 462 amino acids of this viral
RNA polymerase. All fragments were gel
purified and sequenced before injection
into embryos. Gel purified cDNA was
injected into FVB embryos for implanta-
tion into pseudo-pregnant females. All
embryo injections and implantations were
done at the Mayo Clinic Transgenic Core
Facility under the direction of Dr Chella
David. Tail samples from the offspring
were used to obtain genomic DNA for
determination of transgene integration.
Forty-nine potential founder mice were
screened by polymerase chain reaction
(PCR) for integration of the VP2 trans-
gene. Two mice positive for the transgene
were used to establish 2 VP2 transgenic
lines. Forty-six potential founder mice
were screened for the integration of the
VP2121-130 transgenic construct. Three mice
were determined to be positive for trans-
gene integration by PCR, two lines of
transgenic mice were established with mice
having the highest integration as deter-
mined by semi-quantitative PCR. Thirty-
nine potential founder mice containing the
3Dpol were screened for transgene integra-
tion, seven mice were positive and two of
these were used to establish lines. DNA
samples were screened using primers for
the particular TMEV gene as well as the
ubiquitin c promoter region. All mice used
in every experiment were screened by PCR
prior to their use in subsequent assays.
TMEV transgenic mice were then crossed
to FVB Db transgenic mice to generate a
line of TMEV resistant transgenic mice
that express H-2Db. All of these transgenic
lines behaved similarly to the wild-type
controls and no gross clinical or morpho-
logic abnormalities were observed in the
transgenic lines.

Expression of transgenes was assessed by
RT-PCR and western blotting. Total RNA
was isolated from the brain, spinal cord
and thymus of transgenic mice to deter-
mine expression of the transgenes. Briefly,
tissues were homogenized with a dounce
homogenizer and samples of the homoge-
nate were used to isolate RNA using the
RNeasy kit (Qiagen, Valencia, CA, USA).
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Real time reverse transcription PCR was
used to determine expression of transgenes
as well as relative amount of transcript.
Real-time RT-PCR was performed on the
Lightcycler 2.0 (Roche Diagnostics, India-
napolis, IN, USA), using the Roche Fast-
Start DNA master SYBR-Green PCR kit.
Primers were designed to specifically rec-
ognize the individual transgenes as well as
primer pairs that could recognize shared
sequence between the transgenes. Crossing
points were determined by SYBR green
incorporation into the PCR product using
the Lighcycler 3 software program (Roche
Diagnostics, Indianapolis, IN, USA). Rel-
ative mRNA expression was determined
by subtracting the crossing point of a par-
ticular sample from the crossing point
determined in a mRNA negative sample,
so that a lower crossing point reflects a
higher relative mRNA expression. Nega-
tive values were possible because of the
potential for non-specific priming caused
by primer dimer formation. However, all
gene products were verified by size on
1.5% agarose gels and the products were
consistent with the relative mRNA expres-
sion determined by the crossing point
data. In addition, samples were tested
for the expression of glyseraldehyde-3-
phosphate dehydrogenase to verify equal
loading across samples.

Brain homogenates were subsequently
run on SDS-PAGE and blotted onto nitro-
cellulose and expression of proteins was
determined by blotting with an anti-
HisTag antibody and rabbit anti-TMEV
polyclonal antibody.

Histology. After 7 or 45 days of infection
with TMEV, mice were euthanized with an
overdose of pentobarbital and perfused by
cardiac puncture with either Trump’s fixa-
tive or 4% paraformaldehyde. Brain and
spinal cord were removed and used for his-
tologic and immunohistochemical assays.
Spinal cords were serially sectioned, fixed
with osmium tetroxide and every other sec-
tion was embedded in araldite embedding
compound (Polysciences Inc., Warrington,
PA, USA). Two micron sections of 10–12
spinal cord pieces were cut and stained
using paraphenylenediamine. Sections
were analyzed for spinal cord pathology
using a method previously described (26).
The remaining spinal cord sections were
embedded in paraffin and were used

for subsequent immunohistochemical
analysis.

Brains were removed, sectioned and
assessed for pathologic severity as described
previously (7). Briefly, two coronal cuts
were made after removal from the skull,
one through the optic chiasm and another
through the infundibulum. The three sec-
tions were then embedded in paraffin for
subsequent pathologic analysis and immu-
nohistochemical staining. Hemotoxylin
and eosin stained brain sections were used
to assess the severity of brain pathology
observed in 7-day infected animals. Pathol-
ogy scores were assigned based on the
degree of pathology in the following ana-
tomic regions: cerebellum, brain stem,
cortex, hippocampus, striatum and corpus
collosum. Each area of the brain was
graded on a scale of 0 to 4. The following
criteria were used to assign scores for each
region: 0 = no pathology; 1 = no tissue
destruction with minimal inflammation;
2 = early tissue destruction and moderate
inflammation; 3 = definite tissue destruc-
tion (parenchymal damage, cell death,
neurophagia, neuronal vacuolation);
4 = necrosis (complete loss of tissue ele-
ments). Meningeal inflammation was
assessed and graded as follows: 0 = no
inflammation; 1 = one cell layer of inflam-
mation; 2 = two cell layers of inflamma-
tion; 3 = three cell layers of inflammation;
4 = four or more cell layers of inflamma-
tion. All slides were photographed using
an Olympus DP70 camera attached to an
Olympus AX70 research microscope
(Olympus America Inc., Center Valley, PA,
USA).

Generation of recombinant proteins.
VP2 proteins were generated as has been
described previously (16). Briefly, VP2
cDNA was cloned into the pET30 vector
(EMD Biosciences, Inc., San Diego, CA,
USA). The construct coded a protein frag-
ment that included the complete 267
amino acids of VP2 plus an additional 66
amino acid which included an enteroki-
nase cleavage site and a HisTag for purifi-
cation. Plasmids were transformed into the
BL21 (DE3) (EMD Biosciences, Inc., San
Diego, CA, USA) strain of Escherichia coli
for expression and were induced with iso-
propyl-beta-D-thiogalactopyranoside after
cells reached the linear phase of prolifera-
tion. Cells were pelleted and washed with

phosphate-buffered saline (PBS) before
disruption by sonication. Cell lysates were
used to immunize mice for VP2-specific
responses. Proteins were further purified
over a HisTag column for in vitro use. This
was performed under denaturing condi-
tions using 6M urea to solubilize inclusion
bodies formed after induction of plasmids.
Proteins used for in vitro assays were dia-
lyzed into PBS before use.

VP1 and VP2 protein fragments were
generated using the rapid translation sys-
tem 100 E. coli HY Kit (Roche), which
allowed us to generate cell-free fragments
of VP1 and VP2. Overlapping cDNA
constructs corresponding to TMEV amino
acids VP192-190, VP1180-274, VP21-100,
VP290-180 and VP2171-267 were generated.
cDNAs were cloned into the pIVEX2.4
vector (Roche Diagnostics Corporation,
Indianapolis, IN, USA). Proteins were gen-
erated according to the manufacturer’s pro-
tocol. Briefly, 0.5 µg of vector cDNA was
added to 12 µL of E. coli lysate along with
5X reaction mix, amino acids and recon-
stitution buffer, reaction was brought up
to a final volume of 50 µL with water.
Translation reaction mixtures were incu-
bated at 30°C for 6 h, samples were stored
at −20°C until they were used in protein
blots.

Isolation of central nervous system infil-
trating lymphocytes and flow cytometric
analysis. The following fluorescent conju-
gated antibodies were used to characterize
T cell infiltrates from TMEV-infected
mice: APC-conjugated anti-CD45 (Clone
30-F11), FITC-conjugated anti-mouse
CD8a (Clone 53-6.7) and PE-conjugated
anti-mouse CD4 (Clone H129.19).

H-2Db tetramers were made by the
National Institute of Allergy and Infectious
Disease MHC Tetramer Core Facility. The
peptide FHAGSLLVFM was used to iden-
tify T cells recognizing this peptide in the
context of H-2Db. The human papilloma-
virus peptide E7 (RAHYNIVTF) which
also binds to H-2Db was used as a negative
control. All peptides were generated at the
Mayo Proteomics Research Center Peptide
Synthesis Facility.

Lymphocytes were isolated as described
previously (17). Briefly, 7-day infected
mice were killed using isofluorane over-
dose, brain and spinal cords were removed
aseptically and homogenized in 20 mL of



Genetic Deletion of T Cells—Pavelko et al 187

© 2007 The Authors
Journal Compilation © 2007 International Society of Neuropathology • Brain Pathology

RPMI media. Ninety percent Percoll/PBS
was added to 30 mL and the sample was
centrifuged at 27 000 g for 30 minutes at
4°C. The mononuclear cell band was
removed and resuspended in ACK buffer
to lyse red blood cells. Cells were counted,
washed in RPMI and split into two frac-
tions. Both fractions were analyzed using
anti-CD45, anti-CD8 and anti-CD4 anti-
bodies. One fraction was analyzed with a
mouse Db tetramer to the peptide VP2121-

130 and the other to a control peptide E7.

Immunohistochemistry. Paraffin embed-
ded brain and spinal cord sections were
assessed by immunohistochemistry for the
presence of TMEV antigens, as described
previously (31). Briefly, slides were depar-
affinized with xylene and rehydrated in a
graded ethanol series. The presence of virus
antigen was determined by using a rabbit
polyclonal antibody that reacts with
TMEV capsid antigens (23). Either fluo-
rescein isothiocyanate alone or biotinylated
secondary antibodies were used to detect
TMEV-specific antigen. The biotinylated
anti-rabbit secondary was used with
avidin biotin peroxidase complex (Vector
Laboratories, Burlingame, CA, USA) and
Hanker-Yates reagent to detect the virus
antigen. Slides were counterstained with
Gill’s hematoxylin.

TMEV-specific enzyme linked immun-
osorbent assay. Purified TMEV was diluted
in bicarbonate buffer and adsorbed to 96-
well plates for 24 h before addition of serial
serum dilutions from TMEV-infected
transgenic mice. Biotinylated anti-mouse
IgG and streptavidin labeled alkaline phos-
phatase (Jackson ImmunoResearch, West
Grove, PA, USA) were used with p-
nitrophenyl phosphate as a substrate to
determine total TMEV-specific IgG.
Absorbance was read at 405 nm. Antibod-
ies to mouse IgG1, IgG2a, IgG2b, IgG3
and IgM (Sigma-Aldrich, St. Louis, MO,
USA) were used to determine TMEV-
specific isotypes. Anti-mouse HRP (Pierce
Biotechnology, Rockford, IL, USA) was
used with tetramethylbenzidine as the sub-
strate for detection. Absorbances were read
at 450 nm.

Western blot for TMEV antigens.
Overlapping proteins generated with the
RTS 100 E. coli HY kit or whole virus were
separated using SDS-PAGE. Samples were

run on 12% polyacrylamide gels and blot-
ted onto nitrocellulose membranes. Sera
from infected mice were diluted (1:500) to
determine specific reactivity of serum to
TMEV antigens. We tested individual
samples using the Surfblot apparatus (Idea
Scientific, Minneapolis, MN, USA) which
allows one to test individual serum samples
without cutting the nitrocellulose mem-
brane. Sera from recombinant VP2 immu-
nized mice were diluted 1:50 to determine
specific reactivity to TMEV. Secondary
anti-mouse HRP (1:50 000) and the Pico
Pro ECL substrate solution (Pierce Bio-
technology) were used to detect reactive
antibodies on autoradiographic film. Rab-
bit anti-TMEV and HRP labeled anti-
Histag (BD Biosciences, San Jose, CA,
USA) were used as positive controls and to
verify the presence of whole virus and
recombinant proteins on the blot. Sera
from uninfected mice were used as negative
controls.

Immunization and lymphocyte pro-
liferation assay. VP2 transgenic and non-
transgenic mice were pre-bled and
immunized with 200 µg of HisTag puri-
fied VP2 protein emulsified in complete
Freund’s adjuvant. On day 10 mice were
boosted with another 200 µg of VP2 pro-
tein. On day 21 of immunization mice
were bled and sacrificed for proliferation
assays. Spleens were harvested into RPMI
media and were dissociated to release lym-
phocytes. Cells were washed and lysed with
ACK buffer to remove red blood cells and
washed. Cells were strained through mesh
filters to remove non-cellular aggregates
and then re-suspended in RPMI complete
media containing polymyxin B to inhibit
potential LPS contamination from protein
extracts. Purified VP2 protein was added
to culture in four serial dilutions. Cells
were then incubated for 48 h before being
pulsed with 1 µCi per well of 3H-thymi-
dine and harvesting at 72 h. The cells were
harvested onto glass fiber filter plates and
allowed to dry before being read on a 96
well beta counter. Data were expressed as
counts per minute.

RESULTS

The human ubiquitin c promoter drives
expression of TMEV transgenes in FVB
mice. We generated expression constructs

for the TMEV antigens VP2, VP2121-130

and 3D using the human ubiquitin c pro-
moter (Figure 1A). This promoter has pre-
viously been used to induce broad tissue
expression of other transgenes (33). We
isolated total RNA from the brain and thy-
mus of VP2, VP2121-130 and 3D transgenic
mice to determine mRNA expression levels
in these organs. Specific transgene expres-
sion in the brain was demonstrated in two
lines of each by semi-quantitative RT-PCR
(Figure 1B). To verify production of the
full length RNA species, expression was
further tested using primers that detected
the shared 3′ fragment of the 3 expression
constructs (Figure 1C). As thymic expres-
sion is paramount for tolerance induction
we tested for expression of the transgenes
in the thymus and demonstrated that all
lines of mice expressed the transgene in this
organ. We further tested fibroblasts grown
from skin explants and verified expression
in this cell type also (Figure 1C). Litter-
mate control mice from all lines failed to
demonstrate mRNA expression of the
transgene in any organ or cell tested. Thus,
we conclude that the VP2, VP2121-130 and
3D transgenes are expressed at the mRNA
level in the brain and thymus. Further,
brain homogenates from transgenic mice
failed to show expression at the protein
level as assessed by western blot. Our
attempts to immunoprecipitate the antigen
with an anti-HisTag antibody and probe
for the antigen using TMEV anti-serum
also failed to detect the proteins. In
conclusion, despite the fact that mRNA
was detected in multiple tissues, protein
expression was not detected in any of the
organs tested.

After establishing that transgene
mRNAs were expressed in the FVB lines,
we crossed these to FVB Db mice, to gen-
erate a line that was on a TMEV-resistant
background. All lines demonstrated trans-
gene integration at levels similar to the
FVB lines (data not shown). We used these
FVB Db transgenic strains for all subse-
quent experiments.

The response to immunization with
recombinant VP2 protein is lost in VP2
transgenic mice. As VP2 is expressed as a
self antigen, we tested whether expression
led to tolerance in FVB Db VP2 mice. To
test this we immunized FVB Db VP2 trans-
genic mice and wild type mice with recom-
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binant VP2 protein to determine whether
reactivity to this viral antigen was altered.
Splenocytes were isolated and re-
challenged with VP2 protein in vitro to
assess 3H-thymidine uptake after antigen
pulse. VP2 transgenic mice, demonstrated
a dramatic decrease in 3H-thymidine
uptake when compared with non-trans-
genic controls (Figure 1D), demonstrating
that there was a defect in the ability of
lymphocytes to respond to this antigen.
Further, both splenocyte populations pro-
liferated in response to Con A, demon-
strating that there was not an inherent
defect in the splenocyte population. There-
fore, we conclude that expression of the
VP2 transgene as “self ” led to a change in
the ability of the T cells to respond to this
antigen. In order to test whether antibody
responses to recombinant VP2 were altered
in FVB Db VP2 mice, we tested pre-

A

B

C

D

E

Figure 1. Generation of VP2, VP2121-130 and 3D trans-
genic mice and tolerance determination. Expression
constructs were designed using the human ubiq-
uitin c promoter. A. Constructs containing cDNA
for the capsid protein VP2, immunodominant CD8
antigen VP2121-130, and the 3D polymerase from
TMEV were generated. 3′ flanking sequences for
6XHisTag and bovine growth hormone polyA
were included. PCR primers for screening are
marked. The following primer sequences were
used to identify VP2 [VP2-F1(5′tggtcgactctg
tggttacg) and VP2-R1(5′gccggtcttgcaaagatagt)],
VP2121-130 [VP2121-F1(5′gccggctctcttcttgttt) and
VP2121-R1(5′caagtggtgtccatggtgaa)] 3D [3D-
F1(5′cgtagacatttccacaggatt) and 3D-R1(5′aa
gacgttgtctttaccaa)] and any of the 3 [6XHis-
F1(5′accggtcatcatcacc) and Bgh-R1(caccttc
cagggtcaa)]. Restriction sites are identified as
follows: B-BglII, P-PvuII and N-NspI. B. Relative
transgene-specific expression in the brain of FVB
VP2, FVB VP2121-130 and FVB 3D. Primers specific for
the VP2, VP2121-130 and 3D transgenes were used
to determine levels of mRNA transcript. C. Rela-
tive expression of transgenes in brain, thymus and
mouse embryonic fibroblasts using primers spe-
cific for shared sequence motifs found in all trans-
genes. Primers used were 6XHis-F1 and Bgh-R1.
Immune recognition of the self transgene was
determined in FVB Db VP2 transgenic mice using
lymphocyte proliferation and western blot. D.
Splenocytes from FVB Db VP2+ mice failed to pro-
liferate in response to VP2 antigen compared with
FVB Db VP2- mice (*significant by t-test P < 0.05).
Sera from immunized mice were tested for reac-
tivity to whole TMEV by western blot. E. No mice
had immunoglobulin reactive to the TMEV-
specific capsids VP1 or VP2 at pre-bleed (n = 6).
FVB Db VP2+ (n = 3) mice failed to generate VP2-
specific immunoglobulin responses after immuni-
zation when compared with FVB Db (n = 3)
immune sera, which showed reactivity specifically
to VP2. The western blot was stripped and re-
probed with rabbit anti-TMEV to verify the pres-
ence of the TMEV proteins VP1 and VP2.
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immune and immune serum from immu-
nized mice for reactivity to TMEV. Not
surprisingly, both FVB Db and FVB Db

VP2 pre-immune sera failed to recognize
the recombinant VP2 and the immune
serum from FVB Db mice reacted specifi-
cally to the VP2 capsid from the whole
virus. This is in stark contrast to the FVB
Db VP2 mice which failed to generate an
antibody response to recombinant VP2
(Figure 1E). Together these data demon-
strate that there is a defect in the FVB Db

VP2 mice which prohibits the generation
of an effective T-cell response to the VP2
protein and that this response parallels the
loss of VP2-specific antibody after immu-
nization with recombinant VP2.

VP2 and VP2121-130 transgenic mice
develop central nervous system demyelina-
tion after infection with TMEV. Having
demonstrated that VP2, VP2121-130, and 3D
transgene-specific mRNA was expressed in
the brain and thymus and that this expres-
sion level could lead to tolerance we next
tested whether expression of these trans-
genes in H-2Db mice could prevent the
clearance of TMEV from the CNS. We
infected transgenic mice with TMEV for
45 days and analyzed spinal cord sections
for the presence of pathology. We analyzed
the susceptible strain FVB (H-2q), resistant
strain FVB Db (H-2b) and the TMEV
transgenic strains FVB Db VP2, FVB Db

VP2121-130 and FVB-Db 3D. After 45 days
of infection with TMEV, FVB mice devel-
oped pathology that was characterized by
focal areas of demyelination with axons
that had completely or partially lost their
myelin sheaths along with infiltration of
immune cells into the spinal cord paren-
chyma (Table 1). In contrast, this pheno-
type was lost when the H-2Db transgene
was expressed on the FVB background
(Table 1, Figure 2A). These mice failed to

develop the pathology observed in the FVB
strain. This is consistent with previous
data demonstrating that susceptibility
to TMEV-induced demyelination is
restricted by H-2Db (29). Expression of the
3D transgene resulted in minimal or no
demyelination in these strains (Table 1).
However, expression of the complete
VP2 capsid protein resulted in a loss of
resistance to demyelination (Table 1,
Figure 2B). Similarly, transgenic mice that
expressed the immunodominant CD8+ T-
cell antigen VP2121-130 also lost resistance to
TMEV-induced demyelination (Figure
2C). Further, the quality and extent of
demyelination seen in both strains was not
different (Table 1, Figure 2B,C). This find-
ing clearly demonstrates that expression of
the VP2 and VP2121-130 transgenes leads to
the development of demyelination in the
spinal cord following TMEV infection.

Demyelination is paralleled by the
presence of viral antigen in VP2 and
VP2121-130 transgenic mice. TMEV-
infection induced demyelination is most
often accompanied by the presence of viral
antigen in the spinal cord. Thus, we per-
formed immunohistochemistry on spinal
cord sections to test for the presence of
TMEV antigen in 45 day infected mice.
We analyzed 10 sections from each of the
infected mice. None of the FVB Db

(n = 10) mice had TMEV antigen positive
cells in any of the spinal cord sections.
These mice consistently cleared virus as
demonstrated by the lack of virus antigen
staining in all of the spinal cord sections
analyzed (Figure 2D). In contrast all FVB
Db VP2 (n = 5; P < 0.001 by Fisher Exact
Test) and all FVB Db VP2121-130 (n = 6;
P < 0.001 by Fisher exact test) mice devel-
oped persistent antigen after 45 days of
TMEV infection. These strains consis-
tently demonstrated virus antigen in the

spinal cord white matter, often associated
with inflammatory cells and parenchymal
damage (Figure 2E,F). We conclude
from this that the presence of the VP2 or
VP2121-130 transgenes in TMEV-infected
mice resulted in viral persistence that was
associated with demyelination.

Expression of VP2 and VP2121-130 trans-
genes does not alter the antibody responses
to TMEV. Having established that resis-
tance to TMEV-induced demyelination
and viral persistence was abrogated, we
next asked if specific immune responses to
TMEV were altered and contributed to
this phenotype. We first looked at TMEV-
specific B cell responses, particularly the
generation of TMEV-specific antibody and
the isotypes generated after infection. Sera
from infected mice were tested by ELISA.
Virus-specific antibody titers did not differ
between the strains of mice that had demy-
elination. FVB, FVB-Db VP2 and FVB-Db

VP2121-130 all had similar TMEV-specific
IgG responses. However, the resistant
strain, FVB-Db, had a slightly reduced titer
(Figure 3A), consistent with viral clearance
and lack of persistent antigen.

Further, to determine more specifically
the differences in isotypes between trans-
genic and non-transgenic mice in response
to TMEV infection we analyzed antibody
responses to TMEV. We analyzed IgG1,
IgG2a, IgG2b, IgG3 and IgM specific
TMEV responses from TMEV-infected
mice. No differences were observed in
these specific responses between the FVB,
FVB-Db VP2 and FVB-Db VP2121-130 mice
(Figure 3B–E). Here again the TMEV-
infected FVB-Db mice had a slightly
reduced antibody response, as observed for
all isotypes.

We then tested the antigen specificity of
the IgG response generated during TMEV
infection in serum from TMEV-infected
FVB, FVB Db, FVB Db VP2 and FVB Db

VP2121-130 mice by western blot. All strains
demonstrated reactivity to VP1 and VP2
(Figure 3F), demonstrating that the speci-
ficity of the antibody response was not
different. To further verify reactivity to spe-
cific epitopes we tested binding of anti-
body to overlapping proteins from VP1
and VP2. Data from this experiment
revealed that TMEV-infected FVB Db VP2
and FVB Db strains both generated anti-
body responses to epitopes in VP1 (180–Table 1. Spinal cord pathology in TMEV-infected transgenic mice.

Transgenic H-2
Number 
of mice

Frequency of 
demyelination

Percent of spinal cord quadrants 
with disease (mean ± SEM)

Gray matter 
inflammation

Meningeal 
inflammation Demyelination

FVB q 10 70% 1.0 ± 0.5 12.3 ± 3.1 12.4 ± 4.3

FVB-Db b 10 10% 0.0 ± 0.0 1.5 ± 1.0 0.6 ± 0.6

FVB-Db 3D b 8 0% 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

FVB-Db VP2 b 5 100% 1.6 ± 0.8 21.3 ± 4.0 20.4 ± 4.1

FVB-Db VP2121-130 b 6 100% 0.4 ± 0.4 26.1 ± 4.7 18.4 ± 4.2
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274) and VP2 (1–100) (Figure 3G). This
is consistent with previous findings which
showed that antibody responses to these
antigens are found during TMEV infection
(11). Taken together these data demon-
strate that the ability of B cells to recognize
VP2 antigen during TMEV infection is
not altered when VP2 is expressed as a self
antigen.

Decrease in brain infiltrating CD8++++ T
cells in VP2 and VP2121-130 transgenic mice.
We next chose to determine the effect of
VP2 and VP2121-130 transgene expression
on CD4 and CD8 T-cell populations that
infiltrate the brain of TMEV-infected ani-
mals. We isolated brain and spinal cord
infiltrating lymphocytes (BILs) from 7-day
infected VP2 and VP2121-130 transgenic

mice, as well as from non-transgenic mice
and analyzed them by flow cytometry.
Lymphocyte populations were first identi-
fied by gating on the CD45+ common
leukocyte antigen to distinguish lympho-
cytes from non-hematopoietic cells. These
cells were subsequently analyzed for CD4
and CD8 populations. On average, CD4+
and CD8+ cells accounted for 66 ± 3%
of the CD45+ population infiltrating the
brain. However, when these populations
are analyzed separately, differences between
transgenic and non-transgenic mice
became obvious. In non-transgenic mice
the CD8+ population accounted for
45 ± 3.6% of the total CD45+ cells that
infiltrate the brain, whereas the CD4+
population was 27 ± 1.1% of this popula-
tion (Figure 4A). In contrast, the VP2 and

VP2121-130 transgenic mice showed
decreases in the percent of CD8+ cells
infiltrating the brain (20 ± 2.1% and
15 ± 0.7% respectively) and increases in
the percent of CD4+ cells (43 ± 5.7% and
43 ± 5.1% respectively) after 7 days of
infection with TMEV (Figure 4B,C).
Thus, the representation of CD8+ and
CD4+ cells was reversed and the ratio of
CD8+ to CD4+ was significantly reduced
in mice expressing VP2 or VP2121-130 as
compared with non-transgenic mice
(Figure 4D), indicating that the presence
of these transgenes altered the magnitude
of the CD8+ T-cell response in the brain.
We then analyzed the number of CD8+ T
cells infiltrating the brain of TMEV-
infected mice. Although the total number
of cells harvested from the brains of trans-

Figure 2. Demyelination and viral persistence in FVB-Db VP2 and FVB-Db VP2121-130 transgenic mice infected with TMEV for 45 days. Spinal cord sections from 45 day
TMEV-infected mice were embedded in araldite, fixed with osmium tetroxide and stained with p-phenylenediamine to show demyelination in the white matter. A.
The resistant strain FVB Db does not develop demyelination after TMEV infection. Note the tightly wrapped myelin around preserved spinal axons. B.
Demyelination is abundant in the TMEV-infected FVB Db VP2 transgenic mice, consistent with denuded axons and the infiltration of myelin filled macrophages.
C. Similar spinal cord pathology is observed in the TMEV-infected FVB Db VP2121-130 transgenic mice. D. TMEV antigen is absent from the spinal cord gray matter
and white matter of FVB Db mice at 45 days post TMEV infection. E. Viral antigen is present in the spinal cord of FVB Db VP2 transgenic mice. Virus staining is
consistent with infection of glial cells or macrophages in the white matter and lack of virus antigen in the gray matter of the spinal cord. F. Virus staining in
FVB Db VP2121-130 mice infected with TMEV for 45 days is similar to that observed in FVB Db VP2 mice. Bar in (A) represents 10 µm for (A–C). Black bar in (D)
represents 50 µm for (D–F).
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genic mice had a tendency to be lower than
non-transgenic mice, this did not reach
statistical significance. This may be caused
by the complexity of the cell infiltrate iso-
lated from brain homogenates which may
include brain resident cells. Therefore, we
gated on the CD45Hi population to deter-
mine more precisely the numbers of lym-
phocyte subsets in the brain infiltrate. We
recovered 106 312 ± 16 532 CD45Hi cells
from the FVB Db infected strain and
85 924 ± 12 902 and 86 658 ± 17 111
from the FVB Db VP2 and FVB Db

VP2121-130 respectively. There were no sta-
tistical differences between the groups (P =
0.546 and P = 0.455 by t-test) (Figure 4J).
However, when the number of CD8+ cells
among the CD45+ high population was
calculated, statistically significant differ-
ences were seen. We found 44 884 ± 6952
CD8+ cells in the brains of the control
FVB Db mice (Figure 4J). In contrast, the
FVB Db VP2 and FVB Db VP2121-130 mice
had CD8 numbers that were significantly
lower (Figure 4J), 16 218 ± 2090
(P = 0.011, Mann–Whitney Rank Sum)
and 16 298 ± 3435 (P = 0.001, Mann–
Whitney Rank Sum). Therefore, we con-
clude that there are decreased numbers of
CD8+ cells infiltrating the brains of 7-day
infected FVB Db VP2 and FVB Db VP2121-

130 transgenic mice.

VP2121-130 specific CD8++++ T cells are
absent in brain infiltrates of 7 day infected
VP2 and VP2121-130 transgenic mice. It has
been previously shown that viral clearance
in H-2Db mice is dependent on mounting

A

B C

D E

F

G

Figure 3. Total IgG- and isotype-specific antibody
responses to TMEV from FVB-Db VP2 and FVB-Db

VP2121-130 transgenic mice infected with TMEV for 45
days. Serum from 45 day infected mice was collected
and assayed for recognition of TMEV and its specific
antibody epitopes by ELISA and western blot. A.
Total IgG specific for plate bound TMEV was not
different between any of the 45-day infected
strains tested. The specific isotype reactivity to
TMEV were also tested. The predominant isotype
responses to TMEV in infected mice were (B) IgG1
and (C) IgG2a. (D) IgG2b and (E) IgM responses
were also present at 45 days post TMEV infection.
No differences were observed between strains. F.
TMEV blot for reactivity of 45 day infected serum
to specific capsid proteins. Three of four FVB mice
demonstrated specific reactivity to VP2, whereas
four of four FVB Db mice generated antibody that
recognized VP2. FVB Db VP2 and FVB Db VP2121-130

mice also generated VP2-specific antibody (4/4
and 3/4). G. FVB Db and FVB Db VP2 mice recog-
nize similar VP1 and VP2 antibody epitopes.
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a CTL response to the H-2Db bound
VP2121-130 peptide from TMEV (20). Hav-
ing established that there was a decrease in
the number of CD8+ T cells infiltrating
the CNS, we asked whether this is caused
by the specific loss of CD8+ T cells that
recognize the immunodominant VP2121-130

epitope. We used H-2Db/VP2121-130 tet-
ramers to determine the presence of

antigen-specific cells in CNS infiltrates.
H-2Db peptide E7 from human papillo-
mavirus served as a control for non-spe-
cific binding. We found that 3.1 ± 0.4%
of all CD8+ cells from all groups were
positive by staining for E7-specific
tetramer, and no statistically significant
differences were seen between the groups
(data not shown). In contrast, the H-2Db/

VP2121-130 specific populations made up
42 ± 7% of the CD8+ T-cell populations
in infected FVB Db control mice
(Figure 4I). Representative samples are
shown for VP2 negative and VP2121-130

negative (Figure 4E,G) littermate controls.
Importantly, FVB Db VP2 and FVB Db

VP2121-130 transgenic mice demonstrated a
profound reduction in the percent of
VP2121-130 specific CD8+ T cells (Figure
4F,H). Moreover, this reduction in anti-
gen-specific CD8+ cells was equivalent to
the numbers of E7 antigen-specific CD8+
cells (Figure 4I). We conclude that the
H-Db/ VP2121-130 specific response was lost
in both FVB Db VP2 and FVB Db

VP2121-130 transgenic mice after infection
with TMEV.

The severity of brain pathology is not
altered during acute infection in VP2121-130

transgenic mice. To determine whether the
loss of virus-specific CD8+ T cells had an
effect on the severity of pathology observed
in the brain after 7 days of infection, we
assessed the pathology in brains isolated
from FVB Db VP2121-130 mice and in
transgene negative littermate controls
(Figure 5A,B). Pathology in both strains
consisted of moderate to severe parenchy-
mal damage in the cortex, hippocampus,
striatum and corpus collosum. These areas
also consistently showed inflammatory
infiltrates with perivascular cuffs most
noticeably present in the hippocampus.
Furthermore, hippocampal neurons con-
sistently demonstrated neuronophagia and
vacuolation, consistent with damage to
these cells. To determine whether these
cells were infected with TMEV we stained
serial sections from those represented in
Figures 5A and B for virus antigen. We
found viral antigen in many neuronal cell
bodies and processes found in this area
(Figure 5C,D) demonstrating the associa-
tion of virus with brain pathology. The
primary site of infection, however, was
the hippocampus; this was observed in the
FVB Db VP2121-130, as well as the littermate
controls. Finally, we used a 4-point scoring
system to quantitatively assess the pathol-
ogy observed in the brains of infected mice.
No differences were observed in any of the
regions assessed (Figure 5E,F). Although
there were no statistical differences
observed in any of these regions, the scores
in the hippocampal region in the FVB Db

Figure 4. Loss of VP2121-130 specific CD8+ T cells from brain infiltrates of FVB-Db VP2 and FVB-Db VP2121-130

transgenic mice infected with TMEV for 7 days. Brain infiltrating lymphocytes were isolated from mice and
assessed for the presence of CD4, CD8 and H-2Db/VP2121-130 tetramer positive cells. A. FVB Db mice demon-
strate a preponderance of CD8+ cells among the CD45+ population with 45 + 3.6% of the CD45+
population being CD8+. B. FVB Db VP2 transgenic mice showed a decrease in the percent of CD8+ cells
infiltrating the brain (20 + 2.1%). C. FVB Db VP2121-130 transgenic mice showed a similar decrease in the
percent of brain infiltrating CD8+ cells (15 ± 0.7%). D. The ratio of percent CD8+ to percent CD4+ was
significantly reduced in FVB Db VP2 and FVB Db VP2121-130 transgenic mice when compared with FVB Db

control (*significant by t-test P < 0.001). Representative flow cytometry samples of brain infiltrating
lymphocytes from FVB Db VP2+ and FVB Db VP2- littermate control. E. 25% of the CD8+ population was
positive for H-2Db/VP2121-130 tetramer in the FVB Db VP2- control isolate. F. Very few H-2Db/VP2121-130

tetramer positive cells were found in the FVB Db VP2+ isolate. Similar results were found in the FVB Db

VP2121-130 transgenic mice. G. VP2121-130 negative mice showed a majority of CD8+ cells being positive for
the VP2121-130 tetramer. H. FVB Db VP2121-130 mice had a dramatic decrease in tetramer positive CD8 cells.
I. Decreased H-2Db/VP2121-130 positive CD8 cells in FVB Db VP2 and FVB Db VP2121-130 transgenic brain
infiltrating lymphocytes when compared with control (*Significant by Mann–Whitney Rank Sum Test
P < 0.05). No significant differences were found between H-2Db/VP2121-130 positive CD8 cells and H-2Db/
E7 positive CD8 cells in VP2 and VP2121-130 transgenic mice (Mann–Whitney Rank Sum Test, P = 0.229 and
P = 0.886). Absolute numbers of CD45Hi and CD8+ cells in the brain isolates were calculated from the
total cells isolated and flow cytometry data. J. No significant differences were observed in CD45Hi
numbers between FVB Db and FVB Db VP2 (P = 0.546) or between FVB Db and FVB Db VP2121-130 (P = 0.455).
Both the FVB Db VP2 and FVB Db VP2121-130 transgenic mice had significantly reduced numbers of CD8
cells infiltrating the brain (*significant by t-test P = 0.011 and P = 0.001).
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VP2121-130 were consistently lower than the
littermate control and did approach signif-
icance (P = 0.057, Mann–Whitney Rank
Sum). Consequently, the slight difference
in pathology score is most likely because of
the presence of an increased inflammatory
infiltrate rather than parenchymal damage,
as there is a decrease in the number of
CD8+ T cells that infiltrate the brain of
FVB Db VP2121-130 mice (Figure 4J). We
conclude that expression of the VP2121-130

transgene does not influence the extent of
brain pathology observed in 7-day TMEV-
infected mice.

DISCUSSION

In this study we have shown that the
transgenic expression of a complete virus
capsid protein, VP2 or the specific CD8 T-
cell epitope VP2121-130 leads to deletion of
this response from the T-cell repertoire.
This loss was apparent during a viral infec-
tion that typically leads to a robust CD8 T
cell infiltrate into the brains of mice
infected with TMEV. Additionally, immu-
nization with recombinant VP2 was also
defective in mice expressing the complete
VP2 capsid protein, suggesting that other
epitopes from VP2 may also be deleted.
Further, the data support the conclusion
that the VP2121-130 specific CD8 response
is deleted from the T-cell repertoire in both
of these transgenic lines.

One shortfall to this study was that we
were unable to demonstrate the expression
of VP2 or VP2121-130 protein in these trans-
genic lines. This finding, however, was not
surprising considering that expression lev-
els of protein necessary for the induction
of tolerance may not be detected by the
methods we chose. In support of this pos-
sibility, others have shown that tolerance
can be induced by levels of protein that are
not detectable by these methods (40) and
that very low levels of protein expression
can be detected by MHC-restricted
lymphocytes (25). Further, because these
proteins are being expressed in an environ-
ment that is not conducive to normal VP2
folding, such as during viral infection,
these proteins may be directly targeted for
degradation. This would be analogous to
the defective ribosomal products (DRiPs)
described by Yewdell et al (45). However,
these proteins are expressed at a sufficient
level to promote deletion of a VP2 or
VP2121-130 specific T cells.

As these transgenes were expressed
under the ubiquitin promoter, one could
surmise that transgene expression itself
caused that pathology demonstrated and
that viral infection triggered an autoim-
mune response directed against cells in the
CNS. Although appealing, we feel that this
is not a possibility because the pathology is
consistent with that seen in other suscep-
tible strains of mice such as FVB. In

addition, no outward signs of systemic
autoimmunity were evident in any of the
animals tested. Additionally, acute infec-
tion of the brain demonstrated a similar
pattern of pathology and viral infection,
with a concomitant decrease in infiltrating
lymphocytes, further supporting the con-
clusion that there is not an autoimmune
component to this model during acute
infection. Further, initial infection with

Figure 5. Brain pathology and acute viral infection in FVB-Db VP2121-130 transgenic mice infected with TMEV
for 7 days. Paraffin-embedded brain sections were stained with hemotoxylin and eosin or TMEV-specific
antibody to assess severity of brain pathology and presence of viral antigen at the site of pathology. A.
Transgene negative littermate control mice demonstrate a severe hippocampal pathology that is accom-
panied by a robust inflammatory infiltrate (10×). B. FVB-Db VP2121-130 transgenic mice acquire a similar
pathology; however, the inflammatory infiltrate is not as extensive in the hippocampal region (10×). C.
Viral antigen staining in an area corresponding to the white box in A. Virus positive cells are consistently
found in this area as demonstrated by the staining of neuronal cell bodies and processes (20×). D. Virus
antigen was assessed in an area corresponding to the white box in B and which is anatomically similar
to that observed in C. Similar viral staining patterns are observed in FVB-Db VP2121-130 transgenic mice,
when compared with the littermate control (20×). Pathology was scored on a 4 point scale to assess the
extent of brain pathology. E. FVB-Db VP2121-130 negative littermate controls had moderate to severe
pathology in the cortex, hippocampus, striatum and corpus collosum, this was accompanied by exten-
sive meningeal inflammation. F. FVB-Db VP2121-130 mice demonstrate similar pathology with decreased
inflammation in the hippocampus. Bar in (A) represents 50 µm for (A,B) and bar in (C) represents 50 µm
for (C,D).
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TMEV is localized to the gray matter of
the brain and spinal cord with subsequent
clearance in mice of susceptible and resis-
tant haplotypes. Importantly, none of the
VP2 or VP2121-130 transgenic mice showed
viral persistence in the gray matter of the
spinal cord (Figure 2D–F). In the event
that T cells were recruited to the CNS that
recognized the VP2 transgenic antigen,
one would expect to see a non-discrimi-
nant pattern of pathology because of the
universal expression of the transgene rather
than focal demyelinating lesions. There-
fore, we conclude that the data favor the
hypothesis that transgene expression leads
to the development of spinal cord pathol-
ogy and viral persistence because of the loss
of an antigen-specific immune effector
function.

Another interesting finding in this study
was that VP2-specific antibody responses
were not detected in response to immuni-
zation with recombinant VP2, but were
detected in response to viral infection.
Although initially this finding seems con-
tradictory, we feel that it further supports
the conclusion that the antigen-specific
deletion is distinctively the loss of a T-cell
response rather than a B cell response. One
possibility is that during viral infection B
cells specific for VP2 phagocytose the com-
plete TMEV virion and present another
non-VP2-specific class II epitope to CD4+
helper cells, thereby providing the neces-
sary CD4 helper response necessary for
maturation of the antibody response. As no
other epitopes are available other than VP2
during the immunization with recombi-
nant protein, no CD4 help is available
because they are tolerized to the complete
VP2 antigen. This possibility could be fur-
ther tested by crossing VP2 transgenic
mice to mice expressing other TMEV
determinants, such as VP1 and infecting
with TMEV. Another possibility for the
generation of an antibody response during
infection is that several examples of T cell-
independent antiviral antibody responses
have been identified (36), such as that
observed during TMEV infection. This is
further supported by data using the TMEV
model that demonstrated both CD4 and
CD8 knockout mice infected with TMEV
for 45 days generated TMEV-specific IgG
at similar levels (22). Finally, this observa-
tion could be explained by the loss of tol-
erance to the VP2 antigen in response to

TMEV infection. In contrast to current
data demonstrating that tolerance can be
overcome by viral infection (21), we favor
the hypothesis that T cell-specific tolerance
was maintained. We have demonstrated
that VP2121-130 specific CD8 T cells were
absent from the brain infiltrates of TMEV-
infected mice by staining with MHC I tet-
ramers. As these transgenes were expressed
in the thymus, deletion occurred during
thymic development and hence VP2 reac-
tive cells were deleted from the repertoire.
Because the mechanism of positive selec-
tion occurs at the double positive stage
(35), we favor the possibility that all T cells
are selected on the VP2 antigen and are
deleted from the active repertoire indepen-
dent of CD4 or CD8 expression. Granted,
some positively selected T cells may
develop into CD4 regulatory cells. How-
ever, data suggest that few T cells escape
negative selection (18). Therefore, the data
support the hypothesis that the VP2-
specific T-cell responses are deleted from
the repertoire and that the B cell response
is only affected in response to VP2 when
it depends on T cell help through VP2.

Previous studies have identified epitopes
within the VP2 region of TMEV that are
important for the resistance to and devel-
opment of pathology (9, 20). These
include the CD8 epitope VP2121-130 which
is critical for viral clearance in resistant
mice and the CD4 epitope VP274-86 which
has been shown to contribute to TMEV-
induced demyelination in susceptible
strains of mice. Our current model is
unique in that both of these epitopes are
represented in the FVB Db VP2 strain and
only one is represented in the FVB Db

VP2121-130 strain. This allows us to compare
the contribution of the immune response
outside of the VP2121-130 epitope. Our
pathology data demonstrate that there
were no significant differences in the
demyelination or inflammatory infiltrates
observed in the two strains after 45 days of
TMEV infection, leading to the conclu-
sion that epitopes outside of the VP2121-130

epitope do not contribute to the enhance-
ment of pathology observed in this model.
As this strain was developed on the FVB
(H-2q) background it is also possible that
other VP2 epitopes are not recognized in
this strain and that the VP274-86 epitope is
specifically recognized by the SJL mouse.
Our data suggests that immunization with

VP2 can lead to a memory response to the
whole VP2 antigen. This finding suggests
that there may potentially be CD4-specific
VP2 responses deleted in addition to the
CD8 response to VP2121-130. However, we
do not believe that these VP2-specific
responses make a significant contribution
to pathology because previous studies in
susceptible SJL mice have demonstrated
that T cells reactive to VP1 secrete fourfold
to fivefold more IFN-γ than VP2 reactive
cells in response to in vitro stimulation
(44). Future studies that definitively deter-
mine whether additional CD8 and CD4
T-cell epitopes are recognized will be
important in determining their contribu-
tion to TMEV-induced pathology in this
model.

A final point of interest in this work
involves the brain pathology observed in
the 7-day acute infection seen in the FVB
Db VP2121-130 strain. The VP2121-130 trans-
genic mice had a significant decrease in the
number of CD8 T cells in the brain and
this appeared to correlate with a decrease
in hippocampal pathology, although not
significant by statistical measures. In con-
trast, the littermate control had a robust
CD8 infiltrate which corresponded to a
population of cells that specifically recog-
nized the VP2121-130 peptide on H-2Db.
Knowing that the FVB Db VP2121-130 trans-
genic ultimately develops viral persistence,
it is not surprising that the apparent spar-
ing of brain tissue is at the expense of
chronic demyelinating disease and viral
persistence in the spinal cord, whereas the
littermate control can efficiently eliminate
virus because of the presence of virus-
specific T cells. Of interest will be to fur-
ther understand whether the CD8 cells
specific for the VP2121-130 peptide are
contributing to death or injury in cells that
are or are not infected with the virus or
whether the lack of VP2121-130 specific CD8
cells leads to an increase in cell death
caused by viral infection. Answers to these
questions will further our understanding
of the consequences of epitope-specific
responses observed neurologic disease.

Our data support the hypothesis that
the expression of VP2 and VP2121-130 trans-
genes specifically deletes T cells reactive
to those expressed antigens and that this
effect is likely T cell specific, as B-cell
responses to VP2 can be detected. Further,
we show that expression of a construct that
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encodes only 20 amino acids of the VP2
gene was able to specifically delete an
immunodominant CD8 T-cell response
during a virus infection of the CNS. In
addition, expression of the full VP2 pro-
tein yielded a similar result demonstrating
that epitopes outside of the VP2121-130

epitope do not contribute to pathology.
This model will have important implica-
tions for the understanding of T-cell dele-
tion and tolerance as well as having
implications for therapeutic interventions
involving tolerance induction.

These experiments do not address the
mechanisms of how demyelination is
occurring in FVB Db VP2 or FVB Db

VP2121-130 mice. However, they do demon-
strate that deletion of the immune
response to VP2 is sufficient to convert a
mouse of a resistant haplotype to a mouse
that is susceptible to demyelination.
Demyelination may be the result of (i)
direct virus infection of oligodendrocytes
independent of the host T-cell response
(32), (ii) CD4 or CD8 T cells directed to
antigens not tolerized by these transgenes
(37, 42, 43), or (iii) epitope spreading to
myelin antigens (21). Further experiments
will be necessary to distinguish between
these possibilities.
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