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Abstract
The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel

technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM),

with commonly used backpropagation-trained recurrent neural networks (RNN) as applied to the task of financial market

prediction. Evaluated on a set of large capitalisation stocks on the Australian market, specifically the components of the

ASX20, ELM-trained SFNNs showed superior performance over RNNs for individual stock price prediction. While this

conclusion of efficacy holds generally, long short-term memory (LSTM) RNNs were found to outperform for a small

subset of stocks. Subsequent analysis identified several areas of performance deviations which we highlight as potentially

fruitful areas for further research and performance improvement.
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1 Introduction

The prediction of stock price movements is of particular

interest to traders in financial markets, in addition to a wide

range of finance applications not limited to the market

timing strategies of funds managers and the selective

hedging practices of corporations. Paradoxically the most

successful theories of this field assume that stock prices

undergo random walks when markets are in equilibrium

and include work pioneered by the seminal publications of

Black, Scholes [2, 3], and Merton [16] in continuous time

and the Binomial Options Pricing model of Cox, Ross, and

Rubinstein [7] in discrete time. Nonetheless, this remains a

developing area, with frequent deviations from the random

walk assumption observed (such as those identified in

Jacobs [14]) and with recent advances in data provision and

computational techniques many of these approaches have

found application in this area of research.

One such application has been machine learning tech-

niques (Strader (2020)). This field has seen the widespread

application of Neural Network models, which are explicitly

nonlinear in their mathematical representations (see, for

example, Chollet [6] with such specifications as Long

Short-Term Memory (LSTM) models being particularly

suited to financial time-series analysis. Nevertheless, much

of the published work is accomplished using deep neural

networks, with relatively few studies using shallow neural

networks notably across regionally separated markets.

Strader [23] in particular, highlights these areas as requir-

ing additional empirical research. The Extreme Learning

Machine (ELM) of Huang et al. [13] is one such alternative

training technique for shallow neural networks that has

recently seen promising empirical results across various

practical applications. These applications have been in

diverse areas of research, ranging from image quality

assessment Suresh, Venkatesh Babu, and Kim [25],

improving wireless sensor network localization Phoem-

phon, So-In, and Niyato [21] to predicting landslides (KV,

Pillai, and Peethambaran [17]). A natural extension of

these applications then is in the area of financial research.1
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Tang et al. [27] present a case for using a Random

Vector Functional Link (RVFL) network, a special case of

single hidden layer feedforward neural networks, together

with a Variational Mode Decomposition for the day-ahead

crude oil price prediction and compare the results with

other neural networks. They find the RVFL network out-

performs simpler ELM-based models (as it distinctively

includes a direct input–output link, unlike an ELM), albeit

taking longer to train. Bisoi et al. [4, 5] support these

findings on the same dataset utilising similar network

choices. Bisoi et al. [4, 5] explore the same concept of

Variational Mode Decomposition yet applying it in the

study of next-day ahead stock price prediction using ELM-

based models. They analyse a sample of daily prices from

regional markets and find promising results for the S&P

BSE 500, Hang Seng and FTSE 100 Indices. Mohanty,

Parida, and Khuntia [19] show an improvement on a plain

ELM-based model performance for stock price prediction

by morphing it into a kernel ELM (KELM) combined with

an auto encoder (AE). Mohanty et al. [19] test this aug-

mented model (KELM-AE) on several bank stock indices

using a normalised OHLC (open-high-low-close) ‘‘can-

dlestick’’ dataset as input variables with the next-day ahead

prediction. Göçken et al. [10] compare the effectiveness of

using ELM-trained SFNN to predict stock prices on the

Borsa Istanbul (BIST 100) stock exchange, albeit focusing

on a relatively narrow subset of 3 stocks. Results are

compared to other popular models used for the task such as

DNN, Jordan RNN, GLM, RT, and Gaussian Process

Regression. The conclusion drawn on the best performing

model architectures and variables is used for prediction and

comparison in this study. An empirical study conducted by

Zhang [30] involved an attempt to apply an ELM-trained

SFNN to predict price movements of a stock on the Hong

Kong stock exchange. Zhang’s results (2021) tantalizingly

provide some empirical support to the work of Gocken

et al. [10].

This paper utilises emerging findings from Zhang [30]

within the framework of Gocken [10] and designs, vali-

dates and evaluates a series of SFNN models, trained using

the ELM methodology, on the 20 largest stocks on the

Australian equity market, also known as constituents of the

ASX20. The ELM-trained model results are shown to

indeed fulfil the promise of fast learning times (as com-

pared to training the same models using classic back-

propagation algorithm) with a comparably high, and often

superior, level of accuracy. In general, improving predic-

tion accuracy in this task, even if by a slight margin, can

bring about material benefits to the interested stakeholders.

This is the driving motivation behind this study; it shows

that less computationally intensive model training tech-

niques can deliver potentially higher economic benefits to

capital market participants. With varying degree of

computational power availability among market partici-

pants, designing more efficient techniques, such as those

based on ELM training methodology, has direct industry

applications. Additionally, performance findings may be

used to academically interpret the operating mechanism of

neural networks, thus advancing this strand of research.

We draw particular distinction between existing studies

in the underlying dataset used as individual stocks are

likely to possess different movement characteristics driven

by inherent risks and influential factors, as compared to, for

example, combinatory stock indices or foreign exchange

rates. To the best of our knowledge, there has been no

study comparing stock price prediction performance of the

most commonly known and successfully used LSTM to the

relatively novel ELM training methodology on a broad set

of large and frequently traded stocks.

Another differentiating element between these relevant

studies is the extent of initial data reconstruction applied to

the raw financial price series. Given the well-studied

noisiness and dynamics in the financial price series, such

structured methods as Empirical or Variation Mode

Decomposition Das et al. [8], Bisoi et al. [4, 5], and Dis-

crete Wavelet Transform Wu et al. [28] have previously

been applied to the raw stock price series. The rest of the

studies rely on the logic of the Takens’ theorem [26], either

explicitly or implicitly, by constructing technical features

and statistical metrics from the raw price series to be used

as the model input Khuwaja et al. [15] provide the most

comprehensive detail on the application of this methodol-

ogy, Das et al. [9], Mohanty et al. [19], Panda et al. [20]

appear to implicitly follow this path). We apply the latter

approach of explicitly applying the spirit of the Takens’

theorem by constructing technical features from the raw

price series, intentionally very similar to the ones used in

Zhang [30], albeit with slight modification and an addition.

This paper is organised as follows. Section 2 details the

training and testing methodology and data used in this

study. Subsequent Results and Discussion section evaluates

model performance for the two mentioned training

methodologies on the holdout test dataset. Finally, Con-

clusion and Future Research section concludes the paper

and identifies promising future research opportunities.

2 Methodology

This section first discusses the models construction and

training methodology, followed by the data description and

preparation.
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2.1 Models and training methodology

2.1.1 Extreme learning machine (ELM)

Extreme Learning Machine, as introduced by Huang et al.

[13], modifies the training methodology for single hidden

layer feedforward neural networks by converting it to an

analytical solution. It has been shown ELMs (i.e., ELM-

trained SFNNs) produce similar, if not better results for the

typical NN-allocated tasks, albeit at much faster training

speed and avoiding local optima convergence challenges.

In an ELM, the vectors of input weights and hidden

node biases are first randomly assigned and used to cal-

culate the hidden layer output matrix, H, using a specified

transfer function. The Moore–Penrose generalised inverse

of this matrix H, denoted as Hy as adapted from Huang

et al. [13], is then used to analytically determine the vector

of output weights c that would best fit with the data output

matrix T .

Mathematical representation of a single hidden layer

feedforward neural network (SFNN) trained with Extreme

Learning Machine (ELM) training methodology is as fol-

lows. A model with N distinct samples and j randomly

assigned hidden neurons ðXj; tjÞ where Xj ¼
xj1; xj2; . . .; xjn
� �T

as an input and T ¼ tj1; tj2; . . .; tjn
� �T 2

Rn as targets vector can be represented by the following

equation:

XL

j¼1

cjh Wj:Xn þ bj
� �

¼ on; for n ¼ 1; :::;N ð1Þ

where cj and Wj ¼ wj1;wj2; . . .;wjn

� �T
are the output and

input weights, respectively, bj is the randomly assigned

bias of jth hidden neuron and hð:Þ is the nonlinear activa-

tion function. The goal of the ELM training methodology is

to reduce the error between the predicted and the target

(actual) values, such that
PN

n¼1kon � tnk ¼ 0 and
PL

j¼1cjh Wj:Xn þ bj
� �

¼ tn; forn ¼ 1; . . .;N:

In short, the ELM training methodology comprises the

following steps:

1) Randomly assign hidden layer weights Wj and bias bj
values.

2) Calculate the hidden layer output matrix H:

H ¼
h x1ð Þ
..
.

hðxNÞ

2

64

3

75

¼
h1 W1x1 þ b1ð Þ � � � hL WLx1 þ bLð Þ

..

. . .
. ..

.

h1 W1xN þ b1ð Þ � � � hL WLxN þ bLð Þ

2

64

3

75 ð2Þ

where hjðxÞ stands for the nonlinear transfer

function of the j-th hidden neuron, and L stands for

the number of hidden neurons chosen in the SFNN.

Each column of the H output matrix represents the

j-th hidden neuron output vector with regards to the

vector of inputs x1; x2; . . .; xN .

3) Calculate the vector of output weights cj:

c ¼ HyT ð3Þ

where c ¼ c1; c2; . . .; cL½ �T is the vector of output weights,

T ¼ t1; t2; . . .; tN½ �T represents the output matrix, and Hy is

the Moore–Penrose generalised inverse of the hidden layer

output matrix H.

Effectively, the objective function of the SFNN trained

using ELM methodology is the minimisation of the cost

function as follows:

H Ŵj; b̂j
� �

ĉ� T ¼ min
W;b;c

H Wj; bj
� �

c� T
�� �� ð4Þ

where j ¼ 1; . . .; L. The minimisation of the cost function is

based on the sum of squared errors calculation represented

by � and is defined in Eq. (5)

e ¼
XN

n¼1

XL

j¼1

cjh Wj:Xn þ bj
� �

� tn

 !2

ð5Þ

Figure 1 depicts a high level overview of the ELM-

trained neural network structure, with the specific inputs

and outputs chosen for this study. For full details and proof

of theorems underpinning the ELM training methodology

please see Huang et al. [13].

‘‘The design of an ANN [Artificial Neural Network

(ANN)] is more of an art than a science’’ Zhang, Patuwo

and Hu [31], and, in the case of the ELM-trained SFNN, it

is mainly the number of hidden nodes in the single hidden

layer that needs to be chosen. Some works in this area

focus on developing theoretical bounds on the minimum

and maximum number of hidden nodes required (for

example, LeCun et al. [18] while others develop complex

algorithms for supporting this decision using the dataset at

hand Xu and Chen [29]. Yet another category focuses on

providing rule-of-thumb advice for determining optimal

number of hidden nodes based on the number of inputs and

outputs in the model, or merely on the number of training

samples. Major risk here is discounting some of the other

key attributes of the dataset used (e.g., signal-to-noise ratio

or complexity of the function to be learnt) that may

materially impact on this decision.

Thus, we use cross-validation to determine the optimal

number of hidden nodes in the network. Given we are

dealing with the time-series data, we split the training set

(* 7.5 years out of the total 10 years of data obtained)
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into training (the first 5 years) and validation (the

remaining * 2.5 years) subsets. We train ELM neural

networks starting with very small number of hidden nodes

(2) progressing incrementally (initially, with increments of

1) to larger network sizes ([ 300 hidden nodes in the lar-

gest network) for each individual stock. The best topology

is then chosen based on the mean squared error results from

the validation dataset for each stock across networks

trained. Before the best chosen model is used for the final

test on the holdout data (the last 2.5 years of data avail-

able), training and validation datasets are combined, and

this final model is trained on the full training dataset.

2.1.2 Recurrent neural network (LSTM)

The Long Short-Term Memory (LSTM) algorithm was

developed by Hochreiter and Schmidhuber [11] to address

the vanishing gradient problem, a persistent effect

observed in simpler (i.e., non-recurrent) feedforward neural

networks as their depth increases (theoretical explanation

behind this effect is discussed extensively by Bengio et al.

[1].

At its core, the LSTM algorithm allows the network to

‘‘carry’’ information across many timesteps (hence the

name) to be later ‘‘reinjected’’ back into the network when

needed. This is particularly useful for tackling tasks where

time-series are studied and locally learnt features at some

previous point can then be ‘‘remembered’’ by the network

and used later when a similar pattern arises. Hu et al. [12]

conduct a survey of literature studying deep learning

models used for stock price prediction and conclude hybrid

LSTM-based models are most widely researched.

We train LSTM neural network models using raw stock

daily close price data with identical lookback period of

5 days. Decision to use the raw daily stock price data is

based on understanding of the feature extraction mecha-

nism of an LSTM Recurrent Neural Network (RNN). An

LSTM network is designed to be able to remember infor-

mation and features learned several timesteps before the

current unit processing which is what we are attempting to

accomplish with feature extraction for the ELM-trained

SFNNs. 5 day lookback period is chosen to provide direct

comparison between ELM-trained SFNN and LSTM neural

networks. A three-layer stacked LSTM structure with 50

hidden nodes in each layer is used as a commonly used

architecture of this type of a neural network in finance

research (see, e.g., Sirignano and Cont [22].

Figure 2 provides a schematic overview of the training

process behind an LSTM-based neural network.

2.2 Data

Individual stocks in the S&P/ASX20 index are chosen for

empirical evaluation of the models. This is consistent with

existing literature in the field (as discussed in detail in

Sect. 1) while also capturing broad coverage of industries

on the Australian share market. Daily candlestick

chart price data (Open-High-Low-Close, without Volume)

is obtained using yahoo-finance module in Python

(Table 1).
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Fig. 1 Structure of the ELM
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The period under analysis is chosen between the two

most significant events of the past 20 years that had major

impact on financial markets—Global Financial Crisis and

the Covid-19. Thus, 1 January 2010 to 31 December 2019

forms the analysis period, and the price data is split into

training, validation, and testing datasets to create an

objective evaluation protocol.

Maintaining the sequential logic of the time-series, the

first 5 years of the period (1 Jan 2010–31 Dec 2014) form

the training dataset, the following 2.5 years are used as the

validation dataset (1 Jan 2015–30 Jun 2017), with the

remainder 2.5 years (1 Jul 2017–31 Dec 2019) being used

as the holdout test dataset for the models.

History of the index constituents for the period under

study is obtained and stocks that have been present in the

index for more than a year are chosen. Table 2 contains

descriptive list of the dataset obtained, and the final set of

individual stocks chosen for model testing.

For illustration purposes, example price charts for sev-

eral stocks included in this study are provided below

(Fig. 3).

This study diverges from the previous research (for

example, Zhang [30] or Bisoi et al. [4, 5] by testing models

on the stock price data that may have moved out of a

certain narrow range (e.g., within 3 standard deviations of

the historical mean). Dataset under study is chosen broadly

to capture stock price movements of any kind and range to

eliminate any bias from the research.

To present this data in a meaningful manner, we cal-

culate technical indicators utilising the following parame-

ters of a ‘‘lookback period’’ L = 5 and an ‘‘forward period’’

O = 1. These parameters have been chosen arbitrarily yet

driven by the logic of having at least one week of daily

stock price data (hence the lookback period of 5 days) and

predicting for the time period ahead where this data sen-

sibly matters (thus, limiting this to just 1 day ahead). The

choice of parameters is consistent with the existing litera-

ture in the field (e.g., Göçken et al. [10], Khuwaja et al.

[15]).

Using these parameters, the daily stock price data are

then converted into a set of technical indicators as below.

Assuming daily stock price data contains substantial

amount of noise, Takens’ delay embedding theorem is

relied upon to construct these smoothed ‘‘attractors’’ (i.e.,

technical indicators in this case) that could be used for

stock price prediction Takens [26]. The technical indicators

developed for this study were built to resemble the ones

presented in the study by Zhang [30], yet with some

addition, and comprise the following:

Fig. 2 Anatomy of an LSTM Source: Chollet [6], p. 204

Table 1 Study dataset—an overview

Dataset Full data

period

Dataset date split

Training data Validation data Test/Holdout data

S&P/ASX 20

individual stocks

10 years 1 January 2010–31 December 2014 1 January 2015–30 June 2017 1 July 2017–31 December 2019
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1. Maximum: the maximum stock price for the i-th

lookback period as MaxðPi�L;Pi�Lþ1; . . .;Pi�1;PiÞ;
2. Minimum: the minimum stock price for the i-th

lookback period as MinðPi�L;Pi�Lþ1; . . .;Pi�1;PiÞ;
3. Average: the average value of the stock price for the i-

th lookback period as

P
Pi�L;Pi�Lþ1;...;Pi�1;Pið Þ

L ;

4. Standard Deviation (SD): the standard deviation of

the stock price from its mean for the i-th lookback period

calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L�1

PL
j¼0ðPi�j � PiÞ

q
where Pi is the mean

of the stock price for the i-th lookback period (calculated as

the Average above);

5. Pseudo Log Return (PLR): the logarithmic difference

between average prices of consecutive lookback periods;

6. Trend Indicator (TI): a simple trend indicator calcu-

lated as the difference between the last close price for the i-

th lookback period, Pi, and the first close price of the (i)-th

lookback period, Pi�4, and taken as an ‘‘upward trend’’

(i.e., assigned the value of ‘‘1’’) when the difference is

positive ([ 0), ‘‘no trend’’ (‘‘0’’) when there is no differ-

ence (i.e., Pi = Pi�4), or ‘‘downward trend’’ when it is

Table 2 Stock price time-series used in the study

S&P/ASX 20

historical constituent

Company name Tenure as an ASX 20 member

(during study period)

Listed on ASX during

entire study period

Included in

the study

AMP AU AMP Limited Jan-10–May-18 Yes Yes

ANZ AU Australia and New Zealand

Banking Group Limited

Jan-10–Dec-19 Yes Yes

BHP AU BHP Group Ltd Jan-10–Dec-19 Yes Yes

BXB AU Brambles Limited Jan-10–Dec-19 Yes Yes

CBA AU Commonwealth Bank of Australia Jan-10–Dec-19 Yes Yes

CSL AU CSL Limited Jan-10–Dec-19 Yes Yes

MQG AU Macquarie Group Ltd Jan-10–Dec-19 Yes Yes

NAB AU National Australia Bank Ltd Jan-10–Dec-19 Yes Yes

NCM AU Newcrest Mining Ltd Jan-10–Feb-14, Dec-19 Yes Yes

ORG AU Origin Energy Ltd Jan-10–Feb-16, Jun-18–Nov-18 Yes Yes

QBE AU QBE Insurance Group Ltd Jan-10–Feb-18 Yes Yes

RIO AU Rio Tinto Limited Jan-10–Dec-19 Yes Yes

SUN AU Suncorp Group Ltd Jan-10–Dec-19 Yes Yes

TLS AU Telstra Corporation Ltd Jan-10–Dec-19 Yes Yes

WBC AU Westpac Banking Corp Jan-10–Dec-19 Yes Yes

WES AU Wesfarmers Ltd Jan-10–Dec-19 Yes Yes

WOW AU Woolworths Group Ltd Jan-10–Dec-19 Yes Yes

WPL AU Woodside Petroleum Limited Jan-10–Dec-19 Yes Yes

STO AU Santos Ltd Dec-11–Aug-14 Yes Yes

IAG AU Insurance Australia Group Ltd Mar-14–Dec-19 Yes Yes

TCL AU Transurban Group Mar-16–Dec-19 Yes Yes

SCG AU Scentre Group Jun-14–Dec-19 No No

FGL AU (1812574D

AU)

Foster’s Group Limited Jan-10–Nov-11 No No

WFD AU Westfield Corporation Jan-10–Apr-18 No No

WRT AU Westfield Retail Trust Dec-10–Feb-11 No No

S32 AU South32 Ltd May-15, Mar-18–Nov-19 No No

1624320D AU Unibail-Rodamco-Westfield May-18 No No

OMN AU OneMarket Limited May-18 No No

URW AU Unibail-Rodamco-Westfield CDI May-18 No No

1723503D AU Amcor Ltd Jun-18–May-19 No No

COL AU Coles Group Ltd Nov-18–May-19 No No

AMC AU Amcor Plc Jun-19–Dec-19 Yes No

GMG AU Goodman Group Jun-19–Dec-19 Yes No
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negative (\ 0; and assigned the value of ‘‘-1’’). This indi-

cator is created to measure a trend within each lookback

period;

7. Previous Day Close (PDC): the stock price on the last

day of the i-th lookback period.

Table 3 shows a sample set of technical indicators cal-

culated for a stock given the original candlestick

chart price data. As shown in Fig. 1, these technical indi-

cators for each i-th lookback period (i.e., for each day in a

sequence of daily stock price data) are fed into the ELM-

trained SFNN model directly.

3 Results and discussion

Figure 4 visualises prediction results for a sample of stocks

comparing two commonly used neural network training

methodologies—ELM and LSTM—to the actual stock

Table 3 Excerpt of the technical indicators calculated for a stock before standardisation

Date Open High Low Close Adj

Close

Volume Max Min Average StDev PLR Trend TI LastClose

2010–01-04 5.285 5.304 5.285 5.295 3.119 827,768 0 5.295

2010–01-05 5.343 5.400 5.285 5.400 3.181 2,228,606 0 5.400

2010–01-06 5.314 5.333 5.266 5.295 3.119 2,634,817 0 5.295

2010–01-07 5.304 5.314 5.285 5.314 3.131 2,313,408 0 5.314

2010–01-08 5.314 5.314 5.295 5.314 3.131 2,597,856 5.400 5.295 5.323 0.044 0.004 1 5.314

2010–01-11 5.295 5.314 5.285 5.304 3.125 1,356,795 5.400 5.295 5.325 0.042 0.000 - 0.018 - 1 5.304

2010–01-12 5.295 5.304 5.266 5.275 3.108 4,291,116 5.314 5.275 5.300 0.016 - 0.005 - 0.004 - 1 5.275

2010–01-13 5.266 5.295 5.266 5.266 3.102 3,662,073 5.314 5.266 5.295 0.022 - 0.001 - 0.009 - 1 5.266

2010–01-14 5.285 5.314 5.285 5.295 3.119 1,987,540 5.314 5.266 5.291 0.020 - 0.001 - 0.004 - 1 5.295

2010–01-15 5.304 5.304 5.285 5.304 3.125 2,712,298 5.304 5.266 5.289 0.017 0.000 0.000 0 5.304

2010–01-18 5.285 5.352 5.285 5.304 3.125 2,992,801 5.304 5.266 5.289 0.017 0.000 0.005 1 5.304

2010–01-19 5.314 5.333 5.295 5.295 3.119 4,173,939 5.304 5.266 5.293 0.016 0.001 0.005 1 5.295

2010–01-20 5.314 5.333 5.304 5.314 3.131 2,474,495 5.314 5.295 5.302 0.008 0.002 0.004 1 5.314

2010–01-21 5.333 5.343 5.304 5.323 3.136 5,513,970 5.323 5.295 5.308 0.011 0.001 0.004 1 5.323

2010–01-22 5.256 5.304 5.237 5.295 3.119 3,590,043 5.323 5.295 5.306 0.012 0.000 - 0.002 - 1 5.295

2010–01-25 5.266 5.266 5.189 5.237 3.086 2,221,040 5.323 5.237 5.293 0.033 - 0.003 - 0.011 - 1 5.237

2010–01-27 5.218 5.266 5.218 5.237 3.086 4,587,129 5.323 5.237 5.281 0.042 - 0.002 - 0.014 - 1 5.237

2010–01-28 5.218 5.256 5.065 5.132 3.023 5,624,977 5.323 5.132 5.245 0.073 - 0.007 - 0.036 - 1 5.132

2010–01-29 5.007 5.074 4.940 5.007 2.950 15,391,635 5.295 5.007 5.182 0.114 - 0.012 - 0.054 - 1 5.007

2010–02-01 5.017 5.055 4.960 5.027 2.961 7,658,040 5.237 5.007 5.128 0.110 - 0.010 - 0.040 - 1 5.027

2010–02-02 5.046 5.094 5.046 5.074 2.990 4,294,680 5.237 5.007 5.095 0.093 - 0.006 - 0.031 - 1 5.074

2010–02-03 5.046 5.084 5.027 5.027 2.961 2,923,179 5.132 5.007 5.053 0.050 - 0.008 - 0.021 - 1 5.027

2010–02-04 5.036 5.084 5.027 5.027 2.961 2,210,844 5.074 5.007 5.032 0.025 - 0.004 0.004 1 5.027

2010–02-05 5.007 5.055 4.950 4.998 2.944 2,331,890 5.074 4.998 5.030 0.028 0.000 - 0.006 - 1 4.998

2010–02-08 5.036 5.046 4.979 4.979 2.933 2,041,860 5.074 4.979 5.021 0.036 - 0.002 - 0.019 - 1 4.979

2010–02-09 4.931 5.017 4.931 4.988 2.939 4,343,396 5.027 4.979 5.004 0.022 - 0.003 - 0.008 - 1 4.988

2010–02-10 4.998 5.046 4.931 4.979 2.933 3,082,175 5.027 4.979 4.994 0.020 - 0.002 - 0.010 - 1 4.979

2010–02-11 4.988 5.074 4.960 5.027 2.961 2,242,066 5.027 4.979 4.994 0.020 0.000 0.006 1 5.027

2010–02-12 4.950 4.988 4.940 4.979 2.933 2,157,747 5.027 4.979 4.990 0.021 - 0.001 0.000 0 4.979

2010–02-15 4.969 4.979 4.912 4.960 2.922 1,013,593 5.027 4.960 4.986 0.025 - 0.001 - 0.006 - 1 4.960

2010–02-16 4.912 4.921 4.806 4.845 2.854 2,803,879 5.027 4.845 4.958 0.068 - 0.006 - 0.027 - 1 4.845

2010–02-17 4.835 4.902 4.691 4.883 2.877 4,802,653 5.027 4.845 4.938 0.074 - 0.004 - 0.029 - 1 4.883

2010–02-18 4.931 5.094 4.893 5.046 2.973 6,941,247 5.046 4.845 4.942 0.080 0.001 0.013 1 5.046

2010–02-19 5.065 5.141 4.998 5.046 2.973 4,504,954 5.046 4.845 4.956 0.092 0.003 0.017 1 5.046

2010–02-22 5.074 5.103 5.036 5.094 3.001 2,971,435 5.094 4.845 4.983 0.111 0.005 0.051 1 5.094
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price data. This result is shown on the final, holdout test

dataset (period from mid-2017 until the end of 2019) that

has never been seen by any of the models and represents a

one-off final test run. The original stock price (grey) is

compared to the ELM-trained network prediction (blue)

and prediction by the LSTM model (orange).

Summary numerical results for all stocks under analysis

are presented in Table 4 on a number of critical perfor-

mance metrics, including speed of training which gains

importance as the prediction horizon decreases. All training

and testing procedures were run on the Dell Latitude 5310

laptop with IntelI CITM) Processor, i5-10310U CPU @

1.70 GHz, 2208 MHz, 4 Core(s), 8 Logical Proces-

sor(s) with 16.0 Gb of RAM (Installed Physical Memory).

Overall, the performance of the ELM-trained models is

exceeding that of the LSTM networks, with only a few

cases of LSTM slightly outperforming the former. On

average, Group 1 in Table 4—where ELM models provide

superior prediction results to the LSTM ones—shows that

ELM performs materially better than LSTM for these time-

series. However, for Group 2—where LSTM yielded better

performance than ELM—the difference in performance

between the two models under study is minimal. This is

also supported by the charts in Fig. 4 where the top two

stocks (STO.AX and IAG.AX) belong to Group 1 and the

other two stocks (WPL.AX and WBC.AX) are from Group

2. Group 1 stocks have visible difference in LSTM and

ELM prediction, with LSTM being off point visibly. Group

2 sees ELM and LSTM predictions move almost too close

to call.

The speed of training is also noteworthy to mention.

ELM-trained models have been known to increase the

speed of training by a factor of 10–100 (at least) compared

to their more widely accepted counterparts (LSTM in this

case) Wu et al. [28]. Our test showed ELM models have

been trained and tested more than 100 times faster than

LSTM ones for the full set of stocks under analysis. The

value of this advantage is appreciated when dealing with

Fig. 3 Example price charts of the stocks under analysis
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constant flow of live data on shorter frequencies and the

need to make prompt decisions (e.g., in the high-frequency

trading environment).

In general, ELM appears to capture well trends in the

data, as well as better reacting to more short-term changes

in the price move process (i.e., peaks and troughs). This

may be attributed to the set of technical indicators used for

prediction where network is almost able to build an

expected stock price distribution and choose the most

likely next point given the latest point in the data (i.e.,

previous day close price).

Let us contrast the stocks where LSTM achieved better

prediction results than ELM with the ones where it did not.

They do belong to either the financial services (ANZ,

NAB, WBC) or metals and mining (NCM, WPL) indus-

tries, however, stocks belonging to the same industries are

found within Group 1 as well (for example, CBA, MQG or

BHP, STO) where ELM performed better than LSTM.

Therefore, a hypothesis that changes between these two

groups may be driven by industry membership does not

stand.

Table 5 presents initial further analysis on the issue.

Descriptive statistics are calculated for stocks from the two

groups, split by the dataset used to train, validate, and test

the models. It should be noted that the final model is

trained on the full combined training and validation data-

set, before running the final test on the holdout dataset.

This timewise split allows us to explore the differences in

model performance between stocks.

First, it is worth noting that either model, but especially

LSTM, performed comparatively worse on stocks that

experienced strong growth through the period of analysis

(2010–2019). For example, CSL.AX and MQG.AX had

substantial increase in the mean between datasets. Second,

it appears that stocks from Group 2 had substantial change

in data distribution skewness (highlighted by bold italics in

the table) between periods. For example, ANZ.AX showed

positive skewness around 0.3–0.4 in the training and

Fig. 4 Time-series charts of prediction results of the models tested in comparison with the actual stock price data
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validation datasets which then retraced to a negative 0.36

in the test period. WPL.AX time-series followed the sim-

ilar path to ANZ.AX. NAB.AX and WBC.AX showed

matching trajectory where a positive skewness in the full

training period changed to almost 0 in the test data.

NCM.AX skewness has sharply increased from the nega-

tive 0.15 for training to the positive above 1 for the test

datasets. This change in skewness represents material

change in data interaction dynamics between time-series

mean and standard deviation that were used as critical input

variables into the ELM-trained models. This may explain

the difference in predictive performance results between

models for these stocks, however, bodes well for further

research.

To test economic significance and practicality of the

aforementioned findings, a simple trading strategy is

developed using ELM model-based stock price predictions.

Table 6 shows profitability results by threshold level d that

is used in the following manner:

ait ¼
BUY ; Dsit � d
HOLD; d[Dsit � � d
SELL; Dsit\� d

;

8
<

:

where ait is the action taken at time t, Dsit is the expected

change in stocks price s of stock i for time period t based

on the ELM model prediction, and d is the chosen

threshold level in absolute $ terms to indicate whether the

predicted stock price change is considered material. Per-

formance of the prediction-based strategy is tested on

Table 4 Comparative results for the models tested (lower error/better result bolded)

# MSE RMSE Normalised RMSE MAE MAPE

LSTM ELM LSTM ELM LSTM ELM LSTM ELM LSTM ELM

(sec) (sec)

Time taken to train and test the models 6232 56

Ticker

Group 1—ELM beats LSTM

1 AMP.AX 0.365 0.020 0.604 0.142 0.180 0.042 0.449 0.104 21.146 4.387

2 BHP.AX 0.280 0.207 0.529 0.455 0.016 0.014 0.420 0.350 1.275 1.056

3 BXB.AX 0.017 0.016 0.130 0.127 0.012 0.012 0.093 0.090 0.875 0.837

4 CBA.AX 0.660 0.612 0.813 0.782 0.011 0.010 0.627 0.586 0.828 0.779

5 CSL.AX 453.229 7.088 21.289 2.662 0.113 0.014 13.538 1.925 5.980 1.011

6 MQG.AX 60.481 1.936 7.777 1.391 0.068 0.012 6.288 1.019 5.059 0.885

7 ORG.AX 0.031 0.017 0.175 0.129 0.022 0.016 0.129 0.098 1.631 1.215

8 QBE.AX 0.030 0.020 0.174 0.141 0.015 0.013 0.136 0.102 1.247 0.908

9 RIO.AX 3.189 1.860 1.786 1.364 0.022 0.017 1.281 1.077 1.465 1.303

10 SUN.AX 0.024 0.023 0.154 0.151 0.011 0.011 0.109 0.108 0.781 0.770

11 TLS.AX 0.003 0.003 0.052 0.051 0.015 0.015 0.038 0.035 1.133 1.042

12 WES.AX 3.419 0.401 1.849 0.633 0.054 0.019 1.208 0.469 3.201 1.306

13 WOW.AX 0.095 0.089 0.309 0.299 0.010 0.010 0.232 0.212 0.770 0.689

14 STO.AX 0.053 0.016 0.230 0.125 0.038 0.021 0.185 0.090 3.173 1.513

15 IAG.AX 0.047 0.018 0.216 0.135 0.028 0.018 0.180 0.106 2.281 1.358

16 TCL.AX 0.170 0.017 0.412 0.130 0.033 0.010 0.304 0.098 2.232 0.775

AVERAGE 32.631 0.771 2.281 0.545 0.040 0.016 1.576 0.404 3.317 1.240

Group 2 – LSTM beats ELM

17 ANZ.AX 0.096 0.099 0.310 0.315 0.011 0.011 0.226 0.232 0.824 0.846

18 NAB.AX 0.077 0.083 0.278 0.287 0.010 0.010 0.200 0.211 0.729 0.771

19 NCM.AX 0.182 0.194 0.427 0.440 0.017 0.018 0.307 0.322 1.206 1.284

20 WBC.AX 0.111 0.136 0.333 0.369 0.012 0.013 0.236 0.257 0.835 0.911

21 WPL.AX 0.200 0.233 0.447 0.483 0.014 0.015 0.336 0.365 1.025 1.102

AVERAGE 0.133 0.149 0.359 0.379 0.013 0.013 0.261 0.277 0.924 1.047
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several threshold levels as there does not appear to be

agreement in the literature on a common value or even an

approach. For example, Mohanty et al. [19] and Bisoi et al.

[4, 5] only compare the next day predicted price to the

current day value, inherently assigning 0 value to the action

threshold. We use threshold in this strategy to avoid

unnecessary trades based on minor changes in price and,

since no agreement appears to exist in the literature as to its

value, we test a range of threshold levels.

We test model performance using simple return metric

by various thresholds to indicate persistence of the findings

and conduct robustness checks. The main result of ELM

outperformance over its LSTM counterpart holds across the

full range of thresholds used. The difference is that fewer

trades are made with higher thresholds. Profitable results

are bolded in Table 6. In addition to being profitable for

the majority of stocks, it is important to note that the

overall average results of the model are positive across all

threshold values. These results may be best understood as

investing the same amount of funds for each individual

stock trading from the beginning. These results are

designed to reveal that real-world implementations are

possible, and future research should investigate an optimal

trading strategy based on such a model.

4 Conclusion and future research

Prediction of future stock prices returns is arguably one of

the most challenging areas of finance. This is driven by

common belief that stock prices have a relatively low

signal-to-noise ratio and a substantial array of influential

Table 6 Profitability of the trading strategy based on the ELM model predictions, by threshold level d

# Ticker Threshold level, d

$0.01 $0.05 $0.10 $0.25 $0.50 $1

$ % $ % $ % $ % $ % $ %

1 AMP.AX 0.44 - 56.15% 0.49 - 51.46% 0.62 - 37.58% 1.00 0.00% 1.00 0.00% 1.00 0.00%

2 ANZ.AX 0.81 - 19.28% 0.86 - 13.97% 0.76 - 24.37% 0.94 - 6.13% 1.00 0.00% 1.00 0.00%

3 BHP.AX 1.24 24.26% 1.17 17.49% 1.01 0.67% 1.15 14.88% 1.00 0.00% 1.00 0.00%

4 BXB.AX 1.17 16.90% 1.26 25.90% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00%

5 CBA.AX 1.15 15.31% 1.14 13.67% 1.09 8.98% 1.15 15.18% 1.00 - 0.01% 1.00 0.00%

6 CSL.AX 1.74 74.33% 1.96 96.31% 1.92 92.46% 2.03 103.07% 1.79 79.28% 1.34 34.26%

7 MQG.AX 1.10 10.13% 1.09 9.44% 1.14 14.03% 1.24 23.83% 1.09 9.47% 1.16 15.74%

8 NAB.AX 1.02 2.43% 0.98 - 2.47% 1.06 5.80% 0.91 - 9.35% 1.00 0.00% 1.00 0.00%

9 NCM.AX 1.46 45.62% 1.38 37.93% 1.53 53.26% 1.32 32.07% 1.58 57.88% 1.19 19.18%

10 ORG.AX 1.36 35.99% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00%

11 QBE.AX 1.04 4.06% 1.09 8.79% 1.22 22.21% 1.00 0.00% 1.00 0.00% 1.00 0.00%

12 RIO.AX 1.01 0.83% 0.97 - 2.53% 1.02 1.66% 1.03 3.49% 1.19 19.05% 0.96 - 4.06%

13 SUN.AX 1.05 5.44% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00%

14 TLS.AX 0.87 - 13.27% 0.90 - 10.00% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00%

15 WBC.AX 0.71 - 29.23% 0.62 - 38.28% 0.67 - 32.56% 0.80 - 20.02% 0.86 - 13.72% 1.00 0.00%

16 WES.AX 1.27 27.40% 1.19 19.49% 1.25 24.83% 1.01 1.40% 1.00 0.00% 1.00 0.00%

17 WOW.AX 1.35 35.16% 1.36 35.83% 1.45 44.55% 1.31 31.43% 1.00 0.00% 1.00 0.00%

18 WPL.AX 1.15 15.04% 1.16 16.50% 1.30 29.81% 1.29 28.98% 1.00 0.00% 1.00 0.00%

19 STO.AX 1.00 - 0.21% 1.44 43.76% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00%

20 IAG.AX 1.04 4.46% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00% 1.00 0.00%

21 TCL.AX 1.32 31.83% 1.35 34.68% 1.02 2.44% 1.00 0.00% 1.00 0.00% 1.00 0.00%

AVERAGE 1.11 11.00% 1.11 11.48% 1.10 9.82% 1.10 10.42% 1.07 7.24% 1.03 3.10%

This table reports profitability results of the trading strategy based on the ELM-trained neural network model predictions. The results are

presented by threshold level used to identify action among BUY, HOLD, and SELL options. A range of threshold values has been used given

lack of disagreement thereto in the literature. Profitable results are bolded. Average results at the bottom of the table are calculated as the overall

profitability of a trading strategy that allocates the same dollar amount to trading each individual stock from the start, i.e., equal-weighted

portfolio with no rebalancing
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factors, with time- and cross-section-varying weightings

assigned to each. This presents a difficult task for predic-

tive models, albeit an almost impossible one for traditional,

linear models. Nonlinear machine learning models have

shown some success in this field, but they most often

require vast amounts of data to extract usable features from

the high-noise price data. However, the relatively new

Extreme Learning Machine training methodology for sin-

gle hidden layer neural networks has not yet been com-

prehensively evaluated for this purpose. This study

compares this relatively novel ELM training methodology

to the more well-known Long Short-Term Memory

(LSTM) recurrent neural network. Utilising a set of simple

technical indicators built on raw stock price data, ELM-

trained neural networks are constructed, trained, and then

tested on a set of blue-chip stocks listed on the Australian

Securities Exchange.

The analysis confirms the proposed benefits of ELM

training, specifically reduced training time with compara-

ble predictive power without requiring as much data. It

further confirms emerging findings of Zhang [29] as to the

overall efficacy of the models and potential shortfalls,

albeit on a broader real stock price dataset. ELM-trained

models have shown substantial improvement in predictive

accuracy on the majority of individual stock price datasets

used in the study. In the relatively few cases where LSTM

does better, it appears that changes in the stock price data

distribution might be the reason for this deviation.

The performance discrepancy between LSTM and

ELM-trained models bodes well for potential future

research. There are relatively few number of cases where

LSTM outperforms and, in these cases, we have observed

substantial drift in the degree of skewness between training

and test datasets as compared to less unexpected changes

for the rest of the stock price series. LSTM’s ability to

capture changes in the underlying asymmetry of the

distribution may prove a significant advantage in practice.

Identifying important variables in the ELM neural net-

works and trialling additional input metrics directly relat-

ing to skewness of the input series distribution also

represent interesting research directions. Additionally,

testing the results on a different set of financial instruments

may shed further light on the findings about the LSTM’s

ability to respond better to changes in the underlying data

distribution which would be a useful feature in investment

practice.

Given the encouraging results, future research could

investigate ways to further enhance the ELM-based trading

system. It would be valuable to investigate adding a

stronger trend indicator (such as a medium or a long-term

Exponential Moving Average) given that the current ELM

did not perform well with the changing distribution of the

price data. It is likely to help better identify the underlying

trend in the data and adjust price prediction accordingly.

Another parameter that could be further tuned is the

threshold value in the action decision step. The strategy

presented used an initial set of dollar-based thresholds, but

the optimal threshold to use might vary according to

underlying timeseries data and its distribution properties.

Finally, the choice of input variables used in the model can

be further investigated to improve its predictive power. For

example, it might be beneficial to trial various volatility

measures instead of the standard deviation currently used

in the model. Measures that may better reflect more recent

volatility or more accurately capture both short- and long-

term inherent price series variance are most promising.

Such future research identifying better methods to more

accurately predict security prices has widespread applica-

tions, from improving on pure profitability-driven invest-

ment objectives to better informed portfolio construction

and risk management.
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Appendix 1: Individual stock price ELM
model predictions.
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