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Individual repeatability (R), defined as the proportion of observed variance attributable to among-individual differences, is a widely

used summary statistic in evolutionarily motivated studies of morphology, life history, physiology and, especially, behaviour.

Although statistical methods to estimate R are well known and widely available, there is a growing tendency for researchers

to interpret R in ways that are subtly, but importantly, different. Some view R as a property of a dataset and a statistic to be

interpreted agnostically with respect to mechanism. Others wish to isolate the contributions of ‘intrinsic’ and/or ‘permanent’

individual differences, and draw a distinction between true (intrinsic) and pseudo-repeatability arising from uncontrolled extrinsic

effects. This latter view proposes a narrower, more mechanistic interpretation, than the traditional concept of repeatability, but

perhaps one that allows stronger evolutionary inference as a consequence (provided analytical pitfalls are successfully avoided).

Neither perspective is incorrect, but if we are to avoid confusion and fruitless debate, there is a need for researchers to recognise

this dichotomy, and to ensure clarity in relation to how, and why, a particular estimate of R is appropriate in any case.
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Over recent years there has been an explosion of interest in evo-

lutionary and behavioural ecology in characterising the extent to

which individuals within populations show repeatable phenotypic

differences across observations separated in time. From an evolu-

tionary perspective, it is often noted that individual repeatability

R, the proportion of variance attributable to among-individual

differences sets an upper bound for heritability (Falconer and

Mackay 1996); but see (Dohm 2002) for exceptions). Similarly,

natural selection occurs when trait differences among-individuals

cause fitness variation. Thus, trait variation among individuals is

a necessary, but not sufficient, condition for genetic variation and

selection, the two ingredients of adaptive phenotypic evolution.

As a consequence, estimates of R have long been used to draw ten-

tative evolutionary conclusions when formal quantitative genetic

analyses are not possible (e.g., Bakker 1999; Conradsen et al.

2016). For instance, in studies of wild bird populations repeata-

bilities of reproductive traits (e.g., clutch size, lay date) have been

estimated as proxies for heritability (e.g., Perrins and Jones 1974;

Erikstad et al. 1993) and/or to separate the influences of territory

and parental quality (Przybylo et al. 2001). For morphological

traits, repeatabilities have been used to test predictions arising

from handicap models of sexual selection. For example, Foley

et al. (2012) argued that, for antler traits in cervids, R declines as

conditions become more variable. Though not surprising in itself,

this is consistent with the prediction that male traits under sexual

selection should be honest signals as a consequence of condition

dependence.

Although individual repeatabilities are estimated for all types

of phenotypes, the recent surge of interest has focused particularly

on behavioural traits (Bell et al. 2009). In this context, consistent

differences among individuals are viewed as evidence of animal

personality, coping style or behavioural syndromes. While pre-

ferred terminology varies among researchers (and according to

whether the phenomenon is univariate or multivariate), animal

personality is usually defined as the presence of behavioural dif-

ferences among-individuals that are repeatable across time and/or

context. This definition has led empiricists to design studies that

target multiple behavioural observations per individual subject,

allowing statistical separation of among-individual from within-

individual variance. The former provides the statistical signature

4
C© 2018 The Author(s). Evolution Letters published by Wiley Periodicals, Inc. on behalf of Society for the Study of Evolution
(SSE) and European Society for Evolutionary Biology (ESEB).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution Letters 2-1: 4–8

http://creativecommons.org/licenses/by/4.0/


Interpret ing repeatabi l i ty es t imates

of personality, with its effect size often standardised to a repeata-

bility. This approach, though not without its critics in behavioural

ecology (Beekman and Jordan 2017) has highlighted the fun-

damental evolutionary importance of (behavioural) variation at

multiple hierarchical levels (e.g., within- and among-individuals;

Dingemanse 2017). This in turn has greatly facilitated inclusion

of behavioural traits in integrative studies of multivariate pheno-

types including, for instance, stress physiology (Boulton et al.

2015) and metabolism (Nespolo and Franco 2007; Auer et al.

2016).

However, while estimating R from appropriate data is

straightforward using widely available, well-documented meth-

ods (e.g., ANOVA, simple correlation analysis, linear-mixed ef-

fect models; see e.g., Wolak et al. 2011), there are also growing

differences among researchers in their biological interpretations

of this parameter. For some it is a statistical parameter to be es-

timated and interpreted agnostically with respect to biological

mechanisms driving variance. For others estimation of R is in-

tended, either explicitly or implicitly, to capture specific drivers

of among-individual variance while excluding others. This note

does not advocate a single ‘correct’ approach. Indeed my primary

aim is to highlight that different, but equally correct views co-

exist in the literature that differ in their biological interpretation.

Nonetheless, some incorrect—or at least misleading–-practices

also persist. A secondary aim here is to demonstrate one such

practice (whereby scaling traits to ratios can make interpretation

of repeatability estimates problematic) and to present its simple

solution. Thereby I hope to (i) help researchers draw appropriate

understanding from published results, and (ii) encourage authors

to be more explicit in what they want R to represent and why.

Divergent Concepts of Individual
Repeatability
Repeatability is a very widely used statistical concept and thus

is not, in any general sense, a parameter with specific evolu-

tionary, behavioural, or indeed biological meaning. R simply de-

scribes the proportion of variance in a measured quantity that is

attributable to some factor or class by which observations can be

grouped. It is thus a standardised measure of among-class vari-

ance. Equivalently, it describes the extent of correlation among

observations within levels of the grouping factor, hence its alter-

native moniker as the intraclass correlation (ICC). In organismal

biology the grouping factor of interest is commonly the identity

of an individual animal such that R = VI/VP (where, for some trait

of interest, VIis the among-individual variance and VP is the total

phenotypic variance). Thus, in this context, R tells us the extent

to which observations on the same individuals are correlated and

provides an intuitive measure of variation among-individuals.

Two points follow from the above. First, while being a widely

used measure of among individual variance, R is the ratio of VI to

VP and the latter includes both within- and among-individual com-

ponents. Thus R is an outcome of the variance partitioned in a par-

ticular dataset, and is dependent on among- and within-individual

sources of variation. Second, defined in this way, repeatability tells

us nothing about the mechanisms underpinning among-individual

differences. The latter point is important because there is a grow-

ing tendency to view R as a measure of how important ‘intrinsic’

mechanisms of phenotypic determination are. Taking an explic-

itly evolutionary perspective, several recent publications have ar-

gued that environmental effects can ‘confound’ repeatability esti-

mates (Zsebők et al. 2017) and give rise to ‘pseudo-repeatability’

(Harrison et al. 2015; Niemela and Dingemanse 2017) or—in

a specifically behavioural context–‘pseudo-personality’ (Mar-

tin and Réale 2008; Westneat et al. 2011). For instance,

Niemela and Dingemanse (2017) define ‘true’ biological repeata-

bility as arising ‘solely due to the combined influences of genetic

variation and irreversible plasticity.’ The assumed irreversibility

or ‘permanence’ of these mechanisms is stressed in contrast to

reversible effects that lead to within-individual variation. Under

this definition, it follows that among-individual differences arising

from, for instance, reversible plastic responses to local environ-

ments are cited as a source of upward bias in R. However, it is im-

portant to recognise here that there is no estimator bias here in the

usual statistical sense. Rather the (perceived) problem is that the

estimate of R will depend on sources of variance (within- and/or

between-individual) that the researcher would have preferred to

control for. With this recognised, then it is sensible to consider how

statistical and/or experimental controls can best be implemented

to condition estimates of R on these ‘nuisance’ sources of variance.

The narrower interpretation of repeatability described above

may help us to focus attention on a subset of biological mech-

anisms of interest. It also draws attention to the useful ways in

which experiments and/or analyses can best be designed to test

biological hypotheses and make at least preliminary evolution-

ary inferences (e.g., a trait that is not repeatable will not be

heritable). However, I suggest some caution is also warranted.

Firstly, while controlling for specific nuisance variables is often

sensible, any inference of mechanism underpinning simple vari-

ance partitions (e.g., VI) will remain strongly assumption-laden.

In other words, correlations cannot prove causation just because

they are intra-class correlations. Stronger inferences can of course

be made when specific processes contributing to VI are directly

modelled (e.g., additive genetic inheritance, maternal effects, spa-

tial autocorrelation). This point about VI actually applies equally

to the residual variance (VR) that can be interpreted, with caveats,

as within-individual variation arising from reversible plasticity.

The caveats arise because (i) measurement error will also con-

tribute to VR and (ii) residuals are joint properties of observations
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recorded and the preferred statistical model as chosen by the

researcher (see Brommer 2013 for more discussion of this). Sec-

ondly, this view risks divorcing R from its much more widely

understood dependence on the full variance of observed data. In

so doing it increases the likelihood of misunderstanding. If the

goal is not to estimate R in the sample obtained, but rather to

estimate R in an idealised population in which, for instance, en-

vironmental effects are experienced identically by all individuals

(and do not contribute to VI) then this is legitimate. However, this

intent and its rationale must be made explicit. If this is not done

then claims of environmentally induced bias are at best confusing

and at worst misguided.

For instance, imagine a resource-dependent (i.e., plastic) trait

in a population where animals show limited dispersal and inhabit

a spatially patchy environment. If all animals are repeatedly as-

sayed then habitat patchiness will contribute to among-individual

variance in the observed data. Conventionally, this environmental

heterogeneity would thus be seen as one mechanism contribut-

ing to VI and thus R. However, controlling for patch differences

(statistically or experimentally) could equally be viewed as (i)

removing upward bias (following a mechanistic definition of R

(Niemela and Dingemanse 2017)), (ii) inducing downward bias

by removing a source of among-individual variance that is highly

relevant to the real-world population (and could potentially even

be ‘intrinsic,’ for example in a territorial species with competitive

outcomes determined by heritable traits), or (iii) giving rise to a

different estimate of R that is equally valid, but should be inter-

preted as representing (expected) repeatability in a homogeneous

environment. I tend towards the third option, but note that claims

of bias (in either direction) are not incorrect provided they are

appropriately contextualised.

Conditioning Estimates of R on
‘Nuisance’ Variables
More generally it is widely argued that an individual’s pheno-

type will depend on both intrinsic and extrinsic factors - concepts

that are convenient but may be difficult to cleanly separate in

reality. However, it is not the case that intrinsic factors exclu-

sively drive among-individual variance while extrinsic ones lead

to within-individual variance. Indeed,some factors will certainly

contribute to both among- and within-individual partitions of ob-

served variance, meaning they may either increase or decrease

R. Age effects might provide one obvious example in a longer

term study where individuals are observed across several years,

but average observation age also differs among individuals. The

conceptual separation of within- and among-individual variance

becomes even less clear cut if individuals differ in their plastic

responses to some environmental variable (I × E), as VI then

becomes a function of E (Nussey et al. 2007).

Nonetheless, in the absence of experimental controls (which

are of course a good thing; Niemela and Dingemanse 2017), it is

possible and often highly desirable to estimate conditional or ad-

justed repeatabilities. These are estimates that control statistically

for nuisance sources of variance (as deemed by the modeller)

in a data set. At a minimum these might include experimental

design variables such as time of day, test sequence or observer

identity. Using linear mixed effect models this can be done in

several ways (see Nakagawa and Schielzeth 2010; Killen et al.

2016 and Wilson 2008 for parallel points made with respect to

heritability); fixed effects can be included to yield estimates of

adjusted repeatability; random effects can be added to make fur-

ther partitions of the variance that are simply excluded from the

summation to VP (an approach sometimes used for calculating

heritabilities of personality traits; Dochterman et al. 2015); or

bivariate models can be used to estimate repeatabilities of one

trait conditional on a second (following methods analogous to

those used to obtain conditional genetic parameters in quantita-

tive genetic studies; Hansen and Houle 2008). Conversely, recent

work by de Villemereuil et al. (2018) actually presents methods

that allow the variance explained by some or all fixed effects to

be deliberately retained in the estimation of VP. This flexibility

is welcome as it allows researchers to decide what constitutes

the ‘natural phenotypic variance of the studied population’ (de

Villemereuil et al. 2018). However, this further highlights the

point that that there is no single correct denominator for estimat-

ing R.

Re-scaling Traits to Estimate R can
Sometimes be Very Misleading
Given the ready availability of the mixed models strategies noted

above, the once common practice of estimating repeatability

in ‘corrected data’ (i.e., residuals from a previous analysis) is

no longer widespread. Nor indeed is it statistically justifiable.

However, one further strategy, which appears at least initially

attractive if trying to control for allometric relationships, is to

re-scale a trait of interest (Y) by some second attribute (X) of the

individual – often a measure of body size. This is most commonly

done for metabolic and endocrine traits where, for instance,

whole-organism measures of O2 consumption might be turned

into mass-specific metabolic rate. Among-individual differences

in physiology are central to several heuristic explanations for the

maintenance of multivariate life history variation (e.g., pace of

life syndrome, stress coping style). However, in testing these ideas

evolutionary biologists must not uncritically adopt data scaling

practices common in physiological studies. Wider criticism of
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Figure 1. Distributions of estimated repeatability for Y following two possible “corrections” for X (mass) from simulated data sets (n =
1000). Plots show distributions under Model A in which the response variable was Y/X (red), and Model B in which the response was Y

and X was included as a fixed effect. Dashed vertical lines indicate median estimates of R.

the use of ratios is presented elsewhere (e.g., Hayes 2001), but in

the present context the key point is that the variance structure of

Y/X necessarily depends on the distributions of both constituent

variables. This means that repeatable variation in X (e.g., body

size) can be a sufficient condition to generate variation in Y/X.

A toy simulation with arbitrary numbers serves to illustrate

the potential for biological misinterpretation. Let body mass (X)

be distributed in a population as X�N(10,1), with an individual

repeatability of RX = 0.9. This might correspond to a scenario

in which true mass varies among-individuals, is constant within-

individuals, and is observed with (random) measurement errors

εx where εx �N(0,0.1). Now let a trait Y have a simple linear

allometry to (true) mass, assuming a slope of 1 and an intercept

of 10. There is no among-individual variance in Y over and above

that caused by mass, but observations of Y are subject to random

measurement errors εY, where εY �N(0,1). A thousand data sets,

in which 100 individuals were observed four times each, were

simulated using these starting parameters and for each the scaled

response Y/X was analysed using a linear mixed model (A) con-

taining a fixed mean and a random effect of individual. For each

simulated data set VI was tested by likelihood ratio test (LRT,

assuming the test statistic is distributed as χ2
1) and an estimate of

R obtained. For comparison, a second model (B) was also fitted

to each data set, in which the unscaled trait Y was modelled with

a (linear) fixed effect of X in addition to the mean and a random

individual term. The distributions of repeatability estimates under

the two models are shown in Figure 1. In model A, the median

(95% quantiles) estimate of R for Y/X is 0.397 (0.285-0.508) and

the LRT is significant at α = 0.05 in 100% of cases. Under model

B, the median estimate of adjusted R for Y is 0.007 (0.000-0.096)

and the LRT is significant in just 2.7% of cases. In neither case is

the repeatability estimator biased in a statistical sense. However, if

the biological question is whether there is more among-individual

variation in Y than can be explained by size differences alone, then

use of Y/X as a response variable leads, in this instance, to entirely

the wrong conclusion.

Summary
In conclusion, there is not a single ‘true’ estimate of R for a trait

in a population, but rather a set of equally valid estimates, each of

which can be justified provided attention is paid to their subtle dif-

ferences of biological interpretation. In some cases there may be

a need to think carefully about whether particular scaling or trans-

formations of a response variable could give misleading answers,

but more generally differences will stem from the extent to which

statistical controls are used to remove specific sources of variation

in the trait of interest. They will also stem of course from experi-

mental design decisions, including the use (or not) of experimental

manipulations and sampling strategy (e.g., the inter-observation

interval). Decisions made will thus reflect the intent to exclude

(or not) particular sources of within- and/or among-individual
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variation. In evolutionarily motivated studies, this in turn may

stem from a desire to interpret R in a narrower, more mechanis-

tic way than has traditionally been the case, removing ‘extrinsic’

sources of among-individual variance that are unlikely to impact

evolutionary dynamics. There is ample room for plurality of prac-

tice and consequently I make no suggestions of how researchers

should proceed, except to stress the need for clarity of intent (i.e.

what do I intend my estimate of R to mean) and contextualisa-

tion (i.e., why is this the appropriate estimate for my study). A

repeatability can mean different things to different people, and

where one person may see a biological signal, another will see

bias. A priori dismissing one of these perspectives provides ob-

vious potential for confusion and fruitless debate and is hence

unlikely to advance our understanding of both the causes and the

consequences of individual variation.
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