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Abstract

Background: Knowledge of structural class is used by numerous methods for identification of
structural/functional characteristics of proteins and could be used for the detection of remote
homologues, particularly for chains that share twilight-zone similarity. In contrast to existing
sequence-based structural class predictors, which target four major classes and which are designed
for high identity sequences, we predict seven classes from sequences that share twilight-zone
identity with the training sequences.

Results: The proposed MODular Approach to Structural class prediction (MODAS) method is
unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a
novel, custom-built feature-based sequence representation that combines evolutionary profiles and
predicted secondary structure. The features quantify information relevant to the definition of the
classes including conservation of residues and arrangement and number of helix/strand segments.
Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop
Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5
twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of
modern competing predictors show that MODAS provides the best overall accuracy that ranges
between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This
translates into 19% and 8% error rate reduction when compared against the best performing
competing method on two largest datasets. The proposed predictor provides accurate predictions
at 58% accuracy for membrane proteins class, which is not considered by majority of existing
methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed
to demonstrate how and why the input features are associated with the corresponding classes.

Conclusions: The improved predictions stem from the novel features that express collocation of
the secondary structure segments in the protein sequence and that combine evolutionary and
secondary structure information. Our work demonstrates that conservation and arrangement of
the secondary structure segments predicted along the protein chain can successfully predict
structural classes which are defined based on the spatial arrangement of the secondary structures.
A web server is available at http://biomine.ece.ualberta.ca/MODAS/.
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Background
Protein function, regulation, and interactions can be
learned from their structure [1,2], which motivates
development of novel methods for the prediction of the
protein structure. These predictions concern various levels
and aspects of the protein structure including the tertiary
structure [3,4], solvent accessibility, depth, flexibility and
packing of residues [5], and secondary structure [6]. In
contrast to the tertiary structure that describes position of
each of the protein’s atoms, the secondary structure
simplifies the protein structure to a set of spatially local
folding patterns that include a-helices, b-strands and
coils. The spatial distribution of these local patterns
determines the overall, three-dimensional shape of
proteins in which individual secondary structures interact
with each other creating more complex structures such as
parallel or antiparallel b-sheets, b-barrels, and others. In
spite that final product is complex, protein structures can
be categorized into a few structural classes depending on
the amount, types and spatial distribution of the
secondary structures found in their fold.

Knowledge of the structural class is shown to stimulate
the development of methods for identification of other
structural and functional characteristics of proteins [7].
Examples include prediction of protein unfolding rates
[8], characterization and prediction of folding rates
[9-11], quantification of the relation between chain
lengths and folding rates of two-state proteins [12],
prediction of DNA-binding sites [13], discrimination of
outer membrane proteins [14], fold prediction [15],
secondary structure and secondary structure content
prediction [16,17], reduction of the conformation search
space [18] and implementation of a heuristic approach
to find tertiary structure [19], to name just a few. At the
same time, the structural classes are known for a
relatively small number of proteins. The most recent
release 1.75 of SCOP database [20,21] includes 110,800
protein domains with the annotated classes, while
release 36 of the NCBI’s RefSeq database [22] includes
8,181,910 non-redundant protein sequences. The main
reason for this wide gap is unavailability of protein
structure, which is used to assign the structural class, for
the significant majority of the known protein sequences.
To this end, an accurate and automated method for
classification of sequences into the corresponding
structural classes would provide assistance when the
structural class in unknown for a given chain.

Template-based modeling, which is successfully used to
predict the tertiary structure, is based on an assumption
that similar sequences (usually defined as sequences
with similarity of above 30%) share similar structures
[23-25]. Prediction methods that rely on the sequence

alignment [26,27] usually perform relatively poorly
when sequences with high identity are not available.
More specifically, over 95% of protein chains character-
ized by low, 20-25%, pairwise identity, which is referred
to as the twilight-zone similarity, have different struc-
tures [28], which substantially reduces accuracy of the
corresponding predictions. We observe that about 40%
of sequences for which the tertiary structure was
deposited to Protein Data Bank (PDB) [29] in 2005
share twilight-zone pairwise similarity with any
sequence deposited in the PDB before 2005 [30],
which motivates development of the prediction methods
for these challenging chains. Further motivation comes
from the fact that finding similar folding patterns among
the proteins characterized by low sequence identity is
beneficial for the reconstruction of the tertiary structure
[31,32]. Researchers have observed that pairs of
sequences with low identity may share similar folding
patterns or overall structure [33-35] and they can be used
to predict tertiary structure [3,36,37]. The accurate
alignment of the distant homologues (proteins with
similar structures and sequences that share low identity)
is still a challenging problem in spite of many years of
research in this area [36,37]. We note that structurally
similar proteins that share low sequence identity can be
found based on coarse grained classifications such as the
structural classes that are addressed in this work. We
believe that the proposed method could find applica-
tions in the detection of remote homologues.

Protein structural class
Two databases which classify protein structures include
SCOP (Structural Classification of Proteins) [20,21] and
CATH (Class, Architecture, Topology and Homologous
superfamily) [38,39]. The former database relies on a
manual process to classify the structures while the latter
applies a combination of automated and manual
procedures. The first level of the classification hierarchy
in both databases is the structural class. The SCOP
distinguishes seven classes where the four major classes,
which cover almost 90% of all SCOP entries, are all-a,
all-b, a+b and a/b. The two former classes include
structures dominated by a-helices and b-strands, respec-
tively. The two latter classes correspond to structures that
include both helices and strands where in the case of the
a+b class these secondary structures are segregated,
whereas for a/b class the structures are interspersed.
The three remaining classes include multi-domain
proteins, membrane and cell surface proteins and
peptides, and small proteins. The multi-domain proteins
consist of several domains where each domain may
belong to a different class while the small proteins have
short sequences and their secondary structures do not fit
the definition of the other classes. We note that in spite
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of the fact that membrane proteins are relatively
common their coverage in SCOP database is relatively
low as it is difficult to obtain their structure [40]. The
SCOP also includes four supplementary categories, i.e.,
coiled coil, designed, and low resolution, proteins; and
peptides, but they have limited practical implications.
Figure 1 shows representative structures for the seven
classes in the SCOP database.

CATH database defines only four classes that include
mainly a, mainly b, mixed a-b, and proteins with few
secondary structures. In this work we address the SCOP
based classification as it further subdivides the mixed
proteins, defines several important additional classes
such as membrane and multi domain proteins, and since
most of the existing structural class prediction methods
are also based on this definition of the structural classes.
Moreover, the structural classes defined in CATCH are
relatively easy to predict based on the secondary
structure content of a protein, which in turn could be
predicted using existing content prediction methods
[41,42]. This is in contrast to the classification in the
SCOP database where more complex information, such
as relative amount and spatial position of the secondary
structures, is used to assign classes [43].

Related work
The manual assignment of structural classes performed
in SCOP is based on spatial arrangement of secondary
structure segments which is inspected using the tertiary
structure. We aim at building an automated method
which makes the class predictions based solely on the

protein sequence. Prediction is typically performed in
two steps: 1) the variable-length sequences are converted
into a fixed-length feature vectors; 2) the feature vectors
are inputted into a classification algorithm to generate
the class prediction.

Due to a relatively large existing body of research in this
area the following review concentrates on recent
methods. The reader is referred to a review by Chou
[7] that provides further details on older methods and
that motivates the development of the structural class
prediction methods.

Majority of the developed methods use relatively simple
features such as composition vector, pseudo amino acid
(AA) composition [44], composition of short polypep-
tides, sequence itself and other features obtained from
AA sequence [45-71]. Several recent methods use more
advanced feature vectors [30,72-78] which are based on
the AA sequence and/or PSSM profile computed using
PSI Blast [26]. A recently explored alternative is to
construct features based on the predicted secondary
structure. This approach was used in SCPred algorithm
[79], which up to date provides favorable prediction
quality on datasets characterized by the twilight-zone
similarity.

A wide range of classification algorithms was used to
perform the predictions. They include component coupling
[70], neural network [80], Bayesian classifier [81], logistic
regression [30,58,72,73], decision tree [46,54], covariant or
linear discriminant algorithm [57,64,65,77,78], principal
component analysis [55], nearest neighbor [52,67-69],
rough sets [49] and support vector machine (SVM)
[45,47,48,50,53,54,61,62,66,72,74,75,79,82]. Recent
works also explored more complex classification models
such as ensembles [72], bagging [54,63], and boosting
[56,59,71]. Overall, we observe that SVM is the most
popular and the best-performing classifier for this task [79].

The prediction quality of these methods varies widely
depending on the datasets [73]. The methods which were
tested on datasets with relatively high sequence identity
repor t accurac ies of c lose to or over 90%
[45,47-50,53-55,57,58,61-66,68-72,74-77]. The tests on
the dataset characterized by the low, twilight-zone
identity show accuracies between 50 and 70%
[30,45,52,56,59-61,67,72,73,75,78,79,81] with only
one approach, namely SCPred, that obtains accuracies
80% [79]. We concentrate on the latter problems as they
are more challenging and have implications in the
context of the remote homology detection.

The above methods considered only the four major
classes from the SCOP database, which was motivated by

Figure 1
Cartoon structures of proteins that cover the seven
structural classes defined in the SCOP database. Panel
a shows structure of protein with PDB identifier 1mty, b for
1a8d, c for 2f62, d for 2bf5, e for 1vqq, f for 1u7g, and g for
4hir. Helices are shown in light grey, coils in dark gray, and
strands in black.
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a relatively small number of proteins in the remaining
classes. At the same time, recent years observed a
substantial increase in the size of the SCOP database
which doubled in size between 2003 and 2007, and
which currently includes over 100,000 protein domains.
Even when considering a small subset of the protein
domains in SCOP which is characterized by the twilight-
zone similarity, we note that the current SCOP includes
sufficient number of proteins for the smaller three classes
to allow for the development of a prediction system.

There are only two methods that addressed prediction of
the seven classes [83,84]. The first method predicts the
four main classes and multiple domain, small protein,
and peptide classes [84]. This differs from prediction
targets of MODAS which additionally considers mem-
brane and cell surface proteins as a part of the peptide
class. This method is shown to achieve accuracy of over
90% for a low-identity dataset by using a large library of
reference functional sequence motifs from the InterPro
database [85]. This resulted in the feature vector with
7,785 features where each feature denotes occurrence of
a given motif in the input sequence. Although this
method is characterized by good prediction quality, we
note that it does not provide a web server, is difficult to
implement due to the excessive number of used features,
and was not redesigned in spite of the updates in the
InterPro database (the current release 19 of InterPro
includes 17,412 motifs while the authors used version
6.2 from April 2003). We also note that the usage of such
a large number of features results in an ill-defined
problem in which the number of classification instances
(protein chains) is smaller than the number of features.
The second, more recent method [83] uses a complex
representation of the protein sequence that includes
pseudo AA composition, evolutionary conservation
information, and physicochemical properties of AAs,
and the SVM classifier to perform predictions. It achieves
accuracy of 57.4% for a dataset with the twilight-zone
identity. We perform an empirical side-by-side compar-
ison with this method.

Although structural class predictors usually do not
consider membrane and multi domain classes, such
predictions could be addressed using methods designed
specifically for these classes. We refer the reader to recent
review articles concerning methods that are available for
the prediction of membrane proteins [86-88] and for the
domain prediction [89,90]. These developments are
motivated by the availability of specialized databases
for the membrane [91] and multi-domain proteins [92].
The abovementioned methods could discriminate chains
in the corresponding class from all other chains, and
they could be used to either pre-filter the chains or post-
process results of the proposed MODAS method. More

specifically, once a given chain is known to be a
membrane protein, specialized predictors could be
used to further categorize its membrane proteins type
[14,24]. Similarly, the predicted multi-domain proteins
could be processed by the available methods to predict
the domain boundaries [90].

Motivation and goals
All but two existing structural class predictors consider
only the four major classes, while the remaining three
classes are also important and their prediction should be
addressed. For instance, while approximately 20 to 35%
of the proteins encoded by an organism’s genome are
membrane proteins [93], they are not covered in the four
major classes. As mentioned above, the main reason for
their under-representation in the SCOP database is that
they are difficult to crystallize and as a result only a small
number of membrane protein structures are known [40].
We also note that the current methods are relatively weak
in the context of the sequence representation. Most of
the methods compute the representation directly from
the sequence, only a handful of them use sequence-
derived information such as multiple alignment
[75,79,83] and predicted secondary structure [79], and
there were no attempts to combine residue conservation
computed from the alignment and the secondary
structure. At the same time, the usage of the predicted
secondary structure results in improved prediction
quality for the low identity datasets [79], and numerous
prior studies have demonstrated that evolutionary
information generated with PSI Blast [26] is more
informative than the sequence itself [94-96]. Moreover,
most of the existing predictors achieve good quality for
datasets with high sequence similarity, while results on
the datasets with the twilight-zone pairwise similarity are
generally characterized by a relatively low, <70%,
accuracy (with the exception of one method that obtains
close to 80% accuracy). At the same time, a solution that
accommodates for the low sequence identity could have
important applications for the tertiary structure predic-
tion [3,35,36]. Finally, the existing methods are fixed to
a given set of classes, while a modular design would
allow the user to choose how many and which classes
should be considered for the prediction. The latter is a
particularly attractive feature for a method that would
address all 7 classes, i.e., the user could choose which
subset of classes, including the four major classes, should
be considered for a given prediction. We also observe
that current methods use the same feature-based
sequence representation for prediction of all classes. In
the modular design a separate predictor is created for
each class and the results of these predictors are
combined together. This allows for the design of a
specialized sequence representation for each class.
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Our goal is to develop a novel, modular method that
predicts the seven structural classes from the protein
sequences. The proposed modular approach to structural
class prediction (MODAS) exploits sequence and
sequence-derived information to generate input for the
classifier. More specifically, MODAS is the first to
combine both the multiple sequence alignment profiles
and the predicted secondary structure to generate
features that are fed into a set of seven SVM classifiers.
Our design concentrates on datasets that include
sequences characterized by low, twilight-zone similarity
and we aim at providing prediction quality that is
competitive or better than the quality offered by the
existing methods.

Methods
Datasets
We use total of 7 datasets to design and test the proposed
method. We utilized version 1.73 of the ASTRAL
database [97], which is a subset of the sequences from
the SCOP database characterized by a certain similarity
threshold, to derive two datasets. We selected the
ASTRAL database with < 20% sequence similarity that
includes 6264 sequences where 1280 of them belong to
the all-a class, 1324 to all-b, 1495 to a+b 1527 to a/b,
106 to multi-domain proteins, 138 to membrane and
cell surface proteins and peptides, and 394 to small
proteins class. We randomly divided this set into two
equal size subsets, one that was used as the training set
(ASTRALtraining) and the second that was used as the test
set (ASTRALtest). The ASTRALtraining set was used to
design the proposed method, which includes features
and classifier selection and parameterization of the
classifiers. The ASTRALtest set was used to perform an
independent (from the training set) validation of the
proposed method. Both of these datasets are available at
http://biomine.ece.ualberta.ca/MODAS/.

We also selected 4 widely used low sequence identity
benchmark datasets to provide a comprehensive and
unbiased comparison with the existing prediction
methods. The D2230 dataset includes 2230 sequences
extracted using ASTRAL version 1.63 using 20% identity
threshold which was used to test the most recent method
for prediction of the 7 classes [83]. We use this dataset to
perform a side-by-side comparison with the method by
Chen and colleagues [83]. The remaining 3 datasets are
used to compare against methods that address prediction
of the four major structural classes. The 25PDB dataset,
which includes 1673 sequences which share twilight-
zone pairwise similarity, was taken from [73] and two
datasets D1189 and D675 were taken from [81] and [75]
and include 1189 sequences with up to 40% pairwise
identity and 675 sequences with up to 30% pairwise

identity, respectively. The latter three datasets are the
most commonly used benchmark sets that include low
identity sequences and they allow for a side-by-side
comparison with a wide selection of recent methods for
the prediction of the four major structural classes.

Finally, we include one larger benchmark dataset,
namely D498, which have been proposed in [70] and
which includes a set of sequences that were not filtered
with respect to their similarity. We include this dataset to
demonstrate the quality of the proposed method when
compared with a wider range of predictors which were
tested on datasets with unspecified sequence identity.
We explore the distribution of the sequence identity in
this dataset to compare it with the other 6 datasets. For
each chain we compute maximal sequence identity with
all remaining sequences in the dataset. We chose the
maximal values since the empirical tests are based on the
jackknife strategy in which all but one sequence are used
to predict the class for the remaining chain. We generate
pairwise sequence alignments using Smith-Waterman
algorithm [98] with Gotoh’s improvement [99] and for
each sequence we report the highest obtained score. The
number of matching residues in the alignment is divided
by the length of the query sequence including the gaps/
insertions; a result of 100% sequence identity means that
there were no gaps/insertions and that a query sequence
was a substring of one of the sequences in the dataset.
Figure 2 shows the distribution of sequences in the D498
dataset based on the sequence identity. Almost 70% of
sequences from this dataset have 100% sequence
identity and around 89% have identity of above 90%.
This means that using the jackknife test, 89% of the
tested sequences have are at least one very similar
sequence in the training part of the dataset. This explains

Figure 2
Distribution of sequences with respect to their
maximal pairwise sequence identity in the D498
dataset.
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higher predictive performance on this dataset when
compared with results on the remaining datasets with
controlled, low sequence identity (see Results and
Discussion section).

Overall design
The input protein sequence is first processed by PSI Blast
to obtain the position specific scoring matrix (PSSM)
and by PSI Pred [100] to predict secondary structure. We
selected PSI Pred due to its successful application in the
SCPred method [79] and since this predictor enjoys a
widespread use in prediction of a variety of related
structural properties of proteins including template-
based tertiary structure prediction [37], and prediction
of beta-turns [101], residue depth [102], protein fold
[31], and contact orders [103], to name just a few. Next,
the sequence, the PSSM and the predicted secondary
structure are converted into a set of features that are fed
into seven classifiers (user can opt to use a subset of the
classifiers), where each classifier corresponds to one of
the seven SCOP classes. We performed feature selection
to find a suitable set of features for each structural class.

We also considered several different classifier types and
selected the one that provides the best prediction quality
for a given class. The seven classifiers generate a
probability of classification into the corresponding
class and these probabilities are aggregated to predict
the final outcome. The aggregation is based on a simple
max operator, i.e., we predict the class that corresponds
to the highest probability. Although more complex
aggregations could be conceived, this approach is
motivated by the necessity to assure modularity of the
predictor, i.e., the aggregation should work for every
subset of the considered seven classes. The overall design
of the proposed MODAS method is shown in Figure 3.

The design of the proposed method concerns develop-
ment and selection of the features which best describe
each of the classes and a classifier which provides the
best predictive performance. The feature and classifier
selection is based on 10-fold cross validation on the
ASTRALtraining dataset to assure that the design is
independent of the other datasets and, at the same
time, that it generalizes into the other datasets. The

Figure 3
Diagram of the proposed MODAS method.
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methods were written in JAVA language and we utilized
the WEKA workbench [104] in this research.

Feature vector
The three sources of data used to generate the features
include the protein sequence, the PSSM matrix generated
with PSI Blast and the secondary structure predicted from
the sequence using PSI Pred. The PSSM matrices were built
using the nr (non-redundant) dataset [105], as of October
2008. The quality of the matrix, and consequently the
quality of the proposed method, depends on the size of the
dataset used. Prior results demonstrate that larger number
of diverse sequences in the database leads to more accurate
evolutionary information, which in turn was shown to
improve secondary structure predictions [106]. This
suggests that subsequent retraining of the MODAS method
at a later time using updated, larger nr database may
potentially lead to better predictive performance. Besides
features that were based on counting individual AAs, the
AAs were grouped according to their physicochemical
properties including polarity (R group), hydrophobicity,
structure-preserving mutations (exchange groups),
and their ability to be electron donors or acceptors, see
Table 1. We also used these groupings in connection with
the predicted secondary structure, i.e., amino acids were
grouped based on their secondary structure and a given
property. Finally, we considered combining information
coming from the predicted secondary structure with the
multiple alignments.

The features are divided into five sets: 1) features
generated directly from the sequence; 2) features

computed from the PSSM matrix; 3) features generated
by combining information from PSSM and the predicted
secondary structure; 4) features obtained from the
predicted secondary structure, which are based on the
features utilized in the SCPred method [79]; and 5) novel
features based on the predicted secondary structure which
describe collocation of helical and strand segments.

Features based on the AA sequence (39 features)
These features describe basic characteristics of the input
sequence, such as length, AAs composition and compo-
sition of property groups. They include:

- SeqLen - the length of a sequence. (1 feature)

- Comp_AAi = count AAi
SeqLen

( ) , the number of AAi in the

sequence (also called composition of AAi) normalized
by the sequence length where i = 1, 2,..., 20 and AAi

stands for ith AA type. (20 features)

- Comp_GR_GRjk =
count AA GR jk

SeqLen

( )∈
, the number of AAs in

the sequence belonging to GRjk where j Œ {R group,
Electronic group, Hydrophobicity group, Exchange
group} and k is a particular subgroup (e.g., hydrophobic
and hydrophilic), see Table 1, normalized by the
sequence length. (18 features)

Features based on the PSSM matrix (196 features)
The PSI Blast provides two position specific scoring
matrices; one contains conservation scores of a given AA

Table 1: The property groups used to aggregate similar amino acids

R groups Electronic groups

Non-polar aliphatic A, I, L, V Donors A, D, E, P

Glycine G Weak donors I, L, V

Non-polar F, M, P, W Acceptors K, N, R

Polar uncharged C, N, Q, S, T, Y Weak acceptors F, M, Q, T, Y

Polar charged D, E, H, K, R Neutral C, G, H, S, W

Hydrophobicity groups Exchange groups

Hydrophobic A, C, F, I, L, M, P, V, W, Y Group 1 H, R, K,

Group 2 D, E, N, Q,

Group 3 C

Hydrophilic D, E, G, H, K, N, Q, R, S, T Group 4 S, T, P, A, G

Group 5 M, I, L, V,

Group 6 F, Y, W
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at a given position in a sequence, denoted as
PSSMconslm, and the other provides probability of
occurrence of a given AA at given position in the
sequence, denoted as PSSMproblm where l = 1, 2...
SeqLen denotes the position in the sequence and m = 1,
2,..., 20 denotes one of the substitution positions that
correspond to the twenty AAs (columns in the PSSM
matrix). We normalized the conservation scores
(PSSMconslm values) using max-min normalization
where min and max equal -8 and 13, respectively. The
PSSMproblm values are already normalized by the PSI
Blast. The matrix values were aggregated either horizon-
tally (along m) or vertically (along l) to obtain a fixed
length feature vector. This feature set, which quantifies
evolutionary information of individual AA types and
grouping of AAs according to the property groups,
includes the following features:

- Ach_CS_{AAi} = ifl
SeqLen AA l AAi then PSSMconslm else

SeqLen
=∑ =1      0( ) , ,

sum of all normalized PSSMconslm values (“Ach_CS”
stands for achieved conservation scores), where l
includes only positions of AAi (along the sequence
only the positions of AAi residues where considered) and
m = AAi (column that corresponds to AAi), divided by
the sequence length. (20 features)

- Max_CS_{AAi} = if AA l AAi then m PSSMconslm elsel
SeqLen

Seq

     0( ) max ( )= ==∑ 0
20

1
LLen

,

sum of maximal, over m, PSSMconslm values, where l
includes only positions of AAi, divided by the sequence
length. (20 features)

-Max-Ach_CS_{AAi} = if AA l AAi then m PSSMconslm PSSMconsli elsel    [ ] ( ) max ( )= = −= 0
20

11
SeqLen

SeqLen

∑  0 ,

sum of differences between maximal PSSMconslm (over
m values) and PSSMconsli values where l includes only
positions of AAi, and i = AAi (the difference between the
maximal and the achieved values), divided by the
sequence length. (20 features)

- Ach_Prob_{AAi} = if AA l AAi then PSSMproblm elsel
SeqLen

SeqLen

     0( )==∑ 1 ,

sum of all normalized PSSMproblm values (“Ach_Prob”
stands for achieved probability of occurrence), where l
includes only positions of AAi and m = AAi, divided by
the sequence length. (20 features)

-Max_Prob_{AAi} = if AA l AAi then m PSSMproblm elsel
SeqLen

Seq

     0( ) max ( )= ==∑ 0
20

1
LLen

,

sum of maximal, over m, PSSMproblm values, where l
includes only positions of AAi, divided by the sequence
length. (20 features)

- Max-Ach_Prob_{AAi} = if AA l AAi then m PSSMproblm PSSMprobli elsel    [ ] ( ) max ( )= = −= 0
20

11
SeqLen

SeqLen

∑  0 ,

sum of differences between maximal PSSMproblm (over
m values) and PSSMprobli values where l includes only
positions of AAi, and i = AAi (the difference between the
maximal and the achieved values), divided by the
sequence length. (20 features)

- CSSeq_{AAi} = PSSMconslml
SeqLen

SeqLen
=∑ 1 , sum of normalized

PSSMconslm values where l = 1, 2...SeqLen and m = AAi,
divided by the sequence length (average conservation
score of AAi, for the whole sequence). (20 features)

- CSSeq_GR_{GRjk} =
PSSMconslm

m GR jk
l
SeqLen

SeqLen

∈
∑=∑ 1 , sum of

normalized PSSMconslm values where l = 1, 2...SeqLen
and m = GRjk (all AA types that belong to GRjk) divided
by the sequence length. (18 features)

- Ent_{AAi} = − =∑ [ * log ( )]PSSMprob PSSMproblm lml

SeqLen
21

,

entropy of PSSMproblm values, for l = 1, 2...SeqLen and
m = AAi. (20 features)

- Avg_Prob_GR_{ GRjk} =
PSSMproblm

m GR jk
l
SeqLen

SeqLen

∈
∑=∑ 1 , aver-

age PSSMproblm values where l = 1, 2...SeqLen and m =
GRjk (all AA types that belong to GRjk) divided by the
sequence length. (18 features)

The Ach_CS_{AAi}, Max_CS_{AAi}, Max-Ach_CS_{AAi},
Ach_Prob_{AAi}, Max_Prob_{AAi}, and Max-Ach_Prob_
{AAi} features aggregate information along the sequence
by the AA type. The CSSeq_{AAi}, CSSeq_GR_{GRjk},
Ent_{AAi}, and Avg_Prob_GR_{GRi,j} aggregate the
values along the columns of the PSSM.

Features based on the PSSM matrix in combination with the
predicted secondary structure (486 features)
The third feature set is analogous to the features based on the
PSSM matrix, but instead of aggregating the values by AA
type, they are aggregated either by the type of the secondary
structurepredictedwithPSIPredorby thecombinationof the
AA type and the predicted secondary structure. These features
quantify conservation of predicted secondary structures, as
well as the conservation for individualAA types andgrouping
of AAs according to the property groups that are in a given
predicted secondary structure. This feature set consists of:

- Ach_CS_{AAi}, Max_CS_{AAi}, Max-Ach_CS_{AAi}, Ach_
Prob_{AAi},Max_Prob_{AAi}, andMax-Ach_Prob_{AAi} are
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redefined as Ach_CS_{SSn}, Max_CS_{SSn}, Max-Ach_CS_
{SSn}, Ach_Prob_{SSn}, Max_Prob_{SSn}, and Max-Ach_
Prob_{SSn}, respectively, where instead of using 20 AAi we
aggregate by the predicted three state secondary structure
SSn = {H, E, C}. (6*3 = 18 features)

- Ach_CS_{AAi} , Max_CS_{AAi} , Max-Ach_CS_
{AAi}, Ach_Prob_{AAi}, Max_Prob_{AAi}, and Max-Ach_
Prob_{AAi} are redefined as Ach_CS_{SSn}_{AAj},
Max_CS_{SSn}_{AAj}, Max-Ach_CS_{SSn}_{AAj}, Ach_
Prob_{SSn}_{AAj}, Max_Prob_{SSn}_{AAj}, and Max-
Ach_Prob_{SSn}_{AAj}, respectively, where we aggregate
PSSMconslm/PSSMproblm values by l that corresponds
to positions of AAi that are predicted as SSn. (6*3*20 =
360 features)

- CSSeq_GR_{GRjk} and Avg_Prob_GR_{GRjk} are rede-
fined as CSSeq_GR_{GRjk}_SS_{SSn} and Avg_Prob_GR_
{GRjk}_SS_{SSn}, respectively, where we aggregate
PSSMconslm/PSSMproblm values by l that corresponds
to a given SSn. (2*3*18 = 108 features)

Features based on the predicted secondary
structure (144 features)
The fourth feature set, which was computed based on the
output of PSI Pred, describes the content of the predicted
secondary structures and distribution of the predicted
secondary structures segments aggregated based on
segments length and by grouping of AAs according to
the property groups. This set consists of:

- Content_{SSn} = count AAl AAl predicted as SSn
SeqLen

( : )   , the num-

ber of residues predicted as SSn where l = 1, 2...SeqLen,
divided by the sequence length. (3 features)

- Content_{SSn}_GR_{GRjk} =
count AAl AAl predicted as SSn AND AAl GR jk

SeqLen

( : )      ∈ ,

the number of residues predicted as SSn and that belong
to GRjk where l = 1, 2...SeqLen, divided by the sequence
length. (3*18 = 54 features)

- SegCount_{E,H}_L{Li} =
count SEG SEG SSn AND length SEG Li

count SEG SEG SS
S

( : ( ) ( ) )
( : ( ))

   ≥

SS H E∈
∑
{ , }

,

the number of helix or strand segments which contain at
least Li = 2, 3, .. 20 AAs divided by the total number of
helix and strand segments in the input protein chain.
(2*19 = 38 features)

- SegCount_C_L{Li} =
count SEG SEG SSn AND length SEG Li

count SEG SEG SS
S

( : ( ) ( ) )
( : ( ))

   ≥

SS H E C∈
∑

{ , , }
,

the number of coils which contain at least Li = 2, 3, .. 20 AAs
divided by the number of all segments in a protein (i.e., the
sum of all coil, helix and strand segments). (19 features)

- SegCount_{E,H}_P{Pi} =
count SEG SEG SSn AND length SEG Pi SegLen

count SEG SE
( : ( ) ( ) * )

( :
   ≥

GG SS
SS H E

( ))
{ , }∈
∑ ,

the number of helix or strand segments which contain
at least PiAAs where Pi = 2,4,..,10% of the sequence
length, divided by the total number of helix and strand
segments in the input protein chain. (2*5 = 10 features)

- SegCount_C_P{Pi} =
count SEG SEG SSn AND length SEG Pi SegLen

count SEG SE
( : ( ) ( ) * )

( :
   ≥

GG SS
SS H E C

( ))
{ , , }∈

∑ ,

the number of coil segments which contain at least Pi
AAs where Pi = 2,4,..,10% of the sequence length, divided
by the number of all segments. (5 features)

- NormSegCount_{SSn} =
count SEG SEG SSn

count SEG SEG SS
SS H E C

( : ( ))
( : ( ))

{ , , }∈
∑ ,

the total number of SSn segments divided by the total
number of all secondary structure segments in the input
protein chain. (3 features)

- MaxSegLength_{SSn} = max Len(SEG: SEG(SSn)), the
maximal SSn segment length. (3 features)

- NormMaxSegLength_{SSn} = max ( : ( ))Len SEG SEG SSn
SeqLen , the

maximal SSn segment length divided by the sequence
length. (3 features)

- AvgSegLength_{SSn} = avgLen(SEG: SEG(SSn)), the
average SSn segment length. (3 features)

- NormAvgSegLength_{SSn} = avgLen SEG SEG SSn
SeqLen

( : ( )) , the

average SSn segment length divided by the sequence
length. (3 features)

Features based on the collocation of helix and strand segments in
the predicted secondary structure (127 features)
The four main structural classes are based on the content
and relative spatial position of the secondary structures.
The preferred way to represent these collocations of the
secondary structures would be to use 3D protein structure.
However, since our input is only the sequence, we
approximate this information using features that quantify
collocation of helices (H) and strands (E) in the predicted
secondary structure. We use the predicted secondary
structure to annotate helix, coil and strand segments and
to compute relative position of these segments in the
sequence. The following features are computed:

- HH = count(HH), the number of helix-coil-helix motifs
(two helices separated by a coil) divided by the total
number of the secondary structure segments in a protein.
(1 feature)
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- EE = count(EE), the number of strand-coil-strand motifs
(two strands separated by a coil) divided by the total
number of the secondary structure segments in a protein.
(1 feature)

- HE = count(HE) + count(EH), the number of strand-coil-
helix or helix-coil-strand motifs (strand and helix
separated by a coil) divided by the total number of the
secondary structure segments in a protein. (1 feature)

- {HH,HE,EE}_L{Li} =
count HH HE EE LEN Coil Li

count SEG SEG SS
SS H E C

({ , , }: ( ) )
( : ( ))

{ , , }

≥

∈
∑∑ ,

the number of helix-coil-helix, helix-coil-strand/strand-
coil-helix, or strand-coil-strand motifs which include at
least Li = 2, 3, .., 20 residues in the middle coil, divided
by the total number of the secondary structure segments
in a protein. (3*19 = 57 features)

- {HH,HE,EE}_P{Pi} =
count HH HE EE LEN Coil Pi SeqLen

count SEG SEG SS
SS

({ , , }: ( ) * )
( : ( ))

≥

∈{{ , , }H E C
∑ ,

the number of helix-coil-helix, helix-coil-strand/strand-
coil-helix, or strand-coil-strand motifs which include at
least Pi = 2, 4, .., 10% of a sequence length residues in the
middle coil, divided by the total number of the secondary
structure segments in a protein. (3*5 = 15 features)

- MaxHCH = max(HC..H: count(H)), the maximal
number of helices among all helix-coil-helix-coil...coil-
helix motifs, i.e., the maximal number of helix segments
separated only by coils. (1 feature)

- MaxECE = max(EC..E: count(E)), the maximal number
of strands among all strand-coil-strand-coil...coil-strand
motifs, i.e., the maximal number of strand segments
separated only by coils. (1 feature)

- AvgHCH =
avg HC H count H

count SEG SEG SS
SS H E C

( .. : ( ))
( : ( ))

{ , , }∈
∑ , the average

number of helices in all helix-coil-helix-coil...coil-helix
motifs, divided by the total number of the secondary
structure segments in a protein. (1 feature)

- AvgECE =
avg EC E count E

count SEG SEG SS
SS H E C

( .. : ( ))
( : ( ))

{ , , }∈
∑ , average number

of strands in all strand-coil-strand-coil...coil-strand
motifs, divided by the total number of the secondary
structure segments in a protein. (1 feature)

- HCH_L{Li} =
count HC H count H Li

count SEG SEG SS
SS H E C

( .. : ( ) )
( : ( ))

{ , , }

>

∈
∑ , the number

of helix-coil-helix-coil...coil-helix motifs with more than

Li = 1, 2, .., 20 helices, divided by the total number of the
secondary structure segments (19 features)

- HCH_P{Pi} =
count HC H count H Pi SeqLen

count SEG SEG SS
SS H E C

( .. : ( ) * )
( : ( ))

{ , ,

>

∈ }}
∑ , the num-

ber of helix-coil-helix-coil...coil-helix motifs with more
than Pi = 2, 4, .., 10% of all helices in a protein, divided
by the total number of the secondary structure segments
(5 features)

- ECE_L{Li} =
count EC E count E Li

count SEG SEG SS
SS H E C

( .. : ( ) )
( : ( ))

{ , , }

>

∈
∑ , the number

of strand-coil-strand-coil...coil-strand motifs with more
than Li = 1, 2, .., 20 strands, divided by the total number
of the secondary structure segments (19 features)

- ECE_P{Pi} =
count EC E count E Pi SeqLen

count SEG SEG SS
SS H E C

( .. : ( ) * )
( : ( ))

{ , ,

>

∈ }}
∑ , the number

of strand-coil-strand-coil...coil-strand motifs which more
than Pi = 2, 4, .., 10% of all strands in a protein, divided
by the total number of the secondary structure segments
(5 features)

Feature and classifiers selection
Feature selection was performed to select the best subset
of the considered features for each structural class. This is
motivated by the fact that while the considered features
are generic, the individual structural classes are likely
characterized by a small and specific set of descriptors. In
other words, while the features describe the sequence,
conservation of residues and predicted secondary struc-
ture for every protein in the same way, the structural
classes can be described by a subset of these features, i.e.,
for a specific class some features could be irrelevant and
should be discarded to improve the efficiency of the
prediction model. We considered a comprehensive set of
eight feature selection methods which include four
methods that select feature sets and four methods that
perform feature ranking. The first group includes
consistency subset selection [107], wrapper-based fea-
ture selection with Naïve Bayes and SVM classifiers
[108], and Correlation-based Feature Subset selection
[109] (CFS) methods. The latter group includes a filter-
based ReliefF algorithm [110], and three methods that
perform ranking based on Symmetrical Uncertainty
[111], Chi-Squared (the chi-squared statistic with respect
to the class) and Gain Ratio (measure based on entropy
with respect to the class) criterions. The feature selection
was performed based on tenfold cross validation on the
ASTRALtraining dataset. In the case of the methods that
select feature sets, individual features were ranked based
on the number of folds in which they were selected. For
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the ranking methods the feature were ranked based on as
the average rank over the ten folds.

We considered four classifiers which are based on
complementary model types: nonlinear kernel-based
SVM [112], probabilistic Naïve Bayes [113], linear
Logistic regression [114], and instance-based k-Nearest
Neighbor [115] (k-NN) with k = 3. The selection was also
motivated by their prior successful applications in the
context of the structural class predictions, i.e., Naïve
Bayes based classifier was used in [81], logistic regression
in [30,58,72,73], nearest neighbor in [52,67-69], and
SVM in [45,47,48,50,53,54,61,62,66,72,74,75,79,82].

The quality of the prediction was reported using several
measures including overall accuracy (the number of
correct predictions divided by the total number of test
sequences), accuracy for each structural class (number of
correct predictions for a given class divided by the
number of sequences from this class), Matthews’s
correlation coefficient (MCC) for each structural class,
and generalized squared correlation (GC2). The MCC
values range between -1 and 1, where 0 represents
random correlation, and bigger positive (negative)
values indicate better (lower) prediction quality for a
given class. Since MCC works only for binary classifica-
tion, we also reported GC2, which is based on c2
statistics. The GC2 values range between 0 and 1, where 0
corresponds to the worst classification (all predictions
are incorrect) and 1 corresponds to the perfect classifica-
tion. MCC and GC2 are described in detail in [116].
During the design we selected a classifier/feature subset
combination that provides the best MCC value for a
given class. We used MCC since this measure, in contrast
to accuracy, takes into account the unbalanced nature of
the datasets, i.e., while high accuracy could be obtained
for a default classification in which small class is ignored
(only large class is predicted), positive MCC values
assure that both small and large classes are correctly
predicted.

For each structural class and each of the four considered
classifiers we used the output of each of the eight feature
selection methods to find the best subset of features, i.e.,
subset of features that provides the highest MCC value
for a given classifier. For the four selection methods that
generate subsets of features, we considered different
subsets based on the number of folds in which a given
feature was selected. In other words, for each of the four
methods we generated subsets of features that were
included in at least 1 cross validation fold, at least 2
folds, ...., and at least 10 folds (total of 4 × 10 = 40
feature sets). In the case of the four feature ranking
methods, we started with the highest ranked features and
kept adding subsequent features until the MCC values
for a given classifier was increasing (total of 4 feature
sets). Finally, for each of the 44 feature sets we compared
results of the tenfold cross validation test on the
ASTRALtraining dataset using each of the classifiers to
select the setup with the highest MCC for a given
structural class.

We note that although Naïve Bayes, logistic regression and
k-NN do not require parameterization, SVM is sensitive to
parameterization. We used SVM with linear kernel and cost
parameter C set to 1 to find the best feature set for each
structural class (this default setup allows for fast generation
of the model), and later we used two different kernels,
polynomial and RBF, and different values of C to
parameterize the SVM for the selected feature sets. We
performed a grid search (considering values of C and g for
the RBF kernel, and values of C and exponent for the
polynomial kernel) and selected the configurations that
provide the highest MCC values for the tenfold cross
validation on the ASTRALtraining dataset.

Our resulting design shows that the best results for all
seven classes were obtained with the SVM classifier. This
is consistent with the successful prior use of this classifier
for the prediction of the four major structural classes
[45,47,48,50,53,54,61,62,66,72,74,75,79,82]. Table 2

Table 2: Results of the feature and classifier selection for the considered seven structural classes

Class Kernel C Feature selection method # of selected features

all-a RBF (g = 0.05) 10 Wrapper with SVM 117

all-b RBF (g = 0.1) 7 Wrapper with NB 53

a/b Polynomial (exp = 2) 2 ReliefF 46

a+b RBF (g = 0.15) 4 CFS 163

Multi-domain Polynomial (exp = 1.5) 0.5 Wrapper with SVM 105

Membrane Polynomial (exp = 1.5) 10 Symmetrical Uncertainty 46

Small Polynomial (exp = 2.5) 15 Wrapper with NB 18
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summarizes the selected classifiers, i.e., it lists the results
of the parameterization of the SVM classifier, and the
feature selection methods together with the number of
the selected features for each of the seven considered
structural classes. We observe that usage of a variety of
feature selection methods was proven beneficial since
five out of eight of them were used to derive the final
feature sets.

Classification
Once the user selects the classes that (s)he would like to
consider, the input sequence is converted into the feature
space and the corresponding feature sets are passed to
the classifiers for each of the selected classes. Each of the
classifiers returns a probability that the input sequence
belongs to a given class. The prediction corresponds to
the class that is associated with the highest probability.
This type of aggregation allows the user to select any
combination of the classes.

Results and Discussion
This section includes discussion of the selected feature
sets, reports results of the proposed MODAS method on
the independent test set ASTRALtest and compares them
with results provided by several competing solutions,
and compares the results of the proposed and over two
dozens of existing methods for the prediction of the
structural classes on five benchmarking datasets includ-
ing D2230, 25PDB, D1189, D675, and D498. We
emphasize that all considered datasets, except D498,
are characterized the twilight zone pairwise sequence
similarity (which is also true for the pair of the
ASTRALtest and ASTRALtraining datasets). We report the
overall accuracy, accuracies and MCC values for each
structural class, and the GC2 values.

Discussion of the selected features
The selected features are summarized using Tables 3
and 4. The former table shows the number of selected

features for each of the five feature set and for each
structural class. The latter table presents details related to
features computed from the predicted secondary struc-
ture focusing on different types of the secondary
structures.

We observe that only a few sequence based features are
used by the proposed MODAS method. More specifi-
cally, although the total number of features in this set
includes 39 only between 0 and 8 of them are used by
the seven classifiers. The most frequently used source of
information is the PSSM in combination with the
predicted secondary structure. For almost all classes,
including all-a, all-b, a+b, multi-domain, membrane
and small proteins, over half of the features are
computed using PSSM. This confirms that the conserva-
tion of the residues provides higher quality information
than their presence. In the case of the remaining a/b class
the majority of features are based on the predicted
secondary structure. We also note that a few other
classes, such as all-a, a+b, multi-domain and membrane
proteins, heavily utilize the information concerning
the predicted secondary structure in connection with the
PSSM. The popularity of the features derived from the
secondary structure stems from the fact that the structural
classes are de facto defined based on the secondary
structures.

The predictor for the all-a class uses large number of
features from PSSM and PSSM combined with the
predicted secondary structure. This shows that residue
conservation is an important factor that distinguishes
between all-a and other classes. We also observe that
these features utilize information about both helix
and strand segments, where the strand segments are
likely used to indicate non all-a proteins. Finally, this
feature set includes 8 features based on the helix-coil-
helix motifs that occur in virtually all proteins from this
class.

Table 3: Number of features selected for each structural class for different categories of features

Class AA sequence PSSM PSSM and predicted
secondary structure

Predicted secondary
structure

Collocations of
H and E segments

Total

a 8 26 52 21 10 117

b 2 28 9 8 6 53

a/b 0 0 17 17 12 46

a+b 2 11 101 27 22 163

Multi-domain 3 17 43 26 16 105

Membrane 6 16 18 6 0 46

Small 6 6 3 3 0 18
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Most of the features for the all-b class are again based on
the PSSM. This feature set also includes features that
quantify the amount of helix-coil-helix (likely to exclude
non all-b classes) and strand-coil-strand segments
(which are specific to the proteins from the all-b class)
and a relatively large number of coil-based features. The
latter is likely due to the fact that proteins from the all-b
class include relatively large number of b-sheets which
incorporate larger number of coils (when compared with
other classes) that connect individual strand segments
that make up the b-sheet.

The a/b class incorporates a relatively large number of
features that quantify the occurrence of the helix-coil-
strand and strand-coil-helix motifs. This agrees with the
definition of this class that incorporates structures in
which helices and strands are interspersed. Such spatially
scattered secondary structures are likely to also alternate
in the sequence.

The largest number of features was selected for the a+b
class. This is likely because this class is the hardest to
predict among the four major classes, e.g., 17 out of 18
structural class prediction methods that were recently
compared in [79] provide the lowest prediction quality
for this class when compared with the predictions for the
all-a, all-b and a/b classes. Most of the features utilized
by the a+b classifier are based on the PSMM combined
with the predicted secondary structure. All of the features
that exploit collocation of the helix and strand segments
are based on either collocation of helix (helix-coil-helix)
or strand (strand-coil-strand) segments. This is moti-
vated by the definition of this class that includes protein
in which secondary structures are segregated.

The multi domain proteins have structures that combine
characteristics of the four major structural classes since
different domains may fold into structures characteristic

to different classes. This is likely the reason why this class
uses relatively equal number of features coming from
different sources, like the PSSM and the predicted
secondary structure, and why the secondary structure
based features equally cover all three structure types
(coils, strands and helices).

The membrane proteins include long transmembrane a-
helices and this is the likely the reason why the
corresponding classifier makes use of 24 out of 46
features that are based on the predicted helices. As in the
case of most of the other classes, features used to classify
membrane proteins also heavily rely on the residue
conservation.

We note that although the small protein class includes
short protein chain, the feature that measures the
sequence length was not selected for the corresponding
classifier. This is likely since several other classes also
include short chains, but their secondary structure fits
the definition of a given class rather than being
composed mostly of coils which is characteristic for the
small proteins class. The features for this class come from
different sources including the sequence, the PSSM and
the predicted secondary structure. We observe that helix/
strand collocation based features were not selected for
this class; again, this is likely since these proteins are
mostly composed of coils.

We also discuss the most useful features for prediction of
each of the considered seven structural classes. We select
two representative features for each class and use a
scatter plot of their values to explain their relation with
the classes. The selection of the features is based on their
correlation with the classes (which should be high) and
correlation with each other (which should be relatively
low to limit their overlap). The first feature was selected
based on the largest values of its biserial correlation with

Table 4: Number of the selected features for the features computed from the predicted secondary structure

Class AA+PSSM Secondary structure
(including PSSM)

Collocations of helical and strand segments

C H E Helices (HH, HCH) Strands (EE, ECE) Helices and Strands (HE, HCE)

a 34 22 17 34 8 1 1

b 30 12 3 2 2 2 2

a/b 0 1 20 13 2 1 9

a+b 13 5 50 73 18 4 0

Multi-domain 20 17 24 28 8 5 3

Membrane 22 0 24 0 0 0 0

Small 12 2 2 2 0 0 0
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the class labels (a given class vs. the remaining classes).
The remaining features were ranked based on their
biserial correlation coefficients and the top ranked
feature for which the Pearson correlation coefficient
with the first feature is smaller than 0.7 was selected as
the second feature. We also compare the scatter plots for
these two features with the scatter plots when using helix
and strand content to discriminate between the classes.
This is motivated by the fact that some older structural
class assignment methods performed the class assign-
ment using the secondary structure content rather than
the spatial arrangement of the secondary structures
which comes from the tertiary structure [43]. Figure 4
presents the corresponding 14 scatter plots.

The two representative features for the all-a class are
CSSeq_SS_E_C (normalized conservation scores for the
substitution into Cys for AAs that were predicted as
strands) and SegCount_H_L16 (normalized count of
long helical segments in the predicted secondary
structure). We observe that proteins with high Seg-
Count_H_L16 values and proteins with low values of
CSSeq_SS_E_C likely belong to the all-a class. This is
supported by the fact that all-a proteins are characterized
by significant helix content and thus they include
relatively large number of long helices. The CSSeq_S-
S_E_C feature shows that all-a proteins include virtually
no strands in which Cys is conserved. Costantini and
colleagues have observed that Cys has strong propensity
to form strands and is more prevalent among the
proteins from all-b class [117] and thus proteins
that include strands with conserved Cys are unlikely
to belong to all-a class. The right-hand-side plot in
Figure 4a shows that the all-a proteins are characterized,
as expected, by a high content of helices and a low
content of strands. At the same time, we note that some
non all-a proteins (right lower corner of the scatter plot)
could be misclassified using this criteria, which shows
that the two representative features used in the proposed
method likely provide better discriminatory power.

The two features selected for the all-b class (Figure 4b)
include HE (the number of strand-coil-helix or helix-
coil-strand motifs in the predicted secondary structure)
and CSSeq_SS_H_A (normalized conservation scores for
the substitution into Ala for AAs that were predicted as
helices). The proteins from this class have low CSSeq_S-
S_H_A and medium to low HE values for chains for
which CSSeq_SS_H_A values are close to zero. The HE
feature is motivated by the fact that all-b proteins include
relatively large number of strands and a low number of
helices and thus strand-coil-helix or helix-coil-strand
motifs are less likely to occur in these proteins. The
CSSeq_SS_H_A feature shows that the all-b class
includes chains that have very few helices with conserved

Figure 4
Scatter plots for two representative features for each
structural class (left column) and helix and strand
contents (right column) for a) all-a; b) all-b; c) a/b; d)
a+b; e) multi-domain; f) membrane and cell surface
proteins; and g) small proteins classes. The plots were
computed on the ASTRALtrainingdataset and they use
markers with colors and shapes that indicate the class and
number of protein chains for a given combination of the
values of the two features, respectively. The larger the
marker is the more chains are found for the corresponding
values of the two features. The darker the shading of the
marker is the larger the fraction of the chains that
correspond to the target class is for the given values of the
two features.
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Ala. This is supported by the work in [117] which shows
that Ala has strong propensity to form helices and occurs
relatively more frequently in proteins from the all-a
class, which suggests that chains that include helices with
conserved Ala are unlikely to belong to the all-b class.

The proteins from the a/b class are characterized by
average values of AvgHCH (the average number of
helices in all helix-coil-helix-coil...coil-helix motifs in the
predicted secondary structure) and high values of HE_L2
(the number of helix-coil-strand or strand-coil-helix
motifs which includes at least 2 residues in the middle
coil) features. The HE_L2 indicates that the proteins
from this class have the helices and strands interspersed
in the sequence and AvgHCH shows that they do not
include secondary structures with no consecutive helices
and with many consecutive helices. The latter shows that
a/b class includes proteins with helices, but they are
less likely to form long helix-coil-helix-coil...coil-
helix motifs.

The two representative features for the a+b class include
SegCount_E_L2 (the number of strand segments which
contain at least 2 AAs) and ECE_L2 (the number of
strand-coil-strand-coil...coil-strand motifs with more
than 2 strands). Protein from this class have average to
high values of both features which is motivated by the
observation that they have strands (SegCount_E_L2
features excludes beta bridges and includes extended
strands that likely form sheets) and the strands and
helices are segregated, i.e., that strands co-occur closely
in the sequence, which results in high values of ECE_L2.
We observe that usage of the content leads to a
significant overlap between the proteins from the a/b
and a+b classes, see the right-hand-side plots in
Figures 4c and 4d. At the same time, the proposed
method uses different features for different classes,
which can potentially provide better discrimination
between these two classes when compared to using the
content. The representative features for the a/b and a+b
classes quantify the spatial relation of the helices and
strands (which is done based on their co-occurrence
close by in the sequence) which, in our opinion, better
captures the characteristics of these two classes when
compared with the content.

The scatter plot for the multi domain proteins class
shows no clear trends since the number of proteins in
this class is small, only 53 out of 3132 in the
ASTRALtraining dataset, and since the best feature for
this class has relatively small biserial correlation value of
0.12. This is likely due to the significant overlap between
this class and other classes, i.e., individual domains in
these proteins belong to different structural classes. We
observe that proteins from this class have relatively high

value of SegCount_C_P4 (the number of coil segments
which length is at least 4% of the sequence length)
combined with low value of SegCount_E_P4 (the
number of strand segments which length is at least 4%
of the sequence length). This suggests that on average
they include longer coil segments and a few or none
longer strands when compared with other classes. We
note that similar structures occur also for chains from
other classes, i.e., the markers in Figure 4e have only
relatively light shading. We also observe that the usage of
helix and strand contents results in the scatter plot with
even lighter shading of the markers.

The membrane and cell surface proteins are best
described using CSSeq_GR_R_PolarCharged (sum of
the normalized conservation scores for the substitution
into polar charged residues that include Asp, Glu, His,
Lys, and Arg) and Max-Ach_Prob_SS_H_G (the differ-
ence between the maximal and the achieved probability
of the occurrence of Gly residues predicted as helices)
features (Figure 4f). These proteins are characterized by
high values of Max-Ach_Prob_SS_H_G, which is moti-
vated by the inclusion of transmembrane helices [118]
and by frequent presence of Gly in membrane proteins
[119]. This class is also associated with medium to low
values of CSSeq_GR_R_PolarCharged, which is sup-
ported by prior research that shows that Asp, Arg, Lys,
Gln, Asn, Glu, Pro, Ser, Thr, Gly, and His are
characterized by low (in descending order) propensity
to form membrane regions based on the membrane
propensity scale from [120]; in other words, the
existence of the conserved residues of the above type
suggests that the corresponding chain is less likely to be
associated with the membrane regions in the protein
chain.

Lastly, the high values of Comp_C (content of the
predicted coils) together with above average values of
Comp_GR_E_Neutral (composition of the neutral resi-
dues that include Cys, Gly, His, Ser, and Trp) features are
shown to be associated with the small proteins class. The
former agrees with the strand and helix content scatter
plot (see right-hand-side plot in Figure 4g) that shows
that small proteins usually include only a few helix and
strand structures. According to Costantini and coworkers
Gly, His, and Ser are shown to be among the amino acids
with high propensity to form coils [117], which is a
likely reason why Comp_GR_E_Neutral feature was
selected.

Results for the independent test set ASTRALtest
The proposed prediction system was trained using the
ASTRALtraining dataset and tested using the ASTRALtest
database. A summary presented in Table 5 shows results

BMC Bioinformatics 2009, 10:414 http://www.biomedcentral.com/1471-2105/10/414

Page 15 of 24
(page number not for citation purposes)



for three configurations of the proposed MODAS
method that include prediction of the four major classes,
six classes that exclude the small proteins class, and
prediction of all seven classes. For each setup we use only
the instances from the selected classes to perform
the test.

The results show that the accuracy is around 83% for the
prediction of the four major classes and close to 80%
when considering the 7 classes. This moderate drop in
accuracy is attributed to the predictions for the multi-
domain proteins class which obtains the lowest accura-
cies. We note that positive MCC values indicate that the
proposed model provides predictions that are always
better than random. Most importantly, in spite of the
twilight zone similarity between training and testing
sequences we observe that the proposed method is
characterized by good performance for all classes except
the multi-domain proteins class, which is supported by
the MCC and GC2 values of above 0.6 and 0.5,
respectively. The all-a class is the easiest to predict. The
corresponding predictions for all three configurations are
characterized by accuracy of above 91% and MCC of
0.89 or higher. The predictions for the a/b and all-b
classes have similar quality with accuracies ranging
between 82 and 85% and MCC between 0.75 and
0.79. The predictions of the small proteins class are also
characterized by a relatively high accuracy and MCC. We
observe that inclusion of this class, see the results for the
6 and 7 classes in Table 5, results in a slight drop in the
quality of the prediction of the all-a, all-b, and a+b
classes. This suggests existence of an overlap between
these classes and the small proteins class. The relatively
poor scores for the multi-domain proteins class are likely
due to the small size of this class and since proteins from
this class consist of domains that likely belong to
different structural classes. Although the accuracy of the
prediction of the membrane proteins is at 58%, we
emphasize that relatively high MCC value of 0.75
indicates that the proposed method performs well
for this class. The results for this class should be

considered successful given that this class is significantly
underrepresented in the datasets, i.e., membrane pro-
teins account for only 2.2% of proteins in both the
ASTRALtraining and the ASTRALtest databases.

We also compare the results obtained by the proposed
MODAS method on the ASTRAtest dataset with the results
of two recent representative methods that were designed
to work with low identity sequences, SCPred [79] and
SCEC [75]. Both of these methods use SVM to perform
predictions and they are shown to provide favorable
prediction quality with compared with other existing
structural class predictors (see results in the “Compar-
ison with the existing structural class predictors”
section). SCPred is the only existing method that uses
predicted secondary structure to predict the structural
classes and SCEC uses PSMM to compute the predic-
tions. These two methods predict only the four major
classes and thus we compare the performance consider-
ing only these classes. We removed sequences from the
three minor classes and sequences with less than 30
residues from the training and test sets since SCEC
cannot provide predictions for such short chains. The
SCPred algorithm was trained both on the original
25PDB dataset as it was done by the authors of this
method [79], and we also retrained this method using
ASTRALtraining dataset. In the case of the SCEC algorithm
we used the corresponding web server to perform
predictions. We assumed that the user of the MODAS
system may not know how many classes should be
considered in the test and thus we included the results
when prediction was made for only the 4 major classes,
the 6 classes (excluding the small proteins), and all 7
classes. The results are presented in Table 6.

The MODAS method is shown to provide favorable
quality for the prediction of the 4 classes. The quality of
the results generated by the proposed method is slightly
lower when using predictions that consider more classes,
but the overall accuracy and GC2 are still higher than the
quality provided by both competing solutions even

Table 5: Experimental results for the test on the independent ASTRALtrainingdataset for the proposed MODAS method that considers
the 4 major structural classes, 6 classes excluding the small proteins class, and all 7 considered classes

# of
classes

Accuracy MCC GC2

a b a/b a+b multi-
domain

membrane and
cell surface

small Overall a b a/b a+b multi-
domain

membrane
and cell
surface

small

4 94.06 83.38 85.01 71.47 83.01 0.92 0.79 0.78 0.61 0.63

6 93.28 82.63 82.20 71.07 26.42 57.97 80.24 0.90 0.78 0.75 0.61 0.22 0.74 0.49

7 91.72 82.18 82.20 70.29 26.42 57.97 84.26 79.89 0.89 0.78 0.76 0.60 0.22 0.75 0.84 0.52
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when using the model that predicts all 7 classes. The
accuracy improvements of the best MODAS model that
predicts 4 classes over the best results from other
methods equal 0.9%, 4.4%, 1.7%, and 7.2% for the
all-a, all-b, a/b, and a+b classes, respectively. This
translates into 0.9/(100-93.1) = 0.9/6.9 = 13%, 4.4/
20.9 = 21%, 1.7/16.6 = 10%, and 7.2/35.7 = 20% error
rate reductions, respectively, when compared with the
error produced by the best performing competing
method. The corresponding error rate reduction for the
overall accuracy equals 3.9/(100-79.1) = 19%. The most
encouraging improvements that are measured using
MCC concern a/b and a+b classes where the MODAS
method is better by at least 0.08 when compared with
the best existing method. We also observe that SCPred
performs slightly better when trained on the bigger
ASTRALtraining dataset. The SCEC provides the lowest
ranked predictions among the considered methods.

Comparison with the existing structural class predictors
The side-to-side comparison with recently proposed
structural class prediction methods is based on the
tests on three popular benchmarking datasets, 25PDB,
D1189 and D675, which are characterized by the low
sequence identity. These sets were used to test methods
that predict the 4 major classes and thus the proposed
MODAS method is also setup to predict these 4 classes.
We also use the D2230 dataset to compare with the most
recent structural class predictor that considers the 7
classes [83]. Following the prior works in this area we
use jackknife test to measure the performance. The
selection of this test strategy is motivated by the work in
[23,121] which shows that jackknife is deemed the most
objective as it always yields a unique result for a given
dataset and that this test is increasingly used to examine
the accuracy of various predictors. In this test all but one

sequence are used to train the proposed classification
system (using parameters and features identical to those
discusses in the Materials and Methods section) and the
remaining sequence is used to perform the test; this
process is repeated to use each sequence from the dataset
once as the test sequence.

Table 7 that concerns tests on the 25PDB dataset shows
that the proposed MODAS method outperforms all other
methods. There are only two methods that provide the
overall accuracy of over 65%, which include different
variants of the SCPRED method [79] and MODAS, and
both of them use SVM classifiers and predicted secondary
structure. This suggests that the predicted secondary
structure provides a useful source of information and
that SVM classifiers provide favorable prediction quality for
this prediction task. Comparison with the SCPRED reveals
that the proposed method obtains higher overall accuracy
and higher accuracy for the all-b and a/b classes. The error
rate reduction obtained by MODAS when compared with
the second best SCPRED on this dataset equals 1.7/(100-
79.7) = 8%. We note that the proposed predictor was
designed to maximize the MCC values (the feature
selection and classifier parameterization were performed
to maximize the MCC values) and as a result it provides
the best predictions for the 25PDB dataset according to this
quality index. The biggest improvement, when compared
with SCPRED, was obtained for the a/b class which is
likely due to the introduction of novel features that
describe collocation of helix and strand segments in the
predicted secondary structure.

Results shown in Tables 8 and 9, which concern
jackknife tests on the D1189 and D675 datasets,
respectively, are consistent with the results on the
25PDB dataset. The MODAS method outperforms all

Table 6: Results of the experimental comparison of the proposed MODAS method and the competing SCEC and SCPRED methods on
the ASTRALtestdataset with the four major structural classes

Algorithm Training dataset Accuracy MCC GC2

a b a/b a+b Overall a b a/b a+b

MODAS with 4 classes ASTRALtraining 94.05 83.48 85.12 71.47 83.05 0.92 0.79 0.78 0.61 0.63

MODAS with 6 classes ASTRALtraining 93.27 82.73 82.31 71.07 81.84 0.92 0.79 0.77 0.62 0.64

MODAS with 7 classes ASTRALtraining 91.71 82.27 82.31 70.29 81.17 0.91 0.79 0.77 0.61 0.64

SCPRED ASTRALtraining 93.13 78.33 83.38 64.27 79.14 0.92 0.77 0.70 0.52 0.57

SCPRED 25PDB 92.81 79.09 80.05 63.74 78.36 0.92 0.78 0.67 0.51 0.56

SCEC Web server 75.74 72.73 78.42 28.14 62.80 0.65 0.55 0.59 0.22 0.29

The MODAS method was used to make predictions for all 7, 6 (excluding the small proteins class), and the 4 major classes. The SCEC method was
trained on the ASTRALtraining with the proteins from the 4 major classes (this method can handle only prediction of the 4 classes) and on the 25PDB
dataset based on results in [53]. The SCEC predictions were generated using the web server at http://biomine.ece.ualberta.ca/Structural_Class/SCEC.
html. Bold font indicates the best results.
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competing methods as measured by the overall accuracy.
The only method that provides similar prediction quality
is again SCPRED. Results show that accuracy provided by
MODAS is better than the accuracy of SCPRED by 2.9%
and 0.5% on the D1189 and D675 datasets, respectively.
The proposed method provides substantial improve-
ments over SCPRED for the prediction of the a+b class.
The SCEC predictor, which utilizes PSSM generated with

PSI Blast as its input, provides the third best results on
both of these datasets. This demonstrates that evolu-
tionary information provides a better source of informa-
tion for the prediction of the structural class when
compared with the sequence of the input protein that is
used as an input by all lower ranked methods. We note
that the size of the dataset used to build PSSM would
likely impacts the prediction quality, as it was

Table 7: Results of the experimental comparison between the proposed MODAS method and competing structural class prediction
methods on the 25PDB dataset

Classifier used
(name of the method, if any)

Feature vector
(# features)

Reference Accuracy MCC GC2

a b a/b a+b overall a b a/b a+b

SVM with 1st order
polyn. kernel

autocorrelation (30) 73 50.1 49.4 28.8 29.5 34.2 0.16 0.16 0.05 0.05 0.02

Multinomial logistic regression custom dipeptides (16) 58 56.2 44.5 41.3 18.8 40.2 0.23 0.20 0.31 0.06 0.05

Bagging with random tree CV (20) 54 58.7 47.0 35.5 24.7 41.8 0.33 0.26 0.22 0.06 0.06

Information discrepancy tripeptides (8000) 59, 60 45.8 48.5 51.7 32.5 44.7 0.39 0.39 0.25 0.06 0.11

LogicBoost with decision tree CV (20) 46 56.9 51.5 45.4 30.2 46.0 0.41 0.32 0.32 0.06 0.10

Information discrepancy dipeptides (400) 59, 60 59.6 54.2 47.1 23.5 47.0 0.46 0.40 0.24 0.04 0.12

LogitBoost with decision stump CV (20) 54 62.8 52.6 50.0 32.4 49.4 0.49 0.35 0.34 0.11 0.13

SVM with 3rd order polyn. kernel CV (20) 54 61.2 53.5 57.2 27.7 49.5 0.46 0.35 0.39 0.11 0.13

SVM with Gaussian kernel CV (20) 47 68.6 59.6 59.8 28.6 53.9 0.52 0.42 0.43 0.15 0.17

Multinomial logistic regression custom (66) 73 69.1 61.6 60.1 38.3 57.1 0.56 0.44 0.48 0.21 0.21

Nearest neighbor Composition of
tripeptides (8000)

52 60.6 60.7 67.9 44.3 58.6 — — — — —

SVM with RBF kernel custom (34) 72 69.7 62.1 67.1 39.3 59.5 0.60 0.50 0.53 0.21 0.25

Multinomial logistic regression custom (34) 72 71.1 65.3 66.5 37.3 60.0 0.61 0.51 0.51 0.22 0.25

StackingC ensemble custom (34) 72 74.6 67.9 70.2 32.4 61.3 0.62 0.53 0.55 0.22 0.26

Linear logistic regression custom (58) 30 75.2 67.5 62.1 44.0 62.2 0.63 0.54 0.54 0.27 0.27

SVM with 1st order
polyn. kernel

custom (58) 30 77.4 66.4 61.3 45.4 62.7 0.65 0.54 0.55 0.27 0.28

SVM with RBF kernel custom (56) 61 76.5 67.3 66.8 45.8 64.0 0.62 0.51 0.50 0.28 —

Discriminant analysis custom (16) 78 64.3 65.0 61.7 65.0 64.0 — — — — —

SVM with Gaussian kernel custom (8 PSI
Pred based)

79 92.6 80.6 73.4 68.5 79.1 0.87 0.79 0.67 0.54 0.54

SVM with Gaussian kernel PSI Pred based (13) 79 92.6 79.8 74.9 69.0 79.3 0.87 0.79 0.68 0.55 0.55

SVM with RBF kernel (SCPRED) custom (9) 79 92.6 80.1 74.0 71.0 79.7 0.87 0.79 0.69 0.57 0.55

SVM with polynomial or
RBF kernels (MODAS)

custom(117, 53, 46, 163) this paper 92.3 83.7 81.2 68.3 81.4 0.88 0.79 0.76 0.58 0.58

The results were obtained using jackknife test. The methods are ordered by their average accuracies which coincide with the GC2 scores. Best results
are shown in bold and “—” indicates results that were not reported by the original authors and which cannot be duplicated.
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demonstrated for the secondary structure predictions
[106]. Larger size of the dataset may induce better
prediction performance, which could explain a portion
of the improvements of the MODAS method that was
trained using relatively recent version of the nr database,
when compared with other predictors, including SCEC
and SCPRED, which used smaller datasets. We could not
provide MCC and GC2 values for results on these two
datasets (as well as for the D498 dataset) since they were
not provided by the authors of the existing methods.

We also compare MODAS with methods that were tested
on datasets with unspecified sequence identity between
the test and the training sequences. The results of
the jackknife test on the D498 dataset are presented in
Table 10. The proposed method again achieves the
highest accuracy (96.8%) among all competing methods
that were tested on this dataset. We observe that the
lowest accuracy for this dataset is around 89%. The
accuracy of 94.9% obtained by the third best SCEC
method demonstrates that it is easier to obtain high

Table 8: Results of the experimental comparison between the proposed MODAS method and competing structural class prediction
methods on the D1189 dataset

Classifier used (name of the method, if any) Feature vector Reference Accuracy
a b a/b a+b overall

SVM AA composition, autocorrelations,
and physicochemical properties

73 - - - - 52.1

Bayesian classifier AA composition 81 54.8 57.1 75.2 22.2 53.8

Logistic regression AA composition, autocorrelations,
and physicochemical properties

73 60.2 60.5 55.2 33.2 53.9

SVM AA and polypeptide composition,
physicochemical properties

45 - - - - 54.7

Nearest neighbor Pseudo-amino acid composition 67 48.9 59.5 81.7 26.6 56.9

Ensemble AA composition, autocorrelations, and
physicochemical properties

72 - - - - 58.9

Nearest neighbor Composition of tripeptides 52 - - - - 59.9

IB1 PSI Blast based collocated AA pairs 75 65.3 67.7 79.9 40.7 64.7

Discriminant analysis custom 78 62.3 67.7 63.1 66.5 65.2

SVM with RBF kernel (SCEC) PSI Blast based collocated AA pairs 75 75.8 75.2 82.6 31.8 67.6

SVM with RBF kernel (SCPRED) custom 79 89.1 86.7 89.6 53.8 80.6

SVM with polynomial or
RBF kernels (MODAS)

custom this paper 92.3 87.1 87.9 65.4 83.5

The results were obtained using jackknife test. The methods are ordered by their average accuracies. Best results are shown in bold and “—” indicates
results that were not reported by the original authors and which cannot be duplicated.

Table 9: Results of the experimental comparison between the proposed MODAS method and competing structural class prediction
methods on the D675 dataset

Classifier used (name of the method, if any) Feature vector Reference Accuracy
a b a/b a+b overall

Bayesian classifier AA composition 81 53.5 42.3 68.3 28.3 48.0

IB1 PSI Blast based collocated AA pairs 75 54.9 47.4 68.9 35.0 51.5

SVM with RBF kernel (SCEC) PSI Blast based collocated AA pairs 75 74.3 59.6 79.7 34.5 61.5

SVM with RBF kernel (SCPRED) custom 79 89.1 81.8 90.4 58.2 79.5

SVM with polynomial or RBF kernels (MODAS) custom this paper 89.9 81.8 84.2 65.9 80.0

The results were obtained using jackknife test. The methods are ordered by their average accuracies. Best results are shown in bold.
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predictive performance on this protein set when com-
pared with the datasets with lower sequence identity, i.e.,
SCEC achieves 63-67% accuracy for the low-similarity
datasets. Based on the observations from a recent study
by Kurgan and Homaeian [73], the high levels of
accuracy are most likely due to relatively high pairwise
sequence similarity of the D498 dataset, see Datasets
section. On the other hand, the differences between the
accuracy on the low and the high-similarity datasets for
the SCPRED and MODAS methods are smaller than for
the SCEC. This is most likely since these methods were
designed using low sequence identity datasets.

Table 11 compares the proposed method with the PseAA
method [83] on the D2230 dataset when considering
classification into the 7 classes. Although the authors of
PseAA provided only the overall accuracy of their
method on this dataset, we present all quality index
values obtained by the proposed MODAS method. The
overall accuracy of predictions generated by MODAS is

better by 22.6% when compared with PseAA. This
dataset includes 16.8%, 14.3%, 32%, 28.9%, 1.1%,
2.0%, and 4.9% sequences from the all-a, all-b, a/b, a
+b, multi-domain, membrane and cell surface, and small
protein classes, respectively. The accuracies obtained by
MODAS show that our predictions are substantially
better than a random chance in spite of the heavily
unbalanced nature of the dataset. We note that the
quality of the predictions obtained on this dataset is
consistent with the results on the other benchmark
datasets that are presented above.

The high quality of the results provided by SCEC and
SCPRED supports our choice to use the evolutionary
information encoded in PSSM and the predicted secondary
structure as inputs for the proposed MODAS method. The
above results demonstrate that MODAS consistently, over
multiple datasets, outperforms competing approaches and
that it is capable of providing high quality predictions for
both the 4 major classes and the 7 classes.

Table 10: Results of the experimental comparison between the proposed MODAS method and competing structural class prediction
methods on the D498 dataset

Classifier used (name of the method, if any) Feature vector Reference Accuracy
a b a/b a+b Avg

Component-coupling AA composition 70 93.5 88.9 90.4 84.5 89.2

Neural network AA composition 80 86.0 96.0 88.2 86.0 89.2

Rough sets AA composition and physicochemical properties 49 87.9 91.3 97.1 86.0 90.8

SVM with RBF kernel (SCPRED) custom 79 94.9 91.7 94.2 86.1 91.5

SVM AA composition 82 88.8 95.2 96.3 91.5 93.2

Fuzzy k-nearest neighbor algorithm protein sequence 68 95.3 93.7 97.8 88.3 93.8

Nearest Neighbor (NN-CDM) protein sequence 69 96.3 93.7 95.6 89.9 93.8

LogitBoost AA composition 71 92.5 96.0 97.1 93.0 94.8

SVM with RBF kernel (SCEC) PSI-BLAST based p-collocated AA pairs 75 98.0 93.3 95.6 93.4 94.9

IB1 PSI-BLAST based p-collocated AA pairs 75 95.0 95.8 97.8 94.2 95.7

SVM with polynomial or RBF kernels (MODAS) custom this paper 96.7 97.5 95.6 97.1 96.8

The results were obtained using jackknife test. The methods are ordered by their average accuracies. Best results are shown in bold.

Table 11: Results of the experimental comparison between the proposed MODAS and PseAA methods on the D2230 dataset

Method Accuracy MCC GC2

a b a/b a+b multi-
domain

membrane
and cell surface

small Overall a b a/b a+b multi-
domain

membrane
and cell
surface

small

MODAS 90.6 78.9 85.2 70.6 33.3 45.5 85.2 80.0 0.88 0.77 0.75 0.61 0.34 0.55 0.87 0.49
PseAA — — — — — — — 57.4 — — — — — — — —

The results were obtained using jackknife test. “—” indicates results that were not reported by the original authors and which cannot be duplicated.
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Conclusions
This work addresses lack of structural class predictors
that consider seven structural classes, as defined in
SCOP, and which are characterized by high prediction
quality when applied to problems that involve query
sequences that share twilight-zone similarity with the
sequences used to develop the prediction model. This is
motivated by the fact that prediction for the low-
similarity sequences has applications in the detection
of the remote homologues.

We propose a prediction method that applies SVM
classifier on a set of features that are computed from the
input protein sequence. Our design incorporates novel
features that utilize sequence-derived information that
includes PSSM computed with PSI Blast and secondary
structure predicted with PSI Pred. We performed a
comprehensive feature selection and classifier selection
and parameterization procedure to optimize the quality
of the predictions. The proposed method is the first to
provide modular design in which a separate classifier is
created for each class.

An extensive empirical evaluation of the proposed
MODAS method that includes tests on 5 twilight-zone
and 1 high-similarity datasets and comparison with
over two dozens of modern existing structural class
predictors shows that MODAS achieves the best overall
accuracies for predictions of both the 4 major structural
classes (all-a, all-b, a/b, and a+b) and the 7 classes (the
4 classes plus multi-domain, membrane and cell
surface, and small protein classes). MODAS is shown
to achieve accuracy of over 80% and GC2 scores of over
0.5. The main advantages of the proposed method
include (1) the high quality of the predictions for
problems involving low sequence similarity datasets;
(2) availability of predictions for 7 structural classes (in
contrast to predictions offered by the majority of the
existing methods that consider only the 4 major
classes); and (3) modularity which allows the user to
select any subsets of the 7 classes that will be considered
as the possible outcomes for the query sequence. In
particular, we observe that MODAS provides accurate
predictions for the membrane and cell surface proteins,
which is an important class that is not considered by the
majority of the existing predictors. The improved
quality stems from the usage of the two important
sequence-derived sources of information, the predicted
secondary structure and the evolutionary information,
and the development of novel features that express
collocation of the secondary structure segments in the
protein sequence and that combine evolutionary and
secondary structure information. The results also sug-
gest that the information extracted from the secondary
structure that is predicted along the protein chain can be

successfully used to predict structural classes that are
defined based on the spatial arrangement of the
secondary structures.

A web server that implements the MODAS method is
available at http://biomine.ece.ualberta.ca/MODAS/.
This server limits the number of input sequences to 10.
In the case of the larger sequence sets, the interested user
is asked to contact the corresponding author. The web
server was trained on the 1.73 version of the ASTRAL
database with less than 20% sequence similarity (i.e.
merged ASTRALtest and ASTRALtraining datasets).

Abbreviations
(3D): Three dimensional; (AA): Amino acid; (CATH):
Class, Architecture, Topology and Homologous super-
family; (CFS): Correlation-based Feature Subset selec-
tion; (GC2): generalized squared correlation; (k-NN):
k-Nearest Neighbor; (MCC): Matthews’s correlation coeffi-
cient; (MODAS): MODular Approach to Structural class
prediction; (PSSM): position specific scoring matrix;
(SCOP): Structural Classification of Proteins; (SVM):
support vector machine.

Authors’ contributions
MJM contributed to the conception of the proposed
method, designed and implemented the feature sets and
the classifiers, performed the tests, implemented the web
server, contributed to the evaluation and interpretation
of the results, and wrote the manuscript. LK contributed
to the conception of the proposed method and the
design of the feature sets and the classifier, helped in
performing the tests, contributed to the evaluation and
interpretation of the results, and wrote the manuscript.
Both authors have read and approved the final version of
the manuscript.

References
1. Chou KC, Wei D, Du Q, Sirois S and Zhong W: Progress in

computational approach to drug development against
SARS. Curr Med Chem 2006, 13(32):63–70.

2. Chou KC: Structural bioinformatics and its impact to
biomedical science. Curr Med Chem 2004, 11(21):05–34.

3. Bujnicki JM: Protein-structure prediction by recombination of
fragments. Chembiochem 2006, 7(1):19–27.

4. Floudas CA: Computational methods in protein structure
prediction. Biotechnol Bioeng 2007, 97(2):207–213.

5. Kurgan LA, Cios KJ, Zhang H, Zhang T, Chen K, Shen S and Ruan J:
Sequence-based methods for real value predictions of
protein structure. Current Bioinformatics 2008, 3(3):183–196.

6. Rost B: Prediction in 1D: secondary structure, membrane
helices, and accessibility. Methods Biochem Anal 2003,
44:559–587.

7. Chou KC: Progress in protein structural class prediction and
its impact to bioinformatics and proteomics. Curr Protein Pept
Sci 2005, 6(5):423–436.

8. Gromiha MM, Selvaraj S and Thangakani AM: Statistical Method
for Predicting Protein Unfolding Rates from Amino Acid
Sequence. J Chem Inf Model 2006, 46(3):1503–1508.

9. Galzitskaya OV, Reifsnyder DC, Bogatyreva NS, Ivankov DN and
Garbuzynskiy SO: More compact protein globules exhibit
slower folding rates. Proteins 2008, 70(2):329–332.

BMC Bioinformatics 2009, 10:414 http://www.biomedcentral.com/1471-2105/10/414

Page 21 of 24
(page number not for citation purposes)

http://biomine.ece.ualberta.ca/MODAS/
http://www.ncbi.nlm.nih.gov/pubmed/16317788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16317788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17455371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17455371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12647405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12647405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16248794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16248794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16711769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16711769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16711769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17876831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17876831?dopt=Abstract


10. Gromiha MM: A statistical model for predicting protein
folding rates from amino acid sequence with structural
class information. J Chem Inf Model 2005, 45(2):494–501.

11. Huang LT and Gromiha MM: Analysis and prediction of protein
folding rates using quadratic response surface models.
J Comput Chem 2008, 29(10):1675–1683.

12. Istomin AY, Jacobs DJ and Livesay DR: On the role of structural
class of a protein with two-state folding kinetics in
determining correlations between its size, topology, and
folding rate. Protein Sci 2007, 16(11):2564–2569.

13. Kuznetsov IB, Gou Z, Li R and Hwang S: Using evolutionary and
structural information to predict DNA-binding sites on
DNA-binding proteins. Proteins 2006, 64(1):19–27.

14. Gromiha MM and Suwa M: A simple statistical method for
discriminating outer membrane proteins with better accu-
racy. Bioinformatics 2005, 21(7):961–968.

15. He H, McAllister G and Smith TF: Triage protein fold prediction.
Proteins 2002, 48(4):654–663.

16. Ding YS, Zhang TL, Gu Q, Zhao PY and Chou KC: Using
Maximum Entropy Model to Predict Protein Secondary
Structure with Single Sequence. Protein Pept Lett 2009,
16:552–560.

17. Zhang Z, Sun ZR and Zhang CT: A new approach to predict the
helix/strand content of globular proteins. J Theor Biol 2001, 208
(1):65–78.

18. Chou KC: Energy-optimized structure of antifreeze protein
and its binding mechanism. J Mol Biol 1992, 223:509–517.

19. Carlacci L, Chou KC and Maggiora GM: A heuristic approach to
predicting the tertiary structure of bovine somatotropin.
Biochemistry 1991, 30:4389–4398.

20. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C and
Murzin AG: SCOP database in 2004: refinements integrate
structure and sequence family data. Nucleic Acids Res 2004, 32:
D226–229.

21. Murzin AG, Brenner SE, Hubbard T and Chothia C: SCOP: A
structural classification of protein database for the investi-
gation of sequence and structures. J Mol Biol 1995,
247:536–540.

22. Pruitt KD, Tatusova T and Maglott DR: NCBI Reference
Sequence (RefSeq): a curated non-redundant sequence
database of genomes, transcripts and proteins. Nucleic Acids
Res 2007, 35 Database: D61–65.

23. Ginalski K: Comparative modeling for protein structure
prediction. Curr Opin Struct Biol 2006, 16(2):172–177.

24. Ruan J, Chen K, Tuszynski JA and Kurgan LA: Quantitative
analysis of the conservation of the tertiary structure of
protein segments. Protein J 2006, 25:301–315.

25. Xiang Z: Advances in homology protein structure modeling.
Curr Protein Pept Sci 2006, 7(3):217–227.

26. Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W
and Lipman DJ: Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic
Acids Res 1997, 17:3389–3402.

27. Yu YK, Gertz EM, Agarwala R, Schaffer AA and Altschul SF:
Retrieval accuracy, statistical significance and compositional
similarity in protein sequence database searches. Nucleic Acids
Res 2006, 34:5966–5973.

28. Rost B: Twilight zone of protein sequence alignments. Protein
Eng 1999, 2:85–94.

29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN and Bourne PE: The Protein Data Bank. Nucleic
Acids Res 2000, 28:235–242.

30. Kurgan LA and Chen K: Prediction of protein structural class
for the twilight zone sequences. Biochem Biophys Res Co 2007,
357(2):453–460.

31. Reinhardt A and Eisenberg D: DPANN: improved sequence to
structure alignments following fold recognition. Proteins 2004,
56:528–538.

32. Tomii K, Hirokawa T and Motono C: Protein structure
prediction using a variety of profile libraries and 3D
verification. Proteins 2005, 61(S7):114–121.

33. Chou KC, Watenpaugh KD and Heinrikson RL: A Model of the
complex between cyclin-dependent kinase 5(Cdk5) and the
activation domain of neuronal Cdk5 activator. Biochem Biophys
Res Commun 1999, 259:420–428.

34. Paiardini A, Bossa F and Pascarella S: Evolutionarily conserved
regions and hydrophobic contacts at the superfamily level:
The case of the fold-type I, pyri-doxal-5’-phosphate-depen-
dent enzymes. Protein Sci 2004, 13:2992–3005.

35. Zhang Y and Skolnick J: The protein structure prediction
problem could be solved using the current PDB library. Proc
Natl Acad Sci USA 2005, 102:1029–1034.

36. Dunbrack RL: Sequence comparison and protein structure
prediction. Curr Opin Struct Biol 2006, 16(3):374–384.

37. Wu S and Zhang Y: MUSTER: Improving protein sequence
profile-profile alignments by using multiple sources of
structure information. Proteins 2008, 72(2):547–556.

38. Cuff AL, Sillitoe I, Lewis T, Redfern OC, Garratt R, Thornton J and
Orengo CA: The CATH classification revisited–architectures
reviewed and new ways to characterize structural diver-
gence in superfamilies. Nucleic Acids Res 2009, 37 Database:
D310–D314.

39. Orengo C, Michie A, Jones D, Swindells M and Thornton J: CATH:
a hierarchic classification of protein domain structures.
Structure 1997, 5(8):1093–1108.

40. Carpenter EP, Beis K, Cameron AD and Iwata S: Overcoming the
challenges of membrane protein crystallography. Curr Opin
Struct Biol 2008, 18(5):581–586.

41. Homaeian L, Kurgan L, Cios KJ, Ruan J and Chen K: Prediction of
protein secondary structure content for the twilight zone
sequences. Proteins 2007, 69(3):486–498.

42. Lee S, Lee BC and Kim D: Prediction of protein secondary
structure content using amino acid composition and evolu-
tionary information. Proteins 2006, 62:1107–1114.

43. Kurgan LA, Zhang T, Zhang H, Shen S and Ruan J: Secondary
structure based assignment of the protein structural classes.
Amino Acids 2008, 35(3):551–564.

44. Chou KC: Prediction of protein cellular attributes using
pseudo amino acid composition. Protein Struct Funct Gene 2001,
43:246–255.

45. Anand A, Pugalenthi G and Suganthan PN: Predicting protein
structural class by SVM with class-wise optimized features
and decision probabilities. J Theor Biol 2008, 253(2):375–380.

46. Cai Y, Feng K, Lu W and Chou K: Using LogitBoost classifier to
predict protein structural classes. J Theor Biol 2006,
238:172–176.

47. Cai Y, Liu X, Xu X and Chou K: Support vector machines for
prediction of protein domain structural class. J Theor Biol 2003,
221:115–120.

48. Cai YD, Liu XJ, Xu XB and Chou KC: Prediction of protein
structural classes by support vector machines. J Comput Chem
2002, 26(3):293–296.

49. Cao Y, Liu S, Zhang L, Qin J, Wang J and Tang K: Prediction of
protein structural class with Rough Sets. BMC Bioinformatics
2006, 7:20.

50. Chen C, Tian YX, Zou XY, Cai PX and Mo JY: Using pseudo-
amino acid composition and support vector machine to
predict protein structural class. J Theor Biol 2006, 243
(3):444–448.

51. Chou KC: A Novel Approach to Predicting Protein Struc-
tural Classes in a (20-1)-D Amino Acid Composition Space.
Proteins 1995, 21:319–344.

52. Costantini S and Facchiano AM: Prediction of the protein
structural class by specific peptide frequencies. Biochimie
2009, 91(2):226–229.

53. Ding YS, Zhang TL and Chou KC: Prediction of protein
structure classes with pseudo amino acid composition and
fuzzy support vector machine network. Protein Pept Lett 2007,
14(8):811–815.

54. Dong L, Yuan Y and Cai T: Using Bagging classifier to predict
protein domain structural class. J Biomol Struct Dyn 2006,
24:239–242.

55. Du QS, Jiang ZQ, He WZ, Li DP and Chou KC: Amino Acid
Principal Component Analysis (AAPCA) and its applications
in protein structural class prediction. J Biomol Struct Dyn 2006,
23(6):635–640.

56. Gu F, Chen H and Ni J: Protein structural class prediction
based on an improved statistical strategy. BMC Bioinformatics
2008, 9(Suppl 6):5.

57. Jahandideh S, Abdolmaleki P, Jahandideh M and Asadabadi EB: Novel
two-stage hybrid neural discriminant model for predicting
proteins structural classes. Biophys Chem 2007, 128(1):87–93.

58. Jahandideh S, Abdolmaleki P, Jahandideh M and Hayatshahi SHS:
Novel hybrid method for the evaluation of parameters
contributing in determination of protein structural classes.
J Theor Biol 2007, 244:275–281.

59. Jin L, Fang W and Tang H: Prediction of protein structural
classes by a new measure of information discrepancy. Comput
Biol and Chem 2003, 27:373–380.

BMC Bioinformatics 2009, 10:414 http://www.biomedcentral.com/1471-2105/10/414

Page 22 of 24
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/15807515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15807515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15807515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18351617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18351617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16568445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531602?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531602?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15531602?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12211033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19442235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19442235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19442235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11162053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11162053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1738160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1738160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2021631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2021631?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17130148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17130148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17130148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16510277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16510277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16957991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16957991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16957991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17068079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17068079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15229885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15229885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16187352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16187352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16187352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10362524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10362524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10362524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15653774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15653774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16713709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16713709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18247410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18247410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18247410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9309224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9309224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18674618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18674618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17623861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17623861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17623861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16345074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16345074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16345074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18427716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18427716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16043193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16043193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12634048?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12634048?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16412240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16412240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16908032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16908032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16908032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7567954?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7567954?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18957316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18957316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17979824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17979824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17979824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17054381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17054381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16615809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16615809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16615809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179701?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179701?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17005206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17005206?dopt=Abstract


60. Kedarisetti K, Kurgan LA and Dick S: A Comment on ‘Prediction
of protein structural classes by a new measure of informa-
tion discrepancy’. Comput Biol and Chem 2006, 30:393–394.

61. Li ZC, Zhou XB, Dai Z and Zou XY: Prediction of protein
structural classes by Chou’s pseudo amino acid composi-
tion: approached using continuous wavelet transform and
principal component analysis. Amino Acids 2009, 37(2):415–425.

62. Li ZC, Zhou XB, Lin YR and Zou XY: Prediction of protein
structure class by coupling improved genetic algorithm and
support vector machine. Amino Acids 2008, 35(3):581–590.

63. Niu B, Cai YD, Lu WC, Li GZ and Chou KC: Predicting protein
structural class with AdaBoost Learner. Protein Pept Lett 2006,
13(5):489–492.

64. Xiao X, Lin WZ and Chou KC: Using grey dynamic modeling
and pseudo amino acid composition to predict protein
structural classes. J Comput Chem 2008, 29(12):2018–2024.

65. Xiao X, Shao SH, Huang ZD and Chou KC: Using pseudo amino
acid composition to predict protein structural classes:
approached with complexity measure factor. J Comput Chem
2006, 27(4):478–482.

66. Zhang TL and Ding YS: Using pseudo amino acid composition
and binary-tree support vector machines to predict protein
structural classes. Amino Acids 2007, 33(4):623–629.

67. Zhang TL, Ding YS and Chou KC: Prediction protein structural
classes with pseudo amino acid composition: approximate
entropy and hydrophobicity pattern. J Theor Biol 2008,
250:186–193.

68. Zheng X, Li C and Wang J: An information-theoretic approach
to the prediction of protein structural class. J Comput Chem
2009 in press.

69. Liu T, Zheng X and Wang J: Prediction of protein structural
class using a complexity-based distance measure. Amino Acids
2009 in press.

70. Zhou GP: An intriguing controversy over protein structural
class prediction. J Protein Chem 1998, 17:729–738.

71. Feng KY, Cai YD and Chou KC: Boosting classifier for
predicting protein domain structural class. Biochem Biophys
Res Commun 2005, 334(1):213–217.

72. Kedarisetti K, Kurgan LA and Dick S: Classifier ensembles for
protein structural class prediction with varying homology.
Biochem Biophys Res Co 2006, 348(3):981–988.

73. Kurgan LA and Homaeian L: Prediction of structural classes for
protein sequences and domains - impact of prediction
algorithms, sequence representation and homology, and
test procedures on accuracy. Pattern Recogn 2006,
39:2323–2343.

74. Chen C, Chen LX, Zou XY and Cai PX: Predicting protein
structural class based on multi-features fusion. J Theor Biol
2008, 253(2):388–392.

75. Chen K, Kurgan L and Ruan J: Prediction of protein structural
class using novel evolutionary collocation-based sequence
representation. J Comput Chem 2008, 29:1596–1604.

76. Gupta R, Mittal A and Singh K: A time-series-based feature
extraction approach for prediction of protein structural
class. EURASIP J Bioinform Syst Biol 2008, 35451.

77. Xiao X, Wang P and Chou KC: Predicting protein structural
classes with pseudo amino acid composition: an approach
using geometric moments of cellular automaton image.
J Theor Biol 2008, 254(3):691–696.

78. Yang JY, Peng ZL, Yu ZG, Zhang RJ, Anh V and Wang D: Prediction
of protein structural classes by recurrence quantification
analysis based on chaos game representation. J Theor Biol
2009, 257(4):618–626.

79. Kurgan LA, Cios KJ and Chen K: SCPRED: Accurate prediction
of protein structural class for sequences of twilight-zone
similarity with predicting sequences. BMC Bioinformatics 2008,
9:226.

80. Cai Y and Zhou G: Prediction of protein structural classes by
neural network. Biochimie 2000, 82:783–785.

81. Wang ZX and Yuan Z: How good is the prediction of protein
structural class by the component-coupled method. Proteins
2000, 38:165–175.

82. Cai Y, Liu X, Xu X and Zhou G: Support vector machines for
predicting protein structural class. BMC Bioinformatics 2001, 2:3.

83. Chen W, Zhang S, Yang H, Zhao K and Chou K: Prediction of
seven protein structural classes by fusing multi-feature
information including protein evolutionary conservation
information. Proceedings of the Second International Conference on
Bioinformatics and Biomedical Engineering: 16-18 May 2008; Shanghai
2008, 17–20.

84. Chou KC and Cai Y: Predicting protein structural class by
functional domain composition. Biochem Biophys Res Commun
2004, 321:1007–1009.

85. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M,
Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L,
Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D,
Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ,
Oinn TM, Pagni M, Servant F, Sigrist CJ and Zdobnov EM: The
InterPro database, an integrated documentation resource
for protein families, domains and functional sites. Nucleic Acids
Res 2001, 29:37–40.

86. Elofsson A and von Heijne G: Membrane protein structure:
prediction versus reality. Annu Rev Biochem 2007, 76:125–140.

87. Punta M, Forrest LR, Bigelow H, Kernytsky A, Liu J and Rost B:
Membrane protein prediction methods. Methods 2007, 41
(4):460–74.

88. Bigelow H and Rost B: Online tools for predicting integral
membrane proteins. Membrane Proteomics: Methods and Protocols
New York: Humana Press: Peirce MJ, Wait R 2009, 528:3–23.

89. Marsden RL, McGuffin LJ and Jones DT: Rapid protein domain
assignment from amino acid sequence using predicted
secondary structure. Protein Sci 2002, 11(12):2814–2824.

90. Bryson K, Cozzetto D and Jones DT: Computer-assisted protein
domain boundary prediction using the DomPred server. Curr
Protein Pept Sci 2007, 8(2):181–8.

91. Raman P, Cherezov V and Caffrey M: The membrane protein
data bank. Cell Mol Life Sci 2006, 63(1):36–51.

92. Majumdar I, Kinch LN and Grishin NV: A database of domain
definitions for proteins with complex interdomain geome-
try. PLoS ONE 2009, 4(4):e5084.

93. Krogh A, Larsson B, von Heijne G and Sonnhammer EL: Predicting
transmembrane protein topology with a hidden Markov
model: application to complete genomes. J Mol Biol 2001, 305
(3):567–580.

94. Jones D: Improving the accuracy of transmembrane protein
topology prediction using evolutionary information. Bioinfor-
matics 2007, 23(5):538–544.

95. Jones D: Protein secondary structure prediction based on
position-specific scoring matrices. J Mol Biol 1999, 292
(2):195–202.

96. Kim H and Park H: Prediction of protein relative solvent
accessibility with support vector machines and long-range
interaction 3D local descriptor. Protein Struct Funct Bioinformatics
2003, 54(3):557–562.

97. Brenner S, Koehl P and Levitt M: The ASTRAL compendium for
sequence and structure analysis. Nucleic Acids Res 2000,
28:254–256.

98. Smith TF and Waterman MS: Identification of common
molecular subsequences. J Mol Biol 1981, 147:195–197.

99. Gotoh O: An improved algorithm for matching biological
sequences. J Mol Biol 1982, 162:705–708.

100. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS and Jones DT:
Protein structure prediction servers at University College
London. Nucleic Acids Res 2005, 33 Web server: W36–38.

101. Zheng C and Kurgan LA: Prediction of beta-turns at over 80%
accuracy based on an ensemble of predicted secondary
structures and multiple alignments. BMC Bioinformatics 2008,
9:430.

102. Zhang H, Zhang T, Chen K, Shen S, Ruan J and Kurgan LA:
Sequence based residue depth prediction using evolutionary
information and predicted secondary structure. BMC Bioinfor-
matics 2008, 9:388.

103. Song J and Burrage K: Predicting residue-wise contact orders in
proteins by support vector regression. BMC Bioinformatics 2006,
7:425.

104. Witten I and Frank E: Data Mining: Practical machine learning tools and
techniques San Francisco: Morgan Kaufmann; 22005.

105. Pruitt KD, Tatusova T and Maglott DR: NCBI Reference
Sequence (RefSeq): a curated non-redundant sequence
database of genomes, transcripts and proteins. Nucleic Acids
Res 2007, 35 Database: D61–5.

106. Przybylski D and Rost B: Alignments grow, secondary structure
prediction improves. Proteins 2002, 46:197–205.

107. Liu H and Setiono R: A probabilistic approach to feature
selection - A filter solution. Proceedings of the 13th International
Conference on Machine Learning: 3-6 July 1996; Bari San Francisco:
Morgan Kaufmann: Saitta L 1996, 319–327.

108. Kohavi R and John GH: Wrappers for feature subset selection.
Arti Intell 1997, 97(1-2):273–324.

BMC Bioinformatics 2009, 10:414 http://www.biomedcentral.com/1471-2105/10/414

Page 23 of 24
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/18726140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18726140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18726140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18726140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18427714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18427714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18427714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16800803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16800803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17308864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17959199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17959199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17959199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9988519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9988519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15993842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15993842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18293306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18293306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18293306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18634802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18634802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18634802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19183559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19183559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19183559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18452616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18452616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18452616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11018296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11018296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10656263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10656263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11483157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11483157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15358128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15358128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17579561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17579561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12441380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12441380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12441380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16314922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16314922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19352501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19352501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19352501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11152613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11152613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11152613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10493868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7166760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7166760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18847492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18847492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18847492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17014735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17014735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17130148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17130148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17130148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11807948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11807948?dopt=Abstract


109. Hall MA: Correlation-based feature selection for discrete and
numeric class machine learning. Proceedings of the Seventeenth
International Conference on Machine Learning: 29 June - 2 July 2000; San
Francisco San Francisco: Morgan Kaufmann: Langley P 2000, 359–366.

110. Robnik-Sikonja M and Kononenko I: An adaptation of Relief for
attribute estimation in regression. Proceedings of the 14th
International Conference on Machine Learning: 8-12 July 1997; Nashville
San Francisco: Morgan Kaufmann: Fisher DH 1997, 296–304.

111. Langley P: Selection of relevant features in machine learning.
Proceedings of the AAAI Fall Symposium on Relevance: 4-6 November
1994; New Orleans Menlo Park: AAAI Press; 1994, 140–144.

112. Keerthi S, Shevade S, Bhattacharyya C and Murthy K: Improve-
ments to Platt’s SMO Algorithm for SVM Classifier Design.
Neural Comput 2001, 13(3):637–649.

113. John G and Langley P: Estimating Continuous Distributions in
Bayesian Classifiers. Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence: 18-20 August 1995; Montreal San
Mateo: Morgan Kaufmann Publishers: Besnard P, Hanks S 1995,
338–345.

114. Cessie S and Houwelingen J: Ridge estimators in logistic
regression. Appl Stat 1992, 41(1):191–201.

115. Aha D and Kibler D: Instance-based learning algorithms. Mach
Learn 1991, 6:37–66.

116. Baldi P, Brunak S, Chauvin Y, Andersen C and Nielsen H: Assessing
the accuracy of prediction algorithms for classification: An
overview. Bioinformatics 2000, 16:412–424.

117. Costantini S, Colonna G and Facchiano AM: Amino acid
propensities for secondary structures are influenced by the
protein structural class. Biochem Biophys Res Co 2006, 342
(2):441–451.

118. von Heijne G: Principles of membrane protein assembly and
structure. Prog Biophys Mol Biol 1996, 66(2):113–139.

119. Amirova SR, Milchevsky JV, Filatov IV, Esipova NG and
Tumanyan VG: Study and prediction of secondary structure
for membrane proteins. J Biomol Struct Dyn 2007, 24(4):421–428.

120. Punta M and Maritan A: A knowledge-based scale for amino
acid membrane propensity. Proteins 2003, 50(1):114–121.

121. Chou KC and Shen HB: Recent progresses in protein
subcellular location prediction. Anal Biochem 2007, 370:1–16.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:414 http://www.biomedcentral.com/1471-2105/10/414

Page 24 of 24
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/10871264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10871264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10871264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9175426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9175426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17206856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17206856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12471604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12471604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17698024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17698024?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Protein structural class
	Related work
	Motivation and goals

	Methods
	Datasets
	Overall design
	Feature vector
	Features based on the AA sequence (39 features)
	Features based on the PSSM matrix (196 features)
	Features based on the PSSM matrix in combination with the predicted secondary structure (486 features)
	Features based on the predicted secondary structure (144 features)
	Features based on the collocation of helix and strand segments in the predicted secondary structure (127 features)

	Feature and classifiers selection
	Classification

	Results and Discussion
	Discussion of the selected features
	Results for the independent test set ASTRALtest
	Comparison with the existing structural class predictors

	Conclusions
	Abbreviations
	Authors’ contributions
	References

