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Modulating inflammation for cancer therapy
Birgit Ritter1 and Florian R. Greten1,2,3

A link between chronic inflammation and development of tumors is well established. Moreover, it has become evident that
tumorigenesis is not a cell autonomous disease, and an inflammatory microenvironment is a prerequisite of basically all tumors,
including those that emerge in the absence of overt inflammation. This knowledge has led to the development of anti-
inflammatory concepts to treat and prevent cancer. In contrast, immunotherapies, in particular checkpoint inhibitors,
representing the most significant progress in the therapy of several malignancies depend on the presence of a pro-
inflammatory “hot” environment. Here, we discuss pro- and anti-inflammatory concepts for the treatment of cancer.

Introduction
The clinical connection of inflammation and cancer reaches
back to the late 19th century, when Rudolf Virchow postulated
sites of chronic inflammation as origin of neoplastic malig-
nancies after he had noticed the presence of leukocyte in-
filtrates in cancerous tissues (Balkwill and Mantovani, 2001).
Nearly at the same time, the German physicianWilhelm Busch
employed an inflammatory immune response as a treatment
for cancer, partially curing a patient suffering from soft-tissue
sarcoma of the neck with an erysipelas infection. He was
followed by the American bone surgeon William Coley, who
used a mixture of heat-killed bacteria, later called “Coley’s
toxins,” to successfully treat sarcomas (Coley, 1893), making
him the father of immunotherapy. These historic examples
depict vividly what we know today: while inflammation can
promote carcinogenesis, it may as well be used for tumor
therapy. Initially, the underlying mechanisms were com-
pletely unknown, and the original forms of pro-inflammatory
therapy bore severe side effects. During the following cen-
tury, radiation therapy and chemotherapy emerged, and be-
cause cancer was increasingly considered a cell-intrinsic
genetic disease, new treatment modalities focused on killing
tumor cells directly, while “inflammatory” therapies were
neglected (Fig. 1; Faguet, 2015). This view has changed again
over the last two decades. It became clear that cancer re-
sembles complex organs, consisting of tumor cells and host-
derived stroma, which is composed of resident as well as
recruited cells (Hanahan, 2014; Weinberg, 2014). Thus, it has
become unequivocally evident that tumor development de-
pends on the intricate reciprocal interplay of mutagenized
tumor cells with their local and distant microenvironment
(Balkwill and Mantovani, 2012; Quail and Joyce, 2013).

Chronic inflammation shapes the tumor microenvironment,
affecting cell plasticity through epithelial–mesenchymal transi-
tion, dedifferentiation, polarization of immune cells, ROS,
cytokines, epigenetic mechanisms, miRNAs, and complex reg-
ulatory cascades in tumor and stromal cells (Varga and Greten,
2017). Curiously, not all inflammatory diseases or persistent
infections are correlated to increased cancer risk, and although
allergic diseases also embody a state of constant or recurring
inflammation, this type of inflammation may be even inversely
correlated with cancer progression (Turner et al., 2006;
Kozłowska et al., 2016). Thus, an important open question re-
mains why certain organs with ongoing inflammation, such as
rheumatoid arthritis or myocarditis, are not susceptible to tu-
mor induction. The formation of inflammation-induced reactive
oxygen or nitrogen species, produced by activated myeloid cells,
that can directly mediate DNA damage and chromosomal in-
stability in neighboring cells (Canli et al., 2017) cannot account
for this phenomenon, considering that this would occur in all
types of organs. Interestingly, organs with high tumor incidence
in the context of chronic inflammation are those that usually
interact closely with microbial products or directly with mi-
crobiota, pointing to the role of the microenvironment, po-
tentially carcinogenic microbe-derived metabolites, or host
immune responses in cancer initiation.

In addition to cytotoxic therapies that induce a pro-
inflammatory response (Grivennikov et al., 2010), surgery can
act in an immunomodulating way, contributing to the out-
growth of metastases even when surgery is performed years
after removal of a primary tumor. Here, the concept of pre-
metastatic niches and circulating tumor cells (CTCs) is consid-
ered to play an important role, and dormant CTCs seem to be
essential for the formation of metastases upon surgery (Murthy
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et al., 1989; Demicheli et al., 2008; Tohme et al., 2017; Castaño
et al., 2018). One reason for this is the loss of tumor-derived
angiogenesis inhibitors after removal of the primary tumor;
others may comprise shedding of mediators that promotewound
healing and neoangiogenesis to promote the outgrowth of for-
merly dormant CTC or micrometastases (Hofer et al., 1998;
Demicheli et al., 2008). Through the surgery itself, inflamma-
tory cells and cytokines are released into the blood, helping to
create premetastatic niches, where CTCs can settle and prosper
(Lim et al., 2013; Peinado et al., 2017). These findings already
give some insight into the complex nature of inflammatory
processes connected to tumor development, progression, and
classical treatment.

Although the importance of the tumor microenvironment for
tumor progression is undisputed, most current cytotoxic treat-
ments or recently developed small-molecule inhibitors target
specific signaling pathways within tumor cells. Undoubtedly,
several of these promising new compounds have proven ex-
tremely successful (McCubrey et al., 2012; Hengel et al., 2017;
Whittaker et al., 2017). However, many patients that initially
benefit from these very effective compounds rapidly develop
therapy resistance, leading to even more aggressive tumors. The
clinical approval of antiangiogenic tumor therapy nearly 15 yr
ago marked a breakthrough paradigm change as the first

clinically effective antistroma therapy (Ferrara et al., 2004).
However, the efficacy of antiangiogenic therapies continues to
be limited, and the mechanism of action (vascular regression vs.
vascular normalization) is poorly understood (Klement et al.,
2000; Jain, 2001). Today, a variety of molecular pathways and
stroma cells are targeted ranging from epigenetic factors, hy-
poxia, neoangiogenesis, and cytokines over tumor and tumor-
associated cells to the microbiota of the gut. Although certain
anti-inflammatory therapies show very promising results in
various malignancies, the real breakthrough of the last years
was the development and clinical approval of antibody-based
immunotherapies targeting CTLA-4 or PD-1/PD-L1. While im-
mune checkpoint blockade (ICB) is clinically very effective,
leading to durable treatment responses in a few tumor entities,
the majority of tumor patients do not respond for a wide range
of potential reasons (Chen and Mellman, 2017). So-called
infiltrated–inflamed tumors are considered “hot” tumors that
contain a high number of infiltrating cytotoxic lymphocytes
expressing PD-1 and that usually respond well to ICB. In con-
trast, infiltration-excluded tumors are characterized by accu-
mulation of CTLs along the border of the tumor mass and a lack
of CTL infiltration into the tumor core. These tumors are gen-
erally considered “cold” tumors with poor sensitivity to ICB
(Fig. 2; Gajewski, 2015). Several promising strategies have been

Figure 1. Time course from first documented cancer cases to modern therapy. Ab, antibody; ABL, Abelson murine leukemia viral oncogene homologue
1; AML, acute myeloid leukemia; CAR, chimeric antigen receptor; CML, chronic myeloid leukemia; CTCL, cutaneous T cell lymphoma; RA, rheumatoid
arthritis; T-VEC, talimogene laherparepvec; VEGF, vascular endothelial growth factor.
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suggested to change a cold into a hot tumor, which can render
these tumors sensitive to ICB (Table 1), yet there is certainly an
unmet need to unravel furthermechanisms that would allow such
conversion. Moreover, it remains one of the biggest challenges to
identify biomarkers that will allow assessment of individual pa-
tients’ ICB sensitivity or that will help to decide about the most
promising combinatorial approach for an individual patient.

Inhibiting inflammation
Because tumors and their constant smoldering inflammation
resemble and are promoted by chronic inflammatory diseases, it
seems logical to employ anti-inflammatory drugs. Aspirin is one
of the oldest anti-inflammatory drugs. Its anticoagulant prop-
erties were noted in the 1950s, and its metastasis-reducing ca-
pacity was tested in animal models in the 1970s, when its
suppressive effect on prostaglandin production had been dis-
covered (Henschke et al., 1977). More evidence of aspirin or
other nonsteroidal anti-inflammatory drugs, targeting cyclo-
oxygenases, came from the observation that taking these drugs
as pain killers for cancer-elicited pain or therapy side effects had
an overall survival benefit. Today, several clinical trials are still
ongoing, showing modest results in different kinds of cancer,
such as breast, prostate, and especially colon, although the
positive effect on cardiovascular-caused death, which could in-
fluence these results, should be kept in mind (Jacobs et al., 2014;
Chen and Holmes, 2017; Frouws et al., 2017).

Neutralizing pro-inflammatory cytokines or blocking their
receptors represents a more direct targeted approach. In 1993,
the first IL-1 receptor antagonist was approved for the treatment
of rheumatoid arthritis (anakinra from Amgen). Since then, its
application has been extended to a variety of other diseases.
Today, several mediators blocking or neutralizing the IL-1 path-
way (e.g., antibodies, soluble receptors, and small-molecule in-
hibitors) are in use or being tested for cancer treatment
(Dinarello et al., 2012; Molgora et al., 2018). In a recently com-
pleted trial, the IL-1β blocking antibody canakinumab was
shown to ameliorate inflammation in patients suffering from
atherosclerosis (Canakinumab Anti-inflammatory Thrombosis
Outcomes Study; CANTOS). Interestingly, a secondary analysis
of the obtained data including a 5-yr follow-up revealed that
canakinumab-receiving patients showed a significant dose–
dependent reduction in lung cancer incidence and mortality
compared with placebo-treated patients (Ridker et al., 2017).
Similar positive results of blocking inflammatory IL-1 pathways
were observed in different murine models of breast cancer in
both primary tumors and metastases formation (Guo et al.,
2016; Dagenais et al., 2017). In contrast, a recent preclinical
study could demonstrate an IL-1β–dependent suppression of
metastasis-initiating cancer cells, which was lost upon its neu-
tralization. This was underscored by database analysis that
showed a beneficial effect of high levels of IL-1β on overall
survival of breast cancer patients with lymph node metastases

Figure 2. Tumor immune statuses. Infiltration-excluded tumors (left) accumulate cytotoxic T lymphocytes (CTLs) around their margins, where they interact
with Ly6cloF4/80hi TAMs or are impeded by cancer-associated fibroblasts (CAFs). Infiltration-inflamed tumors (right) show activated PD1+ CTLs in their core
that express IFNγ and granzyme B (GrzB). They may form tertiary lymphoid structures and are generally associated with good prognosis and response to ICB.
Therefore, therapies aim to promote this state. DC, dendritic cell; IDO, indoleamine (2,3)-dioxygenase; MSI, microsatellite instability.
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(Castaño et al., 2018). Admittedly, the murine studies differed in
model and cells used and the suppressive effect was restricted to
early stages of metastases outgrowth. Although most of the
available data support the concept to block IL-1, there is no doubt
that further research is needed, as well as for other pro-
inflammatory cytokines that are targeted in anticancer ther-
apy, including IL-6 (Kitamura et al., 2017), IL-23, TNFα, and
CC-chemokine ligand 2 (CCL2), to dampen inflammation and/
or leukocyte recruitment (Todoric et al., 2016).

Interestingly, although IL-17 is known to be one of the most
potent inflammatory cytokines and the culprit in many auto-
immune diseases, patients suffering from different kind of
cancers showed prolonged survival when they expressed high
levels of IL-17 (Qian et al., 2017). While IL-17 was originally
considered to promote neovascularization and tumor cell pro-
liferation, its anti-tumorigenic function, achieved by, e.g.,

activation of tumoricidal T cells, natural killer cells, or neutro-
phils and upholding barrier integrity, is undisputable (Kryczek
et al., 2009; Wang et al., 2014; Fabre et al., 2016). Since more and
more is known about the molecular mechanisms linking in-
flammation and tumor progression, the respective intracellular
signaling cascades constitute a novel target for therapeutic in-
tervention. This is practiced indirectly by cytokine blocking
antibodies mentioned above, many of which impinge on protu-
morigenic STAT3 or NF-κB signaling. Several direct STAT3 in-
hibitors are currently tested in clinical trials (Johnson et al.,
2018). Unfortunately, various side effects, including develop-
ment of neutrophilia and elevated IL-1β serum levels (Greten
et al., 2007; Mankan et al., 2011), led to the discontinuation of
IKKβ inhibitor development bymany pharmaceutical companies.

Inducing inflammation and modulating immune cell activation
Less than 25% of all patients respond to immune-oncology
compounds. Exhaustion of T cells, PD-1/PD-L1 gene amplifica-
tion, MHC-I/II mutations, β-catenin overexpression, and other
reasons have been described to be responsible for such resis-
tance (Dempke et al., 2017). One concept to improve response to
ICB has simply been the combination of anti–CTLA-4 plus
anti–PD-1/PD-L1. This prolongs survival of metastatic melanoma
patients and led to Food and Drug Administration approval of
nivolumab (anti–PD-1) plus ipilimumab (anti–CTLA-4) in 2015
(Fig. 1). Yet, while single administration of anti–CTLA-4 induces
PD-L1 expression on tumor cells (Hu-Lieskovan and Ribas, 2017),
the advantage of additional CTLA-4 blockade is often only
moderate, accompanied by more severe cytotoxic side effects
compared with PD-1 blockade alone.

One of the greatest obstacles in immune therapy is the
immune-deserted or cold state of certain tumors that lack an
appropriate anti-tumor immune response (Chen and Mellman,
2017). To increase T cell infiltration into tumors, various com-
bination therapies now aim to induce a pro-inflammatory re-
sponse that would overcome T cell exclusion, turning tumors
into hot tumors (Fig. 2). One of these approaches comprises the
likewise relatively novel oncolytic viruses. Talimogene la-
herparepvec is the first approved oncolytic virus for use in
melanoma. Its lytic traits, together with the expression of
GM-CSF, lead to increased tumor cell lysis and release of danger
signals and antigens, promoting T cell responses, which showed
beneficial effects in combination with anti–CTLA-4 or anti–PD-
1 therapy (Zamarin et al., 2014; Ribas et al., 2017; Chesney et al.,
2018). Further attempts to increase T cell activity include irra-
diation, GM-CSF–expressing tumor vaccine GVAX, or cytostatics
as combinatorial therapies (Robert et al., 2011; van den Eertwegh
et al., 2012; Le et al., 2013; Rech et al., 2018). Not only does
irradiation induce a local inflammatory milieu with increased
IFNγ production, cell death, antigen release, and broadened
T cell receptor repertoire, its combination with PD-1 blockade
can exert an abscopal effect, with tumor regression in non-
irradiated secondary tumors (Liu et al., 2018). Furthermore,
irradiation-induced DNA damage activates pattern recognition
receptors like the cytosolic DNA sensor cyclic GMP-AMP syn-
thase, which further activates STING (stimulator of interferon
genes) and leads to a type I IFN response, responsible for

Table 1. Mechanisms to improve anti-tumor response and immune
infiltration with selected examples

Promote innate immunity

Local inflammation Local irradiation Liu et al., 2018

Oncolytic viruses Raja et al., 2018

Macrophage/DC activation CD40 Vonderheide, 2018

TLR or RLR agonists Li et al., 2017

Pro-inflammatory cytokines IFNα Medrano et al., 2017

Promote phagocytosis CD47/SIRPα Liu et al., 2017

Vaccination DC vaccination Palucka and
Banchereau, 2013

Peptide vaccination Kumai et al., 2017

Tumor cell
vaccination

Srivatsan et al., 2014

Promote adaptive immunity

Induction of tertiary
lymphoid structures

LIGHT Johansson-Percival
et al., 2017

Costimulatory agents CD40, CD137, GITR,
ICOS, OX40

Dempke et al., 2017

T cell activation IL-2 Jiang et al., 2016

Pegylated IL-10 Naing et al., 2018

STING Rivera Vargas et al.,
2017

Inhibition of immunosuppression

ICB CTLA-4, PD-1/PD-L1 Seidel et al., 2018

IDO, KIR, LAG-3,
Tim-3, VISTA

Dempke et al., 2017

TAM reprogramming BTK Gunderson et al., 2016

Class IIa HDAC Guerriero et al., 2017

CD40 Majety et al., 2018

Blocking immunosuppressive
cytokines

TGFβ Haque and Morris, 2017

DC, dendritic cell; ICOS, inducible costimulator; IDO, indoleamine (2,3)-
dioxygenase; KIR, killer cell immunoglobulin-like receptor; RLR, RIG-I-like
receptor.
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anti-tumor immunity (Deng et al., 2014). Interestingly, cyclic
GMP-AMP synthase/STING seems to be essential for anti–PD-L1
and anti–CTLA-4 to act when combined with irradiation in
murine models of melanoma (Harding et al., 2017; Wang et al.,
2017). Another promising approach comprises direct interfer-
ence with cytokines. TGFβ promotes T cell exclusion and is
correlated with poor prognosis (Calon et al., 2012, 2015; Tauriello
et al., 2018). Blocking TGFβ along with PD-1 provided excellent
results in preclinical models of colorectal and mammary carci-
noma (Mariathasan et al., 2018; Tauriello et al., 2018). While the
anti-inflammatory cytokine IL-10 is one of the main mediators
secreted by regulatory T cells to inhibit tumor-specific immune
responses, the contradicting observation that block or deficiency
of IL-10 increases tumor growth led to the development of PE-
Gylated IL-10 (Pegilodecakin; Oft, 2014; Naing et al., 2016). In-
terestingly, while dampening pro-inflammatory macrophages
and Th17 cells, a simultaneous induction of anti-tumorigenic CD8
T cell responses and CD8-derived IFNγ was observed following
administration of Pegilodecakin in mice. More importantly, Pe-
gilodecakin promoted expansion of underrepresented T cell
clones as well as LAG-3+ PD-1+ CD8+ T cells, which are further
induced by anti–PD-1 in various solid tumors (Naing et al., 2018).
Intratumoral applications of TNFα “TNFerade” seemed not to be
as effective as initially hoped, and clinical trials have been
stopped despite first promising results (Kali, 2015). To date, IL-
2 and IFNα are the only cytokines approved for use in cancer.
They aim for increased T cell proliferation and MHC-I/HLA
expression by tumor cells (Lee and Margolin, 2011).

Several other compounds that trigger innate and adaptive
immune responses have now found their way into the clinics
and are being tested in combination with ICB. Apart from Toll-
and RIG-like receptor or STING activation (Li et al., 2017)
current strategies employ inhibitory compounds targeting
V-domain immunoglobulin suppressor of T cell activation
(VISTA), TIM-3, LAG-3, indoleamine (2,3)-dioxygenase, or killer
cell immunoglobulin-like receptor as well as costimulatory an-
tibodies including CD40, OX40, inducible costimulator, CD137, or
glucocorticoid-induced TNFR family-related gene (GITR). Initial
concerns regarding the potential development of cytokine-
release syndromes, autoimmune reactions, and hyperimmune
stimulation have not been confirmed in early phase I/II clinical
trials so far (Dempke et al., 2017). Moreover, cyclin-dependent
kinase (CDK) inhibitors targeting CDK4 and CDK6 (Goel et al.,
2017; Deng et al., 2018), histone deacetylase (HDAC), or DNA
methyltransferase inhibitors (Fraga et al., 2005; Goel and Boland,
2012; Lee and Huang, 2013) showed promising results while
maintaining tolerable side effects. Several recent excellent re-
views have summarized these results in greater detail (Hu-
Lieskovan and Ribas, 2017; Patel and Minn, 2018).

PD-1–PD-L1 therapies may also function through a direct ef-
fect on macrophages, since PD-1 expression can be observed on
tumor-associated macrophages (TAMs), where its engagement
dampens tumor cell phagocytosis and acts in an immunosup-
pressive manner on CD8 T cells (Gordon et al., 2017; Wang et al.,
2018). Interestingly, blocking either PD-1 or PD-L1 may even
have distinct effects on macrophage activation that could be
targeted synergistically (Hartley et al., 2018).

TAMs with anM2-like phenotype comprise one cell type that
is associated with poor prognosis in many solid cancers (Shabo
et al., 2008; Kurahara et al., 2011). Their recruitment can be
inadvertently induced by affected tissue following chemother-
apy (DeNardo et al., 2011). Inhibitors targeting colony-
stimulating factor-1 receptor (CSF-1R), a critical macrophage
survival factor, were shown to have positive outcomes in xen-
ograft models of glioblastoma, by reprogramming the M2-like
phenotype (Pyonteck et al., 2013). CSF-1R–targeting antibodies
showed clinical response in diffuse-type giant cell tumor of
human patients (Ries et al., 2014). Alternative targets that are
involved in polarization of TAMs comprise Bruton tyrosine ki-
nase (BTK) and PI3Kγ. In a preclinical model of pancreatic ductal
adenocarcinoma, the BTK inhibitor ibrutinib reprogrammed
macrophages toward a M1 phenotype and thereby stimulated
CD8+ T cells in a macrophage-dependent manner (Gunderson
et al., 2016). Inhibition of PI3Kγ in macrophages prolongs
NF-κB activation and inhibits C/EBPβ to induce an im-
munostimulatory program that enhances cytotoxic CD8+ T cell
recruitment and activation, thus improving anti-tumor function
(Kaneda et al., 2016). A recent report demonstrated re-
programming of TAMs and recruitment of non-TAM macro-
phages by class IIa HDAC inhibition, resulting in cytotoxic T cell
response and regression of breast tumors and metastases
(Guerriero et al., 2017). Although the inhibitor was acting spe-
cifically onmyeloid cells, the exact mechanismwas not yet clear.
TAM reprogramming into an immune-stimulating phenotype
can also be achieved by agonistic CD40 therapy, which enhances
macrophage activation and activity (Beatty et al., 2011;
Vonderheide, 2018) and which showed promising results in
combination with the aforementioned CSF-1R blockade (Hoves
et al., 2018; Perry et al., 2018), checkpoint inhibitors, and
chemo- or radiotherapy (Byrne and Vonderheide, 2016; Bajor
et al., 2018; Rech et al., 2018). Another approach to enhance
macrophage function consists of blocking antiphagocytic sig-
nals from tumor cells. CD47 depicts the most advanced target in
this category. Blocking the interaction with its ligand SIRPα
leads to increased phagocytosis and tumor regression in several
models (Chao et al., 2010; Goto et al., 2014; Gholamin et al.,
2017; Liu et al., 2017; Métayer et al., 2017). Currently, differ-
ent strategies aiming at TAM recruitment, function, or acti-
vation are tested in clinical trials (Ruffell and Coussens, 2015;
Cannarile et al., 2017). Among these are mediators, blocking the
CCL2/CCR2 axis, that prevent chemoattraction of monocytes/
macrophages and their subsequent effects including metastasis
(Lim et al., 2016). An interesting discovery was that the cyto-
static trabectedin exerts some of its function by selective de-
pletion of monocytes and macrophages apart from its direct
effect on tumor cells (Germano et al., 2013). Of note, however,
was the observation that termination of anti-CCL2 treatment
caused a dramatic increase of metastases and death in synge-
neic breast cancer models (Bonapace et al., 2014). Furthermore,
macrophages exert critical Fc-mediated effector functions like
antibody-dependent cellular cytotoxicity of, for example, anti-
CTLA-4–targeted T reg cells (Simpson et al., 2013), which
should be considered in the context of a clinical use of mono-
cyte/macrophage blocking agents.
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While the concept to employ bacteria for cancer therapy was
initiated by Wilhelm Busch and William Coley, nowadays the
microbiome, and particularly the intestinal microbiome, has to
be considered for tumor therapy due to its important role in host
physiology and metabolism. Either through changes in the mi-
crobial composition (dysbiosis) or through a barrier defect, the
microbiome has a significant impact on the development of the
immune system (Chung et al., 2012) as well as carcinogenesis
(Quante et al., 2013). Importantly, however, the microbiome can
also directly affect the efficacy of various cancer therapies
(Zitvogel et al., 2018), including administration of platinum-
based agents (Iida et al., 2013), alkylating agents such as cyclo-
phosphamide (Viaud et al., 2013), innate immunity modulators
such as TLR9 stimulating CpG-DNA (Iida et al., 2013), or immune
checkpoint inhibitors (Sivan et al., 2015; Vétizou et al., 2015;
Gopalakrishnan et al., 2018). Furthermore, intratumor Gam-
maproteobacteria can metabolize the chemotherapeutic gemci-
tabine to an inactive form, dampening its efficacy (Geller et al.,
2017). So far, mechanistic studies clearly defining the exact
mechanisms for the beneficial or detrimental effects of microbes
in cancer immunotherapy are mostly missing, and conclusions
rather depend on correlative results showing effects, or the lack
thereof, on antibiotic treatments or gnotobiotic experiments.
Furthermore, it remains to be proven that these studies, which
have been mostly performed in mice using syngeneic cancer cell
lines that had previously been immune edited, can be recapit-
ulated in (humanized) models of spontaneous tumorigenesis.
Although there is clear evidence that the microbiome has an
immunostimulatory function, it also remains to be defined
which and if individual bacteria, or rather bacterial communi-
ties, are responsible for this and whether direct stimulation of
T cell receptors, engagement of pattern recognition receptors, or
system metabolic effects are the key drivers (Zitvogel et al.,
2018). Nevertheless, these recent studies underscore the po-
tentially adverse effects of antibiotic use in patients during an-
ticancer therapy, and they further suggest that, for example,
pre-existing diet-dependent changes in the intestinal micro-
biome are not only important for the development of tumors
(Arkan, 2017), but may also affect the responsiveness to chemo-
or immunotherapy to a much greater extent than previously
anticipated. However, a better understanding of the microbiome-
induced effects on the host during cancer therapy as well as the
identification of a possibly beneficial microbiome (Tanoue et al.,
2019) may lead to concepts aiming at altering the microbiome by
either fecal transplantation, supplementation of distinct bacterial
strains, or targeted antibiotic therapy.

Conclusion
Over the last years, the field of cancer-related inflammation has
tremendously expanded, and a multitude of different cellular
and molecular mechanisms have been discovered, so far nicely
illustrating the intricate interaction of immune cells, vascular
cells, stromal cells, and tumor cells and the influence of various
external factors. Essentially all immune cells have been shown to
be involved in the different stages of tumorigenesis, and this has
unraveled various exciting new strategies for tumor therapy,
some of which we have highlighted above. Individualized

multimodal combinatorial approaches targeting both tumor cell
intrinsic and extrinsic pathways will most likely represent the
future of modern cancer therapy. The biggest challenge will be
the timely identification of the most efficient combination for
each individual cancer patient and the identification of bio-
markers that will allow prediction of immunotherapeutic re-
sponse. Better characterization of individual immune and
stromal cells in the tumor microenvironment using single-cell
analysis that will particularly help to address the plasticity of
these cells will be important. Development of technological
platforms that allow interactions of T cells with matched tumor
organoids in a personalized manner to assess killing efficiency
(Dijkstra et al., 2018) will prove extremely helpful in this regard.
Nevertheless, novel, original approaches that will help overcome
T cell exclusion from tumors remain an unmet need. In this
context, CRISPR-mediated genetic in vivo screens represent a
promising approach, as they have recently unraveled pathways
that may lead to innovative concepts that could render unre-
sponsive cold tumors sensitive to ICB (Manguso et al., 2017;
Ishizuka et al., 2019). Another important task and the basis for
proper preclinical validation of novel immunotherapeutic con-
cepts is the development of improved in vivo tumor models and
the use of humanized mice that enable an adequate recapitula-
tion of tumor evolution and that sufficiently take into consider-
ation other external factors such as age, diet, and the microbiome.
However, also recently developed microfluidic human organs-
on-chips that can be used to model cancer cell behavior within
human-relevant tissue and organ microenvironments in vitro
(Sontheimer-Phelps et al., 2019) represent a promising al-
ternative to evaluate personalized therapy responses.

Acknowledgments
Work in the laboratory of F.R. Greten is supported by institu-
tional funds from the Georg-Speyer-Haus, by the LOEWE Center
Frankfurt Cancer Institute funded by the Hessen State Ministry
for Higher Education, Research and the Arts (III L 5 - 519/03/
03.001 - (0015)), as well as grants from the Deutsche For-
schungsgemeinschaft (FOR2438: Gr1916/11-1; SFB 815, 1177, and
1292). The Institute for Tumor Biology and Experimental Ther-
apy, Georg-Speyer-Haus, is funded jointly by the German Fed-
eral Ministry of Health and the Ministry of Higher Education,
Research and the Arts of the State of Hessen.

The authors declare no competing financial interests.
Author contributions: The manuscript was written and edi-

ted by B. Ritter and F.R. Greten.

Submitted: 28 September 2018
Revised: 8 February 2019
Accepted: 8 April 2019

References
Arkan, M.C. 2017. The intricate connection between diet, microbiota, and

cancer: A jigsaw puzzle. Semin. Immunol. 32:35–42. https://doi.org/10
.1016/j.smim.2017.08.009

Bajor, D.L., R. Mick, M.J. Riese, A.C. Huang, B. Sullivan, L.P. Richman, D.A.
Torigian, S.M. George, E. Stelekati, F. Chen, et al 2018. Long-term

Ritter and Greten Journal of Experimental Medicine 1239

Modulating inflammation for cancer therapy https://doi.org/10.1084/jem.20181739

https://doi.org/10.1016/j.smim.2017.08.009
https://doi.org/10.1016/j.smim.2017.08.009
https://doi.org/10.1084/jem.20181739


outcomes of a phase I study of agonist CD40 antibody and CTLA-4
blockade in patients with metastatic melanoma. OncoImmunology. 7:
e1468956. https://doi.org/10.1080/2162402X.2018.1468956

Balkwill, F., and A. Mantovani. 2001. Inflammation and cancer: back to
Virchow? Lancet. 357:539–545. https://doi.org/10.1016/S0140-6736(00)
04046-0

Balkwill, F.R., and A. Mantovani. 2012. Cancer-related inflammation: com-
mon themes and therapeutic opportunities. Semin. Cancer Biol. 22:
33–40. https://doi.org/10.1016/j.semcancer.2011.12.005

Beatty, G.L., E.G. Chiorean, M.P. Fishman, B. Saboury, U.R. Teitelbaum, W.
Sun, R.D. Huhn, W. Song, D. Li, L.L. Sharp, et al 2011. CD40 agonists
alter tumor stroma and show efficacy against pancreatic carcinoma in
mice and humans. Science. 331:1612–1616. https://doi.org/10.1126/
science.1198443

Bonapace, L., M.M. Coissieux, J. Wyckoff, K.D. Mertz, Z. Varga, T. Junt, and
M. Bentires-Alj. 2014. Cessation of CCL2 inhibition accelerates breast
cancer metastasis by promoting angiogenesis. Nature. 515:130–133.
https://doi.org/10.1038/nature13862

Byrne, K.T., and R.H. Vonderheide. 2016. CD40 Stimulation Obviates Innate
Sensors and Drives T Cell Immunity in Cancer. Cell Reports. 15:
2719–2732. https://doi.org/10.1016/j.celrep.2016.05.058

Calon, A., E. Espinet, S. Palomo-Ponce, D.V. Tauriello, M. Iglesias, M.V.
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