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Abstract In its first 25 years JCAMD has been dissemi-

nating a large number of techniques aimed at finding better

medicines faster. These include genetic algorithms, COM-

FA, QSAR, structure based techniques, homology model-

ling, high throughput screening, combichem, and dozens

more that were a hype in their time and that now are just a

useful addition to the drug-designers toolbox. Despite mas-

sive efforts throughout academic and industrial drug design

research departments, the number of FDA-approved new

molecular entities per year stagnates, and the pharmaceutical

industry is reorganising accordingly. The recent spate of

industrial consolidations and the concomitant move towards

outsourcing of research activities requires better integration

of all activities along the chain from bench to bedside. The

next 25 years will undoubtedly show a series of translational

science activities that are aimed at a better communication

between all parties involved, from quantum chemistry to

bedside and from academia to industry. This will above all

include understanding the underlying biological problem

and optimal use of all available data.
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Introduction

Life expectancy of man, and especially man in the western

world, increased by more than 2 days per week for the

whole previous century [1]. Much of this dramatic increase

is to the credit of hygiene, but medicines, and especially

antibiotics and vaccines, have contributed significantly too.

In the first world war, for example, almost as many soldiers

died of disease as of bullets [2]. During the second world

war this unfortunate situation got ‘remedied’ by the intro-

duction of sulphonamides and penicillin [3].

At this moment medical doctors around the world can

write prescriptions for tens of thousands of medicines [4],

and an even larger number is available of herbal medicines,

homeopathic wonder-cures, and other preparations for

which the medicinal value has not been proven [5]. Most

medicines function by interacting with proteins in the body.

Of the more than twenty thousand protein types in our body

less than five hundred are targeted by all these medicines

[6]. This, of course, gives hope for the future of drug design

because most proteins are still available as a target for

which a blockbuster drug can be designed.
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Despite massive, world-wide efforts the number of new

molecular entities (NMEs) that the FDA approves per year

for use as medicines certainly isn’t growing [7], while the

amount of money involved goes up much faster than

inflation [7] even when we include Obama’s Troubled

Asset Relief Program [8].

This journal (JCAMD) has published many, many arti-

cles on techniques that according to the authors of these

articles were the holy grail for drug design, and that in

today’s reality are just good tools used in this process.

Following a path familiar in science, someone has a good

idea, gives it a name and publishes it. Others follow suit

and publish improvement after improvement, after which

yet others start testing all similar methods. An example is

the use of support vector machines for ligand selection.

This was introduced in 2000 [10] and only 3 years of

improvements were needed before the first comparison

methods were published [11]. Figure 1 illustrates the des-

peration of pharmaceutical industries. The ever increasing

costs mainly result from development and marketing [12]

and, unfortunately for us, not from research. This might

explain why each time a new drug design research tool gets

published pharmaceutical industries immediately jump on

it and give it a hype status.

A brief history of tools

The first hype in drug design was born out of the famous

article by Hol [13] in which he coined the name ‘rational

drug design’ for all protein-structure based techniques,

thereby implicitly calling all methods that actually worked,

such as screening or luck, irrational; see Fig. 2.

It is not by eye that we can determine either the fitness

of a ligand for a pocket, or the safety or efficacy of a drug.

It does not seem illogical to assume that the founders of

JCAMD were at least subconsciously dealing with the

oversimplification implied by Fig. 2 when they started this

journal. And we believe that most articles published in

JCAMD have dealt with aspects of drug design ‘left out’ of

Fig. 2. The advent of faster computers like first the VAX/

VMS, then supercomputers such as the CRAY, and finally

the PC, have allowed scientist to numerically solve

chemical problems of ever increasing size and complexity.

Semi-empirical quantum calculation methods have been

devised to calculate the chemically relevant aspects of the

electronic wave-functions associated with small organic

molecules and thus compute their 3D dimensional struc-

tures as well as the energy of their conformers [15–19]. All

the techniques derived in this domain are referred to as

ligand-based drug design. In parallel, the development of

molecular mechanics force fields combined with the fact

that Newton’s equations of motion could be solved for

entire proteins in their aqueous environments were true

innovations in the investigation of the structure function

relationships [20–28]. Thus, not only the geometry and the

potential energy surface of macromolecular assemblies

could be calculated but also their dynamic and thermody-

namic properties [29, 30]. For the early computational

chemists this opened the perspective of testing at will the

energy of interactions between protein targets and large

collections of small molecule ligands [29, 31, 32]. The

original thoughts that this would replace experimental

validation processes, though, have long been shown to be a

nice dream at best. The perception that the underlying

Fig. 1 Amount of money spent in billion US$/NME (after Munos

[7]). Munos summarises these numbers eloquently in his 2009 review,

but you are also encouraged to read the commentary by Firestone [9]

Fig. 2 Methotrexate in the active site pocket of dihydrofolate

reductase (PDBid:4DFR [14]). Next to a monochrome picture

showing this same fit, Hol wrote: ‘‘As to whether a drug can actually

reach its target, e.g. the active center of an enzyme, is primarily a

spatial problem. Assuming that the structures of both components are

known, computer graphics can help in checking the suitability of a

potentially active substance. As example, the structure of the complex

formed between a bacterial dihydrofolate-reductase, NADP and the

anticancer drug methotrexate (gray dots) is shown on the right. As

one can see, it fits’’ [13]
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mechanism of protein–ligand recognition would be

unravelled and would thus allow what ever since has been

called structure-based drug design has never looked so

clear and promising as at that particular moment in 1986.

With the exception of a very small fraction of ligands

that are purely rigid, most bioactive ligands have a number

of rotatable bonds that make them flexible. The values of

the torsion angles in ligands are determined by the valence

electrons of the atoms. The development of empirical

molecular mechanics force field in the late 1970s [33, 34]

have allowed for the in silico determination of the geom-

etries (low energy conformers) of ligands in vacuo.

Application of these methods relies on two underlying

assumptions: (1) that the conformation of the dissolved

ligand corresponds closely to its gas-phase conformation

[35]; and (2) that the biologically active conformation of

the ligand is likely to be found among the set of low energy

conformers of the isolated ligand [36, 37]. The combined

knowledge of the ligand structure (determined by NMR or

X-ray), the measured binding affinities, and the spatial

overlay of the low energy conformations should then be

sufficient to establish a structure activity relationship [38]

and pinpoint the spatial organization of the recurrent

chemical features correlated with activity (pharmaco-

phore). This paved the way for a series of successes for

ligand-based drug design [e.g. 39, 40, 16]. However,

although it seems fairly reasonable at first sight, both

assumptions in practice proved to be incomplete and/or

insufficient [41–50].

The computational process by which the complementary

aspects between a ligand and a receptor binding site can be

ascertained has been explored with the design of specifi-

cally dedicated docking programmes. Early docking

methods were based uniquely on assessing the shape

complementarity [51] between a pocket in the 3D structure

of a protein and low energy conformers of a ligand. The

approach was computationally cumbersome due to the

need to systematically search all possible ligand orienta-

tions within the pocket and scoring each of these poses by

its steric hindrance. Subsequent developments have taken

place in several directions: improved scoring functions

[52–63] different ways to deal with ligand flexibility [60,

64–72], and most recently also ways to deal with receptor

flexibility [73–78]. Fundamental research has been per-

formed into directions such as desolvation energies

[79–83], or other aspects of the force fields used for scoring

docking poses [66, 78, 84–96].

The idea to calculate from first principles all atomic

motions occurring in an active enzyme in its aqueous

environment has attracted many scientists to computer

aided molecular design. Starting with the atomic loci

obtained from the X-ray structure of en enzyme it can be

envisaged to integrate Newton’s equations [29, 31]. A

series of snapshots describing the trajectory of the enzyme

over time could thus be produced and ensemble average

properties calculated based on Boltzmann’s ergodic

hypothesis. The near infinite computer time needed for

such experiments muted this field till concepts from

alchemy could be embraced. In silico, one is not bound by

the sequential order of events that govern paths between

states, and hence so-called thermodynamic cycle methods

could be developed that replaced chemical steps with

alchemical steps that in principle should lead to the same

outcome [29, 30, 97, 98].

Comparative Molecular Field Analysis (CoMFA) is

based on the overlay of active ligands [99, 100–102]. Ini-

tially, the technique was more a concept than an effective

tool as computer power was very limited and molecular

descriptors as well as dedicated algorithms needed to be

developed [103]. The underlying idea that the 3D dimen-

sional steric/non-bonded (Van der Waals) and electrostatic

potential fields generated by the spatial organization of the

chemical features around the scaffold of a ligand (Fig. 3)

play a fundamental role in the biomolecular receptor rec-

ognition was so intuitively right and the technique made a

break-through in 1988 [99]. Examples of the application of

the method are plentiful [100]. About 15% of all articles in

JCAMD refer to the use of this technique, refined and

applied in all sorts of ways to produce the overly famous

quantitative structure activity relationship (QSAR) equa-

tions. However, CoMFA suffers from three drawbacks: (1)

the alignment of the ligands in the pocket must be either

known or gambled correctly; (2) the method has been

established for rigid or quasi-rigid classes of molecules

(e.g. steroids); and (3) the detailed influence of the protein

pocket is not known which means that any feature that is

not implicitly present in the training set will be missed

[104–109]. These nearly fatal drawbacks prevented the

generalization of the method as a standalone solution to

rational drug design. Certainly, the best way to apply

CoMFA is to combine it with a pharmacophore model and

a carefully conducted conformational study of the ligands

[110].

Many drug design projects include at some stage

knowledge of the 3D structure of the target protein, and

homology modelling is normally used when neither X-ray

nor NMR derived coordinates are available [111–118].

Many computer programs were written for this purpose

[119–123] and the CASP competition [124] illustrates

every 2 years where the field stands. Presently, YASARA

seems to be performing very well [122], but many labs are

working hard so this situation might change again in the

future. For example, methods are under development that

use PLIM [125] to provide a first fix on the ligand docking

site where-after steered Molecular Dynamics is used to

continue the trajectory to convergence.
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Similar to the CASP competitions, the GPCR-DOCK

[126, 127] competitions have evaluated the quality of

docking software, but with the additional complexity that

the target structures needed to be modelled before docking

could be attempted. In recent years a whole series of

studies have been published in which homology modelling,

combined with other tools, proved a viable replacement for

the cumbersome experimental determination of target

structures [111, 114, 128, 129]. The good performance of

two Dutch teams [130] in the recent GPCR Dock compe-

tition [127] beautifully illustrates the often mentioned fact

that even the best tools only perform well in the hands of

good scientists [131]. In this latter article we find the

interesting quote ‘‘Interestingly enough, it is the model

built with most human intervention which proves to be the

best’’.

In the early 1990s the radical new idea emerged that

instead of the virtual and/or real screening of large libraries

of already existing molecules to identify new bioactive

hits, one could rather attempt to construct entirely new

synthesizable molecular entities solely based on the

knowledge of the active site of the pharmaceutical target

enzyme. [132–134]. To do so, small organic fragments

composed of few atoms only must be assembled in silico

inside the binding sites of enzymes in such a way that

optimal protein–ligand, steric, and electronic complemen-

tarity is achieved [84, 125, 135–141]. The major problem

of this approach arises from the complexity of the active

site landscape and the combinatorial vastness of all

possible arrangements of fragments in the volume delin-

eated by an enzyme active site [66, 142–144]. How to

choose the first fragment and where should it be positioned

and oriented with respect to the inner surface of the binding

pocket or cleft [143, 145, 146]? Which next fragment

should be attached to it? [147]? The genetic algorithms [66,

142, 148–150] have been invented which allow this con-

cept to be realized within a tractable amount of computer

time by performing random transformations on a ligand

collection. These transformations are selection, mutation,

and crossover, and are reminiscent of the corresponding

evolutionary processes in biology underlying the optimi-

sation of genes, hence their name ‘genetic algorithms’.

Experience shows that these algorithms provide solutions

that nicely fit the objective function, although it often is

difficult to understand exactly why [66].

Randomly screening very large libraries containing up

to 105 or even 106 chemical entities in in vitro enzymatic

assays to produce leads has been the central paradigm of

the pharmaceutical industry across the 1990s. However,

after years of operating very expensive screening facilities,

it has been realized that the hits produced were not of the

expected quality. For example, often a bias is observed

toward too lipophilic compounds that are impossible to

optimize. Compared to the actual number of chemically

entities (*infinite) the any amount of compounds that can

be screened via this process is essentially zero [151, 152].

In parallel, computational chemists had inferred that

screening could be successfully operated virtually

throughout computers at all stages in the drug design

process from hit identification via hit optimization to lead

optimization [153–162]. In each of these three stages vir-

tual libraries can be created and filtered either using

chemometrics to exclude molecules that obviously aren’t

drug-like because of their predicted solubility or ADME/

Tox properties, or using 3D chemical molecular descriptors

(pharmacophores), or using docking results. Thus, libraries

of compound that do not actually exist can be screened and

a much smaller, manageable number of compounds

selected. This is of particular advantage at the stage of lead

optimization, when only few compounds are left. Scaffolds

of lead compounds usually carry a number of branching

points were chemical variation is allowed. The in silico

creation of combinatorial libraries of all the variant com-

pounds is a dramatically faster process than its in vitro

counterpart [163–165].

One of the main difficulties in establishing reliable and/

or transferrable QSAR equations is that, even within a class

of chemical analogues, ligand affinities may not respond

linearly to the variation of one or several of the molecular

descriptors that have been identified as related to activity.

For instance, across a series of chemical substituents sorted

by increasing polarity the measured affinity may respond

Fig. 3 Contour representation of key features from a CoMFA

analysis of a series of coumarin substrates and inhibitors of

cytochrome P4502A5 [Poso et al, adapted from the publicly available

UCLA Chemistry 125 course]. The red and blue regions indicate

positions where it would be favourable, respectively unfavourable to

place a negative charge and the green/yellow regions where it would

be favourable/unfavourable to locate bulky groups
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linearly only for a restricted number of them because steric

hindrance or global effect such as desolvation may penalize

the binding of slightly larger groups. The modification of a

branched group at another point around the scaffold may

however allow some of the previously excluded ligands to

become highly active. Indeed the mere addition of one

methyl group may result in a sudden tenfold leap in

potency, dramatically increasing ligand efficiency [166,

167]. It was demonstrated that these problems could be

circumvented using artificial intelligence methods (neural

network, support vector machine, etc.) that are insensitive

to the spatial alignment of the ligand scaffolds and that are

able to recognize particular combinations of properties

distributed around the scaffold of a set of active ligands

[168–170]. Artificial intelligence can be ubiquitously

implemented at various stages in the rational drug design

process to improve results that can be otherwise be more

uncertainly obtained with classical methods, especially

when assessing general properties that are the result of the

subtle combination of many different factors in relation to

others such as drug-likeness [171]. Various examples of

artificial intelligence applications and their limitations have

been published in JCAMD [172–175]. Notwithstanding the

utility of artificial intelligence, normal intelligence remains

useful in avoiding some of the all too common pitfalls in

the derivation and application of QSAR models [176].

We apologise to the many authors of methods that didn’t

make it into the above list (see ESM Table 1). Much good

work has been done that the editors certainly wouldn’t allow

us to include because citing all 1,200 articles published in

JCAMD in the first 25 years would perhaps be a bit exces-

sive. We could have mentioned the work by Che on privilege

structures [177], or by Lotta et al. [178] on multivariate PLS

modelling of data sets. The recent work by Zhou et al. [179]

on the use of DFT calculation to accurately assess the

existence of intermolecular H-bonds in docking instances.

Sarmah et al’s [180] work on solvent effects also added

significantly to the drug-designers toolbox, but the methods

described in these articles didn’t achieve hype status.

Where do we stand today?

The rapid increase in costs of developing and marketing

new medicines is not leaving the pharmaceutical industry

untouched. Recent years have seen a strong concentration

of activities in terms of mergers, buy-outs, and closures [7].

It may simply be, that a research-intensive industry like the

pharmaceutical industry does not lend itself to the type of

management that is common in consumer goods, fashion

and footwear. It seems a paradox, though, that the high

costs associated with drug design are caused by develop-

ment, marketing, and legal fees, but when it comes to cost-

reduction research departments are, euphemistically called,

consolidated. The past years have also seen a consolidation

of methods. JCAMD has published a large series of articles

in which multiple methods have been combined. [22, 128,

129, 181–185]. All these pipelines and otherwise combined

methods speed up the use of the existing tools, and allow

them to be applied to ever larger numbers of small mole-

cules in ever shorter times.

Actually, there is a new hype raging at the moment, and

it is called ‘translational science’. In the Wikipedia we find

under translational research: ‘‘In the field of medicine, for

example, it is used to translate the findings in basic

research more quickly and efficiently into medical practice

and, thus, meaningful health outcomes, whether those are

physical, mental, or social outcomes’’. In a sense, the

recent spate of articles on combining existing techniques

into more easily applicable super-tools fit nicely to this

translational paradigm. It must be stated, though, that the

translation science hype is feeling stiff competition from

systems biology [186] and modelling pharmacokinetics and

pharmacodynamics [187]. Between the lines we read in

translational science that the pharmaceutical industry has

finally realized that our deep lack of understanding of all

aspects of the interaction of a medicine with a human being

is the main cause for luck still being the most determining

factor in the drug design process. Consequently, we see the

out-sourcing budgets of the large pharmaceutical industries

go up [188], and more and more fundamental research

performed in academia is finding its way to small and

medium size enterprises (SMEs) where it can be incorpo-

rated in their lean and mean research machines [9]. Big

pharma will at some time buy either their products or the

whole SMEs and convert validated targets and leads or

even Phase I products into new medicines.

This new paradigm will probably also be proven a hype

soon; only time can tell if translational research will rescue

the pharmaceutical industry, or that it will only better

illustrate what it all is that we don’t know yet. It remains a

fact that better understanding the underlying biology, better

treatment of all available data, and more intelligent com-

binations of data, information, and knowledge must be

beneficial for the drug design process and thus, on the long

run, for all of us.

If the pharmaceutical industry wants academia more

involved in the drug design process they could themselves

make a giant first step by making available all (or at least

very many) X-ray structures of protein–ligand complexes.

We estimate that the number of PDB [189, 190] files col-

lecting computer dust in the pharmaceutical industry is

considerably bigger than the 75,000 structures now in the

PDB. We have discussed this possibility with industrial

crystallographers who realized that they were sometimes

sitting on thousands of structure files for which secrecy was
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123



no longer an issue. They remained nevertheless hesitant to

even consider discussing with their management the

release of these data in fear of paranoia based rejection.

Another often heard rejection criterion is that they are a bit

ashamed for these data because often these files have not

been refined any further than was needed to answer the

biological or pharmaceutical question at hand. We offer to

set up a database for these files, and we offer to re-refine all

industrial structures of protein–ligand complexes. We will

then only release those coordinates to the wider public that

pass certain minimal validation criteria [191]. Obviously,

the files in this system will remain the property of the

depositors. If one day deposition of coordinate files into the

PDB becomes significantly easier, we can consider

depositing all files in the PDB on behalf of the original

depositors. It might seem a bold promise to re-refine per-

haps even 100,000 structures, but the PDB_REDO exper-

iment [192–196] shows that today this can be done. In

PDB_REDO we significantly improved 85% of all pres-

ently available PDB files that were solved by X-ray. It

seems likely that structures that often have been minimally

refined can be improved even easier. One can even

envisage that industries would like to look back at their

own coordinates after we went through the elaborate and

time consuming refinement process for them; in manage-

ment speak that would be the ultimate win–win situation.

Dealing with data, information, and knowledge:

from hype to hope?

Despite massive efforts in the design of tools, databases,

robotic techniques, and management innovations, luck

seems to be at the basis of the discovery of most new

medicines [197]. The blockbuster Viagra is probably the

best illustration of the opportunism that we tend to call

serendipity [198].

In 1997, i.e., long before the first GPCR structure

became available, Kuipers et al. [199] performed a massive

literature search for aryloxypropanolamines and similar

compounds binding to the serotonin 5HT-1a receptor and a

series of sequence similar amine receptors. A correlation

analysis [200] revealed that only one residue’s presence/

absence showed a perfect correlation with binding/non-

binding of a series of compounds. A mutational study

validated the hypothesis that this correlation indicated a

direct hydrogen bond between an alcohol group in the

aminergic ligand and asparagine 719 [201]. When the

structure of the human b2 adrenoceptor bound to carazolol

was solved by X-ray [PDBid 2RH1; 202], it showed indeed

two hydrogen bonds between Asn-719 and this similar

ligand (see Fig 4). By the way, in none of the GPCR

homology models available in 1999, did Asn-719 interact

with a ligand.

In another GPCR related project aimed at using as much

heterogeneous data as can possibly be combined, Oliveira

et al. [203] predicted the role of all ‘active site’ residues in

GPCRs, the pivotal role of Arg-340 [204], and even a

series of residue interactions involved in the activation

process, and the presence and location of helix VIII [205].

The recent flurry of articles on GPCR Xray structures

[206–209], and especially the structure with a covalently

agonist-bound G protein [210] showed all these predictions

to be conceptually right.

These two GPCR-related examples make clear that there

is a lot to be gained from using experimental data. But these

examples also taught us how hard it is to actually get access

to those data. With the GPCRDB [211–213] we have started

a trend to make Molecular Class Specific Information

Systems (MCSIS). And a small company, Bio-Prodict

(www.bio-prodict.nl) recently caught on and is now making

MCSISes for a wide variety of commercially interesting

molecules [214–218]. Their systems (some of which are

freely accessible from their website) revolve around a

structure based, and thus very accurate multiple sequence

alignment (MSA) for a whole protein super-family. This

MSA then functions as the anchor on which to position all

kinds of data that can range from 3D structures to genome

Fig. 4 Ligand binding by Asn-

386. Left: (part of) the X-ray

structure of the b2 adrenoceptor

bound to an inverse agonist that

is ‘somewhat similar’ to

(S)-penbutolol. Right:
(S)-penbutolol binding of Asn-

386 in serotonin 5HT-1A

predicted long before the first

GPCR structure data became

available
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related data, from mutation studies to ligand binding con-

stants, or from sequence correlation patterns to the predic-

tion of mutations that enhance the protein’s stability. As the

most powerful information tends to be carefully hidden in

the literature, an extensive set of literature-mining scripts

aids with the extraction of, for example, mutation infor-

mation. In fact, it was shown that the suite of mutation data

extracting scripts reaches a much better coverage than can

be obtained by human experts [214–218].

A recent development that will aid the drug hunters of

the future is the Utopia PDF reader [213, 219]. Vroling et al.

[213] showed how this programmable PDF reader could be

used to directly couple data in articles on GPCRs to the

GPCRDB. This intelligent hyperlinking has a series of

benefits. First, the residue numbering problem gets solved

because the reader can ask the GPCRDB for the position in

the GPCR MSA of any residue mentioned in the article, and

it can even modify or correct the sequence numbers in the

article if needed. Much good GPCR mutation data was

published in the pre-GPCR-structure era that ended with the

opsin structure article [220], and often these data were

misinterpreted because of the poor quality of the available

homology models [221]. The Utopia-GPCR PDF reader can

correct those interpretations thereby salvaging old, high

quality experimental data for future use. Figure 5 shows an

image from an old mutation study [222] in which the

authors describe several ground-breaking mutations in the

guinea pig histamine H1 receptor, building and validating a

homology model using these data, and arguing, for exam-

ple, that residue Trp161 plays an important role in receptor-

ligand binding. This assumption was based on the effect of

the mutation on receptor function, leading to a model in

which Trp161 was modelled in the ligand-binding site. By

contrast, the GPCRDB generated annotation listed in the

sidebar of the reader indicates that this residue, located in

TM IV, points towards the membrane and possibly interacts

with cholesterol. This is a completely different situation

from that proposed by the authors. Looking at the model

provided by the GPCRDB, based on the latest crystal

structures, it can be seen that a direct role of Trp161 in

receptor-ligand binding is highly unlikely.

Folkerstma et al. (2005) analyzed nearly 100 nuclear

receptor (NR) ligand binding domains. Combined with

manually curated multiple sequence alignments, key posi-

tions in the ligand binding pocket were identified that had

specific interactions with functionally diverse compounds.

For example, residues at position 26 in Fig. 6 were shown

to only have interactions with antagonists. This analysis

required a substantial amount of work: categorizing struc-

tures and compounds, creating multiple sequence align-

ments, analyzing ligand contacts, and transferring the

results into a homogeneous residue numbering scheme (the

so-called 3D numbers). With the 3DM information system

[223; see the help movie], these analyses can today be

performed in a matter of minutes [215, 217, 224].

More than 100 articles were found that discuss the

effects of mutating this residue on the ligand binding of the

receptor. In all these articles this same residue has 14

different residue numbers ranging from 52 to 709. The use

of a common 3D numbering scheme enables transfer of

heterogeneous information between protein family mem-

bers. Figure 7 shows 40 antagonists in red and 70 agonists

in blue. In this example, a hundred articles had to be ‘read’

to extract all available mutation information for this single

position mutated in 22 different receptor—species combi-

nations. That these 100 articles had to be found among

Fig. 5 Left, one page from the Histamine H1 article by Wieland et al.

[222] in which Trp161 is suggested to interact with the ligand while

the PDF reader sidebar shows today’s interpretation that this

tryptophan is facing outwards towards the lipid or a dimer partner.

The original picture of the modelled active site is shown enlarged in

the middle panel while the right hand side figure is a plot of the

GPCRDB-derived model of this receptor. The GPCRDB does not

(yet) dock ligands, so the ligand is represented by a hand-added gray
ball
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100,000 PubMed entries that contain NR information is a

whole different story in itself.

If, one day, all structures of NR-ligand complexes that

now are scattered over inaccessible industrial hard disks

could be concentrated in one system, then we could con-

sider asking much more elaborate questions. We could

consider correlating aspects of ligands with protein atom

characteristics, or we could analyse if residues not

contacting the ligand have an influence on binding or

activation, etcetera.

It is not only important to get as much information as

possible stored in systems amenable to scrutiny, but it is

also important to realize that for every one bioinformati-

cian or drug hunter there are one hundred scientists who do

not use molecular software regularly. Project Hope aims to

predict the molecular phenotype of point mutations that

were shown causally related to human disease states [225].

This system attempts in all stages of user interaction to

cater for human geneticists who typically do not use

molecular software at all. Hope only asks the user to cut-n-

paste the sequence, and click the residue mutated and the

mutation residue type. It then builds a homology model if

needed, calls dozens of servers and services in seven

countries, combines all possible information and writes a

final report that can be directly used in publications, but,

more importantly, that is written without using any bioin-

formatics jargon and even has a build-in dictionary that

explains terms such as ‘active site’, ‘salt-bridge’, or ‘tor-

sion angle’ in human genetics understandable terms. Hope

thus is the ultimate translation machine because in doing

translational research it even translates between the

researchers.

We believe that the recent spate of consolidations in the

pharmaceutical industry is not a problem but an opportu-

nity. Mankind needs medicines, and now that pushing ones

luck is slowly becoming a less successful technique, only

research can find them. This research can progress rapidly

if the thousands and thousands of X-ray structures of pro-

tein–ligand complexes would find their way from hard-

disks behind pharmaceutical industry firewalls to the public

domain. Drug design research in the next 25 years will

revolve around ever broader collaborations, ever more

holistic understanding of the drug—human interactions,

Fig. 6 Bargraph showing the

number of ligand contacts per

residue extracted from 776

nuclear receptor ligand binding

domain structures plotted as

function of their 3D numbers.

The blue bars represent the

number of contacts with

agonistic compounds. The red
bars indicate the number of

contacts with antagonistic

compounds. The residue with

3D number 26 is only bound to

antagonistic compounds

Fig. 7 Cartoon representation of two superposed representative NR

structures (one bound to an agonist; one bound to an antagonist).

These two structures, obviously, differ most in the location of Helix

12. The blue ligands are agonists; the red ones are antagonists. The

ligands were placed in the same orientation as found in their native

PDB file. All PDB files were superposed on the representative NR

structures. Residue 26, for which the antagonist interaction had been

mentioned in the literature, is shown in yellow, as is residue for which

Fig. 6 also indicates antagonist interactions, albeit with less antag-

onists than residue 26. This role of residue 29 might represent a novel

finding. Figure made with the 3DM-plugin for the YASARA—

WHAT IF suite
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and ever better use of the available data, information, and

knowledge.
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62. Dobeš P, Fanfrlı́k J, Rezáč J, Otyepka M, Hobza P (2011)

Transferable scoring function based on semiempirical quantum

mechanical PM6-DH2 method: CDK2 with 15 structurally

diverse inhibitors. J Comput Aided Mol Des 25(3):223–235

63. Tondel K, Anderssen E, Drablos F (2006) Protein alpha shape

(PAS) dock: a new gaussian-based score function suitable for

docking in homology modelled protein structures. J Comput

Aided Mol Des 20:131–144

64. Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994)

FLOG: a system to select ‘quasi-flexible’ ligands complemen-

tary to a receptor of known three-dimensional structure.

J Comput Aided Mol Des 8:153–174

65. Kearsley SK, Underwood DJ, Sheridan RP, Miller MD Flexi-

bases: a way to enhance the use of molecular docking methods.

J Comput Aided Mol Des 8:565–582

66. Oshiro CM, Kuntz ID, Dixon JS (1995) Flexible ligand docking

using a genetic algorithm. J Comput Aided Mol Des 9:113–130

67. Knegtel RM, Bayada DM, Engh RA, von der Saal W, van Ge-

erestein VJ, Grootenhuis PD Comparison of two implementa-

tions of the incremental construction algorithm in flexible

docking of thrombin inhibitors. J Comput Aided Mol Des

13:167–183

68. Makino S, Ewing TJ, Kuntz ID (1999) DREAM??: flexible

docking program for virtual combinatorial libraries. J Comput

Aided Mol Des 13:513–532

69. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK

4.0: search strategies for automated molecular docking of flex-

ible molecule databases. J Comput Aided Mol Des 15:411–428

70. Hindle SA, Rarey M, Buning C, Lengaue T (2002) Flexible

docking under pharmacophore type constraints. J Comput Aided

Mol Des 16:129–149

71. Grasselli M, Cascone O, Birger Anspach F, Delfino JM (2002)

On the molecular interaction between lactoferrin and the dye

Red HE-3b. A novel approach for docking a charged and highly

flexible molecule to protein surfaces. J Comput Aided Mol Des

16:917–934

72. Bursulaya BD, Totrov M, Abagyan R, Brooks CL 3rd (2003)

Comparative study of several algorithms for flexible ligand

docking. J Comput Aided Mol Des 17:755–763

73. Bottegoni G, Kufareva I, Totrov M, Abagyan R (2008) A new

method for ligand docking to flexible receptors by dual alanine

scanning and refinement (SCARE). J Comput Aided Mol Des

22:311–325

74. Zhao Y, Sanner MF (2008) Protein-ligand docking with multiple

flexible side chains. J Comput Aided Mol Des 22:673–679

75. Kang L, Li H, Jiang H, Wang X (2009) An improved adaptive

genetic algorithm for protein-ligand docking. J Comput Aided

Mol Des 23:1–12

146 J Comput Aided Mol Des (2012) 26:137–150

123

http://dx.doi.org/10.1186/1472-6769-1-2


76. Jain AN (2009) Effects of protein conformation in docking:

improved pose prediction through protein pocket adaptation.

J Comput Aided Mol Des 23:355–374

77. Garden DP, Zhorov BS (2010) Docking flexible ligands in

proteins with a solvent exposure- and distance-dependent

dielectric function. J Comput Aided Mol Des 24:91–105

78. Totrov M, Abagyan R (2008) Flexible ligand docking to mul-

tiple receptor conformations: a practical alternative. Curr Opin

Struct Biol 18:178–184

79. Bohm HJ, Klebe G (1996) What can we learn from molecular

recognition in protein-ligand complexes for the design of new

drugs? Angew Chem Int Ed Engl 35:2589–2614

80. Shoichet BK, Leach AR, Kuntz ID (1999) Ligand solvation in

molecular docking. Protein Sruct Funct Genet 34:4–16

81. Gohlke H, Klebe G (2002) Approaches to the description and

prediction of the binding affinity of small-molecule ligands to

macromolecular receptors. Angew Chem Int Ed 41:2644–2676

82. Demchuk E, Wade RC (1996) Improving the continuum

dielectric approach to calculating pK(a)s of ionizable groups in

proteins. J Phys Chem 100:17373–17387

83. Nielsen JE, Vriend G (2001) Optimizing the hydrogen-bond

network in Poisson-Boltzmann equation-based pK(a) calcula-

tions. Protein Stuct Funct Genet 43:403–412

84. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible

docking method using an incremental construction algorithm.

J Mol Biol 261:470–489

85. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking

of flexible ligands: applications of AutoDock. J Mol Recognit

9:1–5

86. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ,

Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw

DE, Francis P, Shenkin PS (2004) A new approach for rapid,

accurate docking and scoring. 1. Method and assessment of

docking accuracy. J Med Chem 47:1739–1749

87. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997)

Development and validation of a genetic algorithm for flexible

docking. J Mol Biol 267:727–748

88. Hartmann C, Antes I, Lengauer T (2009) Docking and scoring

with alternative side-chain conformations. Proteins 74:712–726

89. Taylor RD, Jewsbury PJ, Essex JW (2003) FDS: flexible ligand

and receptor docking with a continuum solvent model and soft-

core energy function. J Comput Chem 24:1637–1656

90. Muegge I (2006) PMF scoring revisited. J Med Chem

49:5895–5902

91. Englebienne P, Moitessier N (2009) Docking ligands into flex-

ible and solvated macromolecules. 4. Are popular scoring

functions accurate for this class of proteins? J Chem Inf Model

49:1568–1580

92. Oda A, Tsuchida K, Takakura T, Yamaotsu N, Hirono S (2006)

Comparison of consensus scoring strategies for evaluating

computational models of protein-ligand complexes. J Chem Inf

Model 46:380–391

93. Foloppe N, Hubbard R (2006) Towards predictive ligand design

with free-energy based computational methods? Curr Med

Chem 13:3583–3608

94. Jain AN (2006) Scoring functions for protein-ligand docking.

Curr Protein Pept Sci 7:407–420

95. Robertson TA, Varani G (2007) An all-atom, distance-depen-

dent scoring function for the prediction of protein-DNA inter-

actions from structure. Proteins 66:359–374

96. Rajamani R, Good AC (2007) Ranking poses in structure-based

lead discovery and optimization: current trends in scoring

function development. Curr Opin Drug Discov Devel

10:308–315

97. Tembre BL, McCammon JA (1984) Ligand-receptor interac-

tions. Comput Chem 8:281–283

98. Ferguson DM, Radmer RJ, Kollman PA (1991) Determination

of the relative binding free-energies of peptide inhibitors to the

Hiv-1 protease. J Med Chem 34:2654–2659

99. Cramer RD, Patterson DE, Bunce JD (1988) Comparative

molecular-field analysis (Comfa).1. Effect of shape on binding

of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

100. Norinder U (1990) Experimental design based 3-D QSAR

analysis of steroid-protein interactions: application to human

CBG complexes. J Comput Aided Mol Des 4:381–389

101. Bursi R, Grootenhuis PD (1999) Comparative molecular field

analysis and energy interaction studies of thrombin-inhibitor

complexes. J Comput Aided Mol Des 13:221–232

102. Zhang Z, An L, Hu W, Xiang Y (2007) 3D-QSAR study of

hallucinogenic phenylalkylamines by using CoMFA approach.

J Comput Aided Mol Des 21:145–153

103. Cramer RD, Milne M (1979) Lattice model–general paradigm

for shape-related structure-activity correlation. Abstracts of

papers of the American chemical society, 19th ACS Meeting

COMP 44

104. Nicklaus MC, Milne GW, Burke TR Jr (1992) QSAR of con-

formationally flexible molecules: comparative molecular field

analysis of protein-tyrosine kinase inhibitors. J Comput Aided

Mol Des 6:487–504

105. Rault S, Bureau R, Pilo JC, Robba M (1992) Comparative

molecular field analysis of CCK-A antagonists using field-fit as

an alignment technique. A convenient guide to design new

CCK-A ligands. J Comput Aided Mol Des 6:553–568

106. Calder JA, Wyatt JA, Frenkel DA, Casida JE (1993) CoMFA

validation of the superposition of six classes of compounds

which block GABA receptors non-competitively. J Comput

Aided Mol Des 7:45–60

107. Kroemer RT, Hecht P (1995) A new procedure for improving

the predictiveness of CoMFA models and its application to a set

of dihydrofolate reductase inhibitors. J Comput Aided Mol Des

9:396–406

108. Gohda K, Mori I, Ohta D, Kikuchi T (2000) A CoMFA analysis

with conformational propensity: an attempt to analyze the SAR of

a set of molecules with different conformational flexibility using a

3D-QSAR method. J Comput Aided Mol Des 14:265–275
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