
fpsyg-12-771221 December 1, 2021 Time: 14:13 # 1

ORIGINAL RESEARCH
published: 07 December 2021

doi: 10.3389/fpsyg.2021.771221

Edited by:
Cristina M. Pulido,

Universitat Autònoma de Barcelona,
Spain

Reviewed by:
Patcharin Panjaburee,

Mahidol University, Thailand
Watcharee Ketpichainarong,
Mahidol University, Thailand

*Correspondence:
Li Zhao

li.zhao@njnu.edu.cn

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Psychology

Received: 06 September 2021
Accepted: 16 November 2021
Published: 07 December 2021

Citation:
Bai H, Wang X and Zhao L (2021)

Effects of the Problem-Oriented
Learning Model on Middle School
Students’ Computational Thinking

Skills in a Python Course.
Front. Psychol. 12:771221.

doi: 10.3389/fpsyg.2021.771221

Effects of the Problem-Oriented
Learning Model on Middle School
Students’ Computational Thinking
Skills in a Python Course
Hongquan Bai, Xin Wang and Li Zhao*

School of Education Science, Nanjing Normal University, Nanjing, China

The rapid development of computers and technology affects modern daily life.
Individuals in the digital age need to develop computational thinking (CT) skills. Existing
studies have shown that programming teaching is conducive to cultivating students’
CT, and various learning models have different effects on the cultivation of CT. This
study proposed a problem-oriented learning (POL) model that is closely related to
programming and computational thinking. In all, 60 eighth-grade students from a middle
school in China were divided into an experimental group (EG) which adopted the POL
model, and a control group (CG) which adopted the lecture-and-practice (LAP) learning
model. The results showed that the students who were instructed using the POL model
performed better than those who were instructed using the LAP model on CT concepts,
CT practices, and CT perspectives. Significant differences were found for CT concepts
and CT perspectives, but not for CT practices. Findings have implications for teachers
who wish to apply new learning models to facilitate students’ CT skills, and the study
provides a reference case for CT training and Python programming teaching.

Keywords: computational thinking, problem-oriented learning model, programming teaching, Python, middle
school students

INTRODUCTION

The younger generation interacts frequently with technologies that permeate all aspects of their
lives on a daily basis (Baruch and Erstad, 2018), and they are increasingly expected to be not only
consumers but also producers of technology (Kong et al., 2020). In the digital age, computational
thinking (CT) can develop students’ abilities of critical thinking, creative thinking, and problem
solving (Ananiadou and Claro, 2009; Mishra and Yadav, 2013; Repenning et al., 2015). CT, just like
reading, writing, and arithmetic, is a basic skill for all students (Wing, 2006). According to Bundy
(2007), CT influences the research of almost all disciplines in natural science and human science.
Many researchers consider that CT should be integrated into the formal education system as a
learning objective to cultivate students’ ability to guide their future lives (Grover and Pea, 2013).

Recently CT related to programming has been included in K-12 courses around the world (Shute
et al., 2017; Hsu et al., 2018; Sands et al., 2018). There is a consensus that students’ CT can be
nurtured via programming education (Rich et al., 2017; Nouri et al., 2020). Most studies use visual
programming tools, such as App Inventor and Scratch, which are closer to the representation of
human language, helping students concentrate on the logic and structure, and become involved
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in programming instead of being anxious about the difficulties
of writing programs (Kelleher and Pausch, 2005). However, few
studies have used Python. Wen et al. (2014) pointed out that
Python is suitable for cultivating students’ CT and problem-
solving skills. Python has been found to be a means of helping
learners develop skills to face real-world problems (Tang et al.,
2020). Lee and Cho (2017) also mentioned that Python is a
programming language that is of interest to beginners and is
easy to learn. It is also used as an intermediate language for
connecting modules written in other languages. At the same
time, Lee and Cho (2017) found that teaching methods that use
LAP learning, collaborative learning, game-based learning, and
design-based learning environments are often used to cultivate
students’ CT. LAP learning can help learners complete tasks in
a limited amount of time, but this choice is a negative factor for
students’ creativity. Pair programming is a form of collaborative
learning. Studies have shown that pair programming has a
positive impact on friend relationships, but has no effect on non-
friend relationships (Werner et al., 2013). In game-based learning
environments, the motivation to complete a game may adversely
affect the learning of a certain level, thereby affecting learning
from playing the game (Israel-Fishelson and Hershkovitz, 2019).
Unplugged programming activities allow students to participate
in computer science practice without using digital equipment,
which can solve the limitations of computer hardware equipment
and students’ lack of early programming knowledge, but this
method is more suitable for the early stages of elementary
education (Sun et al., 2021). Design-based learning (DBL)
activities, such as interactive web design and digital storytelling,
allow students to use multiple technologies to conduct activities,
which imposes heavy curriculum burdens on teachers and
adversely affects the entire process (Saritepeci, 2020). This study
took a Python programming course as the context to construct
a problem-oriented learning (POL) model to effectively promote
students’ CT skills.

LITERATURE REVIEW

Computational Thinking
Computational thinking is a method of designing systems,
solving problems, and understanding human behavior (Wing,
2006). It includes engineering and design thinking (effective
solution developing), mathematical thinking to solve various
problems, and system thinking (system understanding and
modeling). Abstraction, decomposition, algorithms, and
debugging are the CT components that most frequently arise in
the literature (Shute et al., 2017). The International Society for
Technology in Education (ISTE) defined CT as the common skills
of algorithmic thinking, creativity, critical thinking, cooperative
thinking, problem solving, and communication skills (ISTE,
2015). The goal of developing CT is not as a replacement for
creative thinking, critical thinking or other kinds of thinking
skills, but rather to increase the skills of using computers and
algorithms to solve problems (Wing, 2011; Furber, 2012).

Computational thinking is a basic skill for all people (Wing,
2006), and will be used everywhere (Wing, 2008). Educational

researchers have been actively seeking innovative methods and
ways to incorporate CT into the curriculum and encourage
students to participate in CT (Bower et al., 2017). They have
attempted to teach and develop the knowledge and skills of CT
in different educational situations by various means including
programming (Basu et al., 2017; Bati, 2021), educational robotics
(Chevalier et al., 2020; Qu and Fok, 2021), unplugged activities
(Kuo and Hsu, 2020; Huang and Looi, 2021), games/simulations
(Danial et al., 2021; Hooshyar et al., 2021), storytelling (Soleimani
et al., 2019; Parsazadeh et al., 2020), and so forth. These tools
become “technical partners in the learning process” (Jonassen
et al., 2012), and the rationale for improving CT skills in
each of these tools emphasizes various CT components (Shute
et al., 2017). In addition, existing research has developed CT
interventions in different disciplines such as physics and biology
(Sengupta et al., 2013), expository writing and journalism (Wolz
et al., 2011), mathematics (Wilkerson-Jerde, 2014), science in
general (Weintrop et al., 2016; Basu et al., 2017), and science and
arts (Sáez-López et al., 2016).

Previous studies, however, preferred to apply visual
programming languages, while paying less attention to text
programming languages. Nonetheless, visual programming
is not as reliable as text programming, and its functions are
not as good as the latter. Deng et al. (2020) pointed out that
visual programming requires learners to focus on a great
number of grammar rules, and the programming foundation
is needed to develop CT. Thus, visual programming alone may
not be sufficient for students to understand the true meaning
of programming and to master CT, especially for beginners.
Text programming can compensate for visual programming
based on program functionality (Weintrop and Wilensky,
2015). In the era of artificial intelligence, Python has become
the preferred development language for artificial intelligence
applications (Okonkow and Ade-Ibijola, 2021). Compared with
other text programming languages, Python is closer to human
languages as it conforms to people’s thinking habits. It can reduce
unnecessary grammar learning, thereby reducing cognitive
load and allowing students to focus on solving programming
problems (Maria and Tsiatsos, 2018). Kim et al. (2019) developed
a data visualization education program, and the sixth-grade
students received 6 days and 36 h of training. It was found that
Python for data visualization education can effectively improve
the CT of sixth graders, including their computational cognition,
fluency, originality, and elaboration. Another study used the
Python language to develop a learning program and model,
and applied it to the 10-h learning of sixth-grade students. It
was found that the robot-based Python learning model had a
significant effect on improving students’ thinking skills, which
confirms the applicability of the text-based programming
language to elementary school students. Other studies (e.g.,
García Monsálvez, 2017; Lee and Cho, 2017; Maria and Tsiatsos,
2018) also found that Python programming education had a
positive impact on students’ CT.

At present, there is no common definition of CT. Therefore,
the evaluation methods of CT are very diverse. A CT
questionnaire based on the five CT factors proposed by
ISTE was designed by Durak and Saritepeci (2018), namely
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algorithmic thinking, creativity, problem solving, cooperation,
critical thinking, and communication. Brennan and Resnick
(2012) proposed a three-dimensional CT framework for visual
programming using Scratch, and pointed out that the framework
could be transferred to other programming teaching practices
such as Logo programming (Lye and Koh, 2014). The framework
consists of three dimensions: CT concepts (the concepts which
designers use when they are programming), CT practices (the
practices that designers develop while they are programming),
and CT perspectives (the perspectives on the world and
themselves that designers form).

Learning Models of Programming
Teaching
An increasing amount of attention is being paid to programming
teaching. Garneli et al. (2015) pointed out that game design,
robotics teaching, project-based learning, and collaborative
learning are becoming increasingly popular in programming
teaching. The teaching intervention of Vihavainen et al. (2014)
included collaboration and peer support. Florez et al. (2017)
further pointed out the importance of using visualization tools
to help students develop programming concepts. Scherer et al.
(2020) also found from meta-analysis that visualization had a
moderate effect on programming learning, whereas physicality
had a large effect.

Many teaching methods have been explored and applied to
improve students’ programming skills. For example, Olelewe and
Agomuo (2016) discussed the influence of two teaching methods
on programming learning. The results showed that the B-learning
model (the combination of e-learning and traditional face to
face learning) could improve students’ programming language
performance more effectively than the traditional face-to-face
model. Researchers have found that pair programming can
improve personal programming skills, programming efficiency
and quality (Zhong et al., 2017), while also increasing self-
confidence in learning (Lai and Xin, 2011). Corral et al. (2014)
found that game-oriented methods based on interaction with
tangible user interfaces could improve students’ motivation and
academic performance. Uysal (2014) indicated that problem-
solving instructional methods can effectively improve students’
academic performance and problem perception. Early studies
adopted the problem-solving approach to give students the
detailed steps and sequences of behaviors to solve the problems
they encountered while they were coding (Scherer et al., 2020).

Scherer et al. (2020) conducted a meta-analysis of some
instructional approaches and found that blended learning (1.023)
had the largest intervention effect, followed by game-based
learning (0.821) and metacognitive strategies (0.658), and finally
collaborative activities (0.560), problem solving instruction
(0.518), and feedback strategies (0.436). At the same time, the
effectiveness of teaching methods may vary depending on the
research content and teaching conditions (Li and Ma, 2010),
and an integration of various teaching methods should be more
effective for tutoring programming (Vihavainen et al., 2014).

In recent decades, the study of K-12 programming teaching
was mostly carried out in high schools. For example,

He et al. (2014) studied robotics programming teaching of
collaboration with a robotics club for high school students.
However, scanty attention has been paid to investigating the
model of programming teaching for middle school students.
Children should start to learn programming at a much younger
age to motivate their learning interest. This study describes
a Python programming course for eighth graders. Although
there are many innovative teaching methods, they have not
been applied to specific programming courses and cannot guide
programming teachers’ teaching well. Therefore, teachers often
use LAP methods in the programming classroom (Kim and
Yun, 2020). Teachers demonstrate the correct steps, and then
students imitate to complete the task, which is not conducive
to the cultivation of students’ problem-solving ability and
computational thinking. Therefore, this study proposed the POL
model to promote eighth graders’ CT.

The Problem-Oriented Learning Model
Polya (1957) proposed a four-step process to solve problems; this
process is widely used around the world to help people with
problem solving: understand the problem, devise a plan, carry
out the plan, and look back. In other words, problem solving
covers a series of processes. On this basis, Polya, Beichner (2002)
developed GOAL-oriented problem solving for physics, which
involves collecting information about the problem, figuring
out an approach to the problem, analyzing the problem, and
learning from one’s efforts. Evidence collected showed that this
approach had a positive impact on students’ ability to solve
problems. Kalelioğlu et al. (2016) proposed a framework of
CT as a process of problem-solving, including identifying the
problem; collecting, representing, and analyzing data; generating,
choosing, and planning solutions; implementing solutions; and
evaluating solutions and continuing for improvement. Kim and
Yun (2020) proposed a learning model focused on CT skills,
including problem identifying, analyzing, systematizing, and
solving. These studies show that problem solving covers a series
of processes which differ in specific teaching situations.

In the literature review, many problem-solving instruction
approaches have been created in the fields of mathematics
(e.g., Suarsana et al., 2019), science (e.g., Akben, 2020), and
physics (e.g., Dewi et al., 2019), but few have been applied
to Python courses. Most of the research has been to improve
problem-solving skills (e.g., Cheng et al., 2018), but the impact
on CT is still unclear. In fact, CT, programming skills, and
problem solving are closely connected. Kalelioğlu et al. (2016)
found that “abstraction,” “problem,” and “solving” are the
most commonly used words in the definition of CT. Román-
González et al. (2017) developed a scale to measure CT, and
the results showed significant correlations with problem-solving
skills. Based on the studies of Polya (1957), Beichner (2002),
Kalelioğlu et al. (2016), and Kim and Yun (2020), this study
formed a POL model including problem decomposition, problem
abstraction, algorithmic representation, solution evaluation, and
generalization and migration. Compared with previous studies,
the framework of the POL model in this study designed five
specific phases to solve programming problems, and it was more
suitable for Python programming courses. Therefore, this study
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applied the POL model to Python programming courses to
promote the development of students’ CT.

Research Questions
Based on the needs of CT training and its close relationship
with programming and problem solving, this study focused on a
middle school Python programming course to construct a POL
model oriented toward programming problems that effectively
cultivates students’ CT. Furthermore, it explored the effectiveness
of the POL model for the cultivation of CT through experiments.

The questions this study aimed to address are: Compared
with the LAP model, did the POL model significantly improve
students’ CT concepts, CT practices, and CT perspectives?

MATERIALS AND METHODS

Participants
A total of 60 eighth graders from a middle school in China
participated in the study. In this school, the learning competence
of students in different grade 8 classes is similar, due to the
school having implemented the parallel classes method according
to the students’ previous academic performance when allocating
students to classes. We randomly selected two classes taught
by the same teacher to participate in the study. One class was
assigned as an experimental group (EG) and another as a control
group (CG). There were 30 students with 17 males and 13 females
in the EG, who received the guidance of the POL model. The CG
was composed of 30 students with 15 males and 15 females, who
learned via LAP learning model. Students in both groups had
already taken a one-semester Python programming course. The
results of the Python final test of the previous semester showed
no significant difference between the two groups (t = 1.241,
p = 0.220 > 0.05). It could therefore be considered that the two
groups had the same initial learning level.

Participants in this study were involved on a voluntary
basis and with the approval of their parents. To protect
the participants, their personal information was hidden
during the study. In addition, they could withdraw from the
study at any time.

Instructional Design
Selection of Instructional Content
The course of Python programming covers a wide range of
content, including basic input and output, branch selection,
loops, and so on, some of which had been taught in the previous
semester. This study selected the following three units as the
instructional content: list, string and dictionary, and custom
function (see Table 1).

The Problem-Oriented Learning Model
Combining the descriptions of the problem-solving process in
related research (Kalelioğlu et al., 2016; Kim and Yun, 2020),
this study divided the POL model into the following processes,
as shown in Figure 1.

Student: First, problem decomposition. Decompose complex
problems, extract the key information in the problem, and

TABLE 1 | Programming issues corresponding to the unit.

Unit Programming problem

List Number of daffodils, statistics, average age, etc.

String and dictionary Compress, decipher mail, exchange parity, etc.

Custom function Perfect numbers between positive integers 2 and N,
number of primes, palindrome three prime numbers, etc.

transform it into a problem that the student knows how
to solve. Second, problem abstraction. Use digital language
to express text information, abstract actual problems into
mathematical problems and model them. Third, algorithmic
representation. Express the logic of solving the problem in
the Python programming language. Finally, solution evaluation.
Use the Python programming language to test the effectiveness
of the algorithm; evaluate and optimize the algorithm during
continuous debugging. Step 5: generalization and migration.
Generalize the solution of the problem and migrate it to other
similar programming problem solutions.

Teacher: First, guide students to decompose questions and
find out the key information in the problem. Second, guide
students to convert text information into mathematical models.
Third, provide a programming reference module when students
express problem solutions with algorithms, and guide students
to debug and optimize the algorithms. Finally, summarize the
problem-solving process and give similar problems to promote
the development of students’ transfer ability.

The Lecture-and-Practice Learning Model
The CG adopted the LAP learning model, as shown in Figure 2.
Teacher: First, teach the problem-solving process, and then give
timely guidance when students practice by themselves. Student:
Listen carefully and record when the teacher teaches, and then
practice according to the teacher’s steps.

The Difference Between the Two Learning Models
The LAP model is often used in programming teaching, whereas
this study adopted the POL model in the Python programming
course. The two mainly differ in terms of the teaching process
and the behavior of teachers and students, as shown in Table 2.
Take the “number of daffodils” as an example. In the LAP
class, the teacher first analyzes the problem and explains it.
For example, what is the number of daffodils? How can we
find the number of daffodils? How can we implement it in
Python? In the course of the explanation, the code is written
gradually (Understand the problem). After the teacher explains,
the students refer to the teacher’s code to solve the problem
(Practice). When the students are confused, the teacher will guide
or explain in groups. In contrast, in the POL class, the teacher
first guides students to think about the problem to be solved
(Decomposition problem), then guides them to think about the
characteristics of daffodil numbers and how to find the ones,
tens, and hundreds of a number (Abstract problem). Students
try to implement it in Python. If they encounter difficulties,
the teacher can prompt them appropriately. For example, the
teacher can prompt the students to use the remainder operation
(Algorithmic representation). After students finish writing the

Frontiers in Psychology | www.frontiersin.org 4 December 2021 | Volume 12 | Article 771221

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-771221 December 1, 2021 Time: 14:13 # 5

Bai et al. Computational Thinking Skills

FIGURE 1 | Problem-oriented learning model.

code, they will debug and think about how to optimize the
algorithm (Evaluation solutions). Finally, the teacher gives a
similar question, such as finding the number of lightning strikes,
to promote students’ summary and migration (Generalization
and migration).

Procedure
The experimental school has its own self-developed online
program evaluation system. The platform integrates the Python
language compiler and the programming question library. In
addition, the platform provides online test and evaluation
functions. After the students submitted the questions, the
platform immediately gave feedback, including the scores
obtained and the errors, which provided the students with the
opportunity to continuously debug.

The experiment lasted for one semester, from February 2019 to
June 2019, a total of 22 weeks, each of which was 40 min. Three
units were taught during the semester. Before the instruction, the
two groups completed the pre-test of CT perspectives scale. At
the end of each of the three units, the corresponding unit test was
carried out. During the learning activity, the students in the EG
adopted the POL model and the CG adopted the LAP learning
model. After completing the learning tasks of the three units,
the students took the post-test of the CT perspectives scale, the
Bebras test, and the computer-based final test. The experimental
procedure is shown in Table 3.

Measurement
Some researchers have incorporated Brennan and Resnick’s
(2012) framework into the evaluation of CT (Lye and Koh, 2014;
Grover et al., 2015; Kong, 2019; Mouza et al., 2020). Combined
with the teaching content and the characteristics of the Python
programming course, this study modified their framework and

FIGURE 2 | Lecture-and-practice learning model.

formulated the CT evaluation for this study. Although many
efforts have been made regarding CT evaluation (Basawapatna
et al., 2011), it is still a challenge to evaluate CT learning in a
programming environment. Survey with questionnaires is the
most common way to measure CT attitudes or knowledge (e.g.,
Kim et al., 2013; Jun et al., 2014). Reflection is also often used in
studies where students are asked to reflect on their programming
experience (e.g., Zimmerman and Tsikalas, 2005; Yang, 2010).
Other studies have tested the dimension of subject knowledge
in learning achievement after integrating CT with disciplinary
teaching (e.g., Sengupta et al., 2013). This study used the tools
in Table 4 to measure the three dimensions of CT.

TABLE 2 | The difference between the two learning models.

Learning
models

Teaching
process

Teacher activities Student activities

POL model Teachers guide
the whole
process; students
solve the problem
independently

1. Guiding confusion
2. Provide reference
3. Guide
improvement
4. Organization
summary

1. Decomposition
problem
2. Abstract problem
3. Algorithmic
representation
4. Evaluation of
solutions
5. Generalization
and migration

LAP learning
model

Students imitate
after the teacher
demonstrates

1. Analyze the
problem
2. Teaching process
3. Guiding confusion

1. Understand the
problem
2. Practice

TABLE 3 | Experimental procedure.

EG (n = 30)
POL model

CG (n = 30)
LAP learning model

1 week Pre-test of CT perspectives scale

6 weeks Unit 1: List

1 week Unit 1 test

4 weeks Unit 2: String and dictionary

1 week Unit 2 test

4 weeks Unit 3: Custom functions

1 week Unit 3 test

4 weeks Computer-based final test + Bebras test + post-test of
CT perspectives scale
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TABLE 4 | Measurement tools.

Measurement dimensions Measurement tools

CT concepts Unit test (single-choice questions and program
comprehension questions)

Computer-based final test

CT practices Unit test (program correction questions)

Bebras test

CT perspectives CT perspectives scale

Computational Thinking Concepts
Brennan and Resnick (2012) defined CT concepts as including
sequences, loops, parallelism, events, conditionals, operators,
and data. Considering that this study was carried out in the
context of a Python programming course, the two concepts
of sequences and parallelism were not included in the CT
concepts. In addition, the concept of events is rarely mentioned in
Python programming, but the concept of functions is commonly
used. Therefore, functions were used instead of events in this
study (see Table 5).

Single choice questions and program comprehension
questions in the unit test and computer-based final test were
used to analyze CT concepts. Single choice questions and
program comprehension questions in the unit test reflect the
understanding of CT concepts, and the final test based on the
computer reflects the application of CT concepts. This study
carried out three unit tests which were prepared by the researcher
and the teacher, and were distributed at the end of each unit.
Well-designed choice measurements could be applied to further
learners’ understanding (Glass and Sinha, 2013) and provided
them with feedback and explanations (Black and Wiliam, 1998).
The computer-based final test was selected by the researchers
and the teacher and was distributed at the end of the semester.

Computational Thinking Practices
Computational thinking practices are iterative and incremental,
and include testing and debugging, reusing and remixing,
and abstracting and modularizing according to Brennan and
Resnick (2012). Considering that this study was set in the
context of a Python course and did not involve the production
and completion of complex products or huge projects, the
CT practices of this study only included testing, debugging,
reusing, and remixing. Testing and debugging are to ensure
that the program can run automatically and efficiently. They
are indispensable practices in programming activities. Testing
is to find errors, and debugging is to correct errors. Reusing
and remixing are based on the problem solutions given by the
samples to construct the solutions that include learners’ own
ideas. Reusing and remixing are also a process of summarizing
problem solutions and migrating to other related problems.

Program correction questions in the unit test and Bebras
test were used to analyze CT practices. Among them, the first
was the evaluation of the ability of “testing and debugging” in
CT practices, and the latter was the evaluation of the ability of
“reusing and remixing” in CT practices. The program correction
questions were designed to improve the learners’ ability to read

TABLE 5 | Common CT concepts in Python.

CT concepts Implication

Operators Operators provide support for mathematical, logical, and string
expressions. In Python, there are arithmetic operators (addition,
subtraction, multiplication, division, etc.), relational operators
(equal, less than, etc.), logical operators (and, or, etc.), etc.

Data Data involve storing, retrieving, and updating values. In Python,
strings, lists, dictionaries, etc. are all sequences used for data
storage.

Conditionals A conditional is a code block that judges whether to execute
through the result of one or more statements (True or False). In
Python, it often corresponds to the use of “if-elif-else”
statements.

Loops A loop is a mechanism for running the same instruction multiple
times. In Python, it often corresponds to the use of “for loops”
and “while loops.”

Functions Functions are organized and reusable. Code segments are
used to implement single or related functions. In Python, it often
corresponds to the use of built-in functions and custom
functions.

and understand the code (Lopez et al., 2008). The Bebras test, an
international challenge in informatics and CT, aims to improve
and cultivate the CT ability of primary and secondary school
students (about 8–18 years old). Bebras reflects the contestants’
CT ability through real-life problems and some focus issues. The
Bebras test questions in this study were selected from the Bebras
tests in 2016 and 2017.

Computational Thinking Perspectives
Computational thinking perspectives include expressing
(computational thinkers see computation as something they
can use to design and self-express), connecting (recognizing the
importance of creating with others and the value of creating for
others), and questioning (feeling empowered to ask questions
about and with technology) based on Brennan and Resnick
(2012). ISTE and the Computer Science Teachers Association
(CSTA) considered CT as a problem-solving process that
includes the following dispositions or attitudes: confidence in
dealing with complex task, persistence in solving the difficult
task, tolerance for ambiguity, the ability to deal with open-ended
problems, and the ability to cooperate with others (ISTE and
CSTA, 2011). The framework of the Hong Kong CoolThink@JC
Jockey Club’s CT education curriculum includes self-expression,
questioning and understanding, connecting with life, digital
capability, and computational identity.

The CT perspectives in this study consist of four aspects:
creation and expression, communication and cooperation,
questioning, and problem solving. According to the ISTE
definition of CT, Korkmaz et al. (2017) designed a computational
thinking scale (CTS) to evaluate CT in algorithmic thinking,
creativity, cooperativity, critical thinking, and problem solving.
This study refers to CTS and selected items related to CT
perspectives to determine the CT perspectives scale, as shown
in Table 6. There are 11 items rated using a 5-point Likert
scale (from 1 – strongly disagree, to 5 – strongly agree) in
the scale.
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TABLE 6 | CT perspectives scale.

CT
perspectives

Items

Creation and
expression

I am happy to use the computing tools around me (computer
hardware and software) to create and express my ideas.

Learning to use programming languages (Python, C++, etc.)
to solve problems encountered makes me feel very proud.

Communication
and cooperation

Rather than doing it independently, I prefer to communicate
with classmates or teachers about problems encountered
and I am willing to work together to solve them.

I think that in the process of exchanges and cooperation, I
can generate more ideas and gain more benefits.

Questioning When I see new technologies such as face recognition and
robotics, I often think about how they work.

Problem solving I believe that I can solve most of the problems I encountered if
I have enough time and effort.

When there is a problem, I will keep thinking over the problem
without proceeding to another subject.

I believe that I am able to solve the problems that might occur
when I encounter a new situation.

I trust my intuitions and feelings of “trueness” and
“wrongness” when I carry out the solution of a problem.

It is interesting to try to solve complicated problems.

I like to learn things with challenge.

To measure the validity and reliability of the CT perspectives
scale, two classes were selected for trial testing before the formal
experiment, and finally 54 valid data were collected. In the study,
the Cronbach’s α value was 0.962, showing acceptable reliability
in internal consistency. Kaiser–Meyer–Olkin (KMO, =0.854) and
Bartlett’s test (p = 0.00 < 0.05) were calculated to test the
validity of the scale.

Data Analysis
In the study, SPSS 22.0 was used to analyze the qualitative and
quantitative data collected during the experiment. Single choice
questions and program comprehension questions in the unit
test and computer-based final test were used to evaluate the
CT concepts. Program correction questions in the unit test and
the Bebras test were used to evaluate the CT practices. The CT
perspectives scale was used to evaluate CT perspectives. For the
unit test, Bebras test, and CT perspectives scale, the independent
sample t-test were applied. Analyzing the computer-based final
test was to extract the application times of CT concepts in the
code, and then an independent sample t-test was conducted.

RESULTS

This study conducted statistical analysis of the collected
qualitative and quantitative data from CT concepts, CT practices,
and CT perspectives. According to the normality test, the results
of the Unit Test, Computer-based Final Test, Bebras Test,
and CT Perspectives Test all conformed to normal distribution
(p = 0.200∗ > 0.05). Thus, the independent sample t-test was
used to test the difference between groups and the pre- and post-
test. Cohen’s d, which is widely used for the standardization effect

TABLE 7 | The independent sample t-test of single-choice and program
comprehension in the unit tests of the two groups.

Unit Group N M SD t p d

List EG 30 14.27 3.265566 3.38 0.001** 0.88

CG 30 11.17 3.83

String and dictionary EG 30 22.97 3.68 2.01 0.049* 0.53

CG 30 20.43 5.82

Custom function EG 30 7.50 0.94 2.50 0.015* 0.66

CG 30 6.83 1.11

Total EG 30 44.73 5.75 3.12 0.003** 0.87

CG 30 38.43 8.69

*p < 0.05, **p < 0.01.

in the t-test (Cuthill et al., 2007), is the difference between the
mean values of two groups divided by the standard deviation
(equation 1). It is used to calculate the effects by comparing the
mean values of two groups (Sullivan and Feinn, 2012). When the
value of Cohen’s d is ≥ 0.2 and <0.5, it indicates a small effect.
If the value is ≥0.5 and <0.8, it shows a moderate effect. When
the value is≥0.8, it means a large effect (Cohen, 1988). Cohen’s d
was used as the auxiliary value of the t-test, where high efficiency
should indicate a high experimental effect.

Computational Thinking Concepts
Analysis of Single-Choice and Program
Comprehension in the Unit Test
The content of the three units were list, string, and dictionary,
and the custom function. The single-choice and program
comprehension in the unit test examined the students’
understanding of CT concepts. The total scores of the three
units were 18, 26, and 9. The independent sample t-test results
showed that the mean scores of single-choice questions and
program comprehension questions in the unit tests of the EG
were higher than those of the CG (see Table 7). The results
showed a significant difference in the “list” unit (t = 3.38,
p = 0.001 < 0.01, d = 0.88), the “string and dictionary” unit
(t = 2.01, p= 0.049 < 0.05, d= 0.53), and the “custom function”
unit (t = 2.50, p = 0.015 < 0.05, d = 0.66). The Cohen’s d was
0.88, 0.52, and 0.66, indicating that the POL model had a large
effect on students’ “list” unit learning, and a medium effect on
their “string and dictionary” unit and “custom function” unit
learning. In terms of the dispersion degree of data, the standard
deviation of CG (8.69) was much larger than that of EG (5.75),
indicating that the CG sample data had greater volatility and
their understanding of CT concepts was more unstable, while EG
had a more accurate understanding of the concepts of CT.

Analysis of the Computer-Based Final Test
By analyzing the code in the computer-based final test, the
qualitative code data were converted into quantitative data. The
qualitative data were the students’ code, and the quantitative
data were the number of code blocks that reflect each CT
concept in the code. For example, if “if-else” appeared twice
in the student’s code, then the CT concept “Conditionals” was
increased twice; if there were two “while loops” and one “for
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loop” in the student’s code, the CT concept “Loops” would
increase three times; if students used a custom function and
a built-in function in their code, the CT concept “Functions”
was increased twice. The number of applications of each CT
concept was extracted from the code. The more application of
the CT concepts, the more familiar the students were with this
concept. The computer-based final test examined the students’
application of CT concepts. The independent sample t-test results
of the computer-based final test are shown in Table 8. The
mean application of operators, conditionals, data, loops, and
functions in the EG was higher than that in the CG. The results
showed a significant difference among the application of CT
concepts of operators (t = 2.35, p = 0.029 < 0.05, d = 1.02),
conditionals (t= 2.31, p= 0.030 < 0.05, d= 0.94), data (t= 2.08,
p= 0.048 < 0.05, d= 0.85), and loops (t= 2.17, p= 0.041 < 0.05,
d = 0.88), but there was no significant difference in functions
(t = 1.13, p = 0.269 > 0.05, d = 0.46). In general, there was a
significant difference in the application of CT concepts between
the two groups (t = 4.99, p = 0.000 < 0.001, d = 2.00). The
Cohen’s d was greater than 0.8. It proved the POL model had a
large effect on students’ application of CT concepts.

Computational Thinking Practices
The CT practices in this study included “testing and debugging”
and “reusing and remixing” practices. The program correction
questions in the unit test examined the students’ “testing and
debugging” abilities, and the total scores of the three units were
3, 5, and 2, respectively. The Bebras test examined the students’
ability to “reuse and remix,” with total scores of 36 and 54 for
simple questions and difficult questions, respectively.

Analysis of Program Correction in the Unit Test
The independent sample t-tests were performed (see Table 9).
The results showed that the mean scores of the program
correction questions of students in the EG were higher than
those in the CG in the list (t = 1.29, p = 0.203 > 0.05),
string and dictionary (t = 0.63, p = 0.530 > 0.05), and custom

TABLE 8 | The independent sample t-test on the two groups’
computer-based final test.

Unit Group N Max M SD t p d

Operators EG 30 4 3.62 0.65 2.35 0.029* 1.02

CG 30 4 2.85 0.99

Conditionals EG 30 6 4.85 0.69 2.31 0.030* 0.94

CG 30 5 4.31 0.48

Data EG 30 6 3.77 0.83 2.08 0.048* 0.85

CG 30 4 3.08 0.86

Loops EG 30 8 7.08 0.76 2.17 0.041* 0.88

CG 30 8 6.31 1.03

Functions EG 30 4 2.23 0.93 1.13 0.269 0.46

CG 30 3 1.85 0.80

Total EG 30 23 21.54 1.51 4.99 0.000*** 2.00

CG 30 21 18.38 1.71

*p < 0.05, ***p < 0.001.

TABLE 9 | The independent sample t-test of the two groups’ program correction
questions in the unit test.

Unit Group N M SD t p d

List EG 30 2.60 1.04 1.29 0.203 0.35

CG 30 2.20 1.35

String and dictionary EG 30 2.87 1.68 0.63 0.530 0.17

CG 30 2.60 1.59

Custom functions EG 30 0.83 0.99 0.81 0.422 0.21

CG 30 0.63 0.93

Total EG 30 6.03 2.23 1.73 0.089 0.45

CG 30 5.40 1.77

TABLE 10 | The independent sample t-test of the two groups’ Bebras test.

Unit Group N M SD t p d

Simple questions EG 30 31.60 5.44 1.14 0.260 0.30

CG 30 30.00 5.46

Difficult questions EG 30 42.27 9.11 1.40 0.166 0.37

CG 30 38.87 9.67

Total EG 30 73.87 11.14 1.77 0.082 0.46

CG 30 68.87 10.75

functions (t = 0.81, p = 0.422 > 0.05), but there was no
significant difference.

Analysis of the Bebras Test
The Bebras test can reflect students’ ability to transfer CT, and
the premise of transfer is the ability to “reuse and remix.” The
higher the ability to “reuse and remix,” the more students can
transfer CT to the solution of related practical problems. The
independent sample t-test result is shown in Table 10. It was
found that the Bebras test score of the EG was higher than that of
the CG, especially for difficult questions. No significant difference
was found between the two groups for either simple questions
(t = 1.14, p= 0.260) or difficult questions (t = 1.40, p= 0.166).

Computational Thinking Perspectives
The CT perspectives in this study consist of four aspects: creation
and expression, communication and cooperation, questioning,
and problem solving. To perform the independent sample t-test
of the pre-test of the CT perspectives scale, the results showed
no significant difference in creation and expression (t = 1.55,
p = 0.126 > 0.05), communication and cooperation (t = 1.56,
p = 0.125 > 0.05), questioning (t = 1.03, p = 0.305 > 0.05), or
problem solving (t = 1.12, p = 0.268 > 0.05) between the two
groups (see Table 11), indicating that the students in the EG were
at the same level as the students in the CG before the experiment.

The result of the independent sample t-test on the post-
test of the CT perspectives scale is shown in Table 12. It was
found that the mean scores of creation and expression (t = 2.03,
p = 0.047 < 0.05), communication and cooperation (t = 2.89,
p = 0.005 < 0.01), questioning (t = 2.77, p = 0.008 < 0.01),
and problem solving (t = 2.35, p = 0.022 < 0.05) of the EG
were higher than those of the CG, and there were significant
differences. The Cohen’s d was 0.53, 0.73, 0.70, and 0.60,
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TABLE 11 | The independent sample t-test of the two groups’ CT
perspectives pre-test.

CT perspectives Group N M SD t p

Creation and
expression

EG 30 7.87 1.57 1.55 0.126

CG 30 7.20 1.75

Communication
and cooperation

EG 30 8.03 1.61 1.56 0.125

CG 30 7.30 2.02

Questioning EG 30 4.00 1.05 1.03 0.305

CG 30 3.73 0.94

Problem solving EG 30 23.70 2.84 1.12 0.268

CG 30 22.70 3.99

Total EG 30 43.60 5.54 1.60 0.116

CG 30 40.93 7.29

TABLE 12 | The independent sample t-test of the two groups’ CT
perspectives post-test.

CT perspectives Group N M SD t p d

Creation and
expression

EG 30 8.73 1.78 2.03 0.047* 0.53

CG 30 7.80 1.79

Communication
and cooperation

EG 30 8.80 1.32 2.89 0.005** 0.73

CG 30 7.67 1.69

Questioning EG 30 4.47 0.78 2.77 0.008** 0.70

CG 30 3.87 0.90

Problem solving EG 30 25.90 4.46 2.35 0.022* 0.60

CG 30 23.50 3.38

Total EG 30 47.90 7.53 2.79 0.007** 0.70

CG 30 42.83 6.52

*p < 0.05, **p < 0.01.

respectively, indicating that the POL model had a medium
effect on students’ creation and expression, communication and
cooperation, questioning, and problem solving.

The results of the paired sample t-tests on the two groups’
CT perspectives pre- and post-test are shown in Tables 13, 14.
Although it was found that the mean scores of creation and
expression (t = 1.31, p = 0.194 > 0.05), communication and
cooperation (t = 0.76, p = 0.449 > 0.05), questioning (t = 0.56,
p = 0.578 > 0.05), problem solving (t = 0.84, p = 0.405 > 0.05),
and total scale (t = 1.06, p = 0.292 > 0.05) of the post-test
were higher than those of the pre-test, there were no significant
differences. However, it was found in the EG that the mean
scores of creation and expression (t = 2.00, p = 0.050 = 0.05),
communication and cooperation (t = 2.02, p = 0.049 < 0.05),
problem solving (t = 2.28, p = 0.027 < 0.05), and total scale
(t = 2.52, p = 0.015 < 0.05) of the post-test were higher than
those of the pre-test, and there were significant differences.
The Cohen’s d was 0.541, 0.532, 0.588, and 0.650, respectively,
indicating that although the Python course cannot significantly
improve students’ computational thinking, the Python course
taught using the POL model can significantly improve students’
computational thinking.

DISCUSSION

This study combined the process of solving programming
problems to construct a POL model, and verified its effectiveness
for CT training through the implementation of Python
programming teaching.

Computational Thinking Concepts
The evaluation of the CT concepts in this study included two
aspects: understanding of the CT concepts and application
of the CT concepts. Application of the CT concepts refers
to the number of CT concepts included in the students’
programming works. According to the results, the understanding
and application of the CT concepts by the students learning
with the POL model were better than those of the students
learning with the LAP model, and the difference was significant.
This implied that the proposed POL model benefited the
students’ CT concepts. The applied POL model was a process
in which students actively constructed their understanding of
programming concepts, as it focused on their understanding
and application of CT concepts. The LAP learning model was

TABLE 13 | The paired sample t-test of the CG’s CT perspectives
pre- and post-test.

CT perspectives Group N M SD t p

Creation and
expression

Pre-test 30 7.20 1.75 1.31 0.194

Post-test 30 7.80 1.79

Communication
and cooperation

Pre-test 30 7.30 2.02 0.76 0.449

Post-test 30 7.67 1.69

Questioning Pre-test 30 3.73 0.94 0.56 0.578

Post-test 30 3.87 0.90

Problem solving Pre-test 30 22.70 3.98 0.84 0.405

Post-test 30 23.50 3.38

Total Pre-test 30 40.93 7.29 1.06 0.292

Post-test 30 42.83 6.52

TABLE 14 | The paired sample t-test of the EG’s CT perspectives
pre-test and post-test.

CT perspectives Group N M SD t p d

Creation and
expression

Pre-test 30 7.87 1.57 2.00 0.050* 0.541

Post-test 30 8.73 1.78

Communication
and cooperation

Pre-test 30 8.03 1.61 2.02 0.049* 0.523

Post-test 30 8.80 1.32

Questioning Pre-test 30 4.00 1.05 1.96 0.055

Post-test 30 4.47 0.78

Problem solving Pre-test 30 23.70 2.84 2.28 0.027* 0.588

Post-test 30 25.90 4.46

Total Pre-test 30 43.60 5.54 2.52 0.015* 0.650

Post-test 30 47.90 7.53

*p < 0.05.
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a process by which teachers instilled programming concepts
into students. Students passively accepted the programming
concepts, so they did not understand the concepts well and
were not proficient in the application. The application of the
function to the two groups of students was not significant.
Previous studies also found that some concepts are difficult for
beginner programmers (Meerbaum-Salant et al., 2013). Grover
et al. (2015) developed a course of “Foundations for Advancing
Computational Thinking” to promote learners’ understanding
of algorithmic concepts, but the mechanics of some constructs
were difficult for learners to grasp in the context of text-
based languages.

Although students can write and explain simple programs,
they have difficulty with programs involving basic programming
concepts (Brennan and Resnick, 2012). Students often struggle
with algorithmic concepts, especially if teachers do not use
appropriate supportive pedagogy to teach these concepts (Grover
et al., 2015). In Python programming, the concept of functions
includes built-in functions and custom functions. Built-in
functions generally only require students to memorize and
apply them, while custom functions require students to be
able to build function modules by themselves. A function
usually contains multiple CT concepts, and students need to
be familiar with programming logic. For novice programmers,
the application of functions is relatively limited, and the items
involved in class are relatively simple. Students can directly
write the corresponding code in the program without writing
another function.

Computational Thinking Practices
Computational thinking practice in this study included two
aspects: “testing and debugging” and “reusing and remixing.”
According to the results, the students in the POL mode had
better CT practice than the students in the LAP learning mode
in terms of “testing and debugging” and “reusing and mixing,”
but there was no significant difference. In the POL model
classroom, the teacher’s identity was more like a guide. Students
designed possible problem solutions and tried them one by
one. In this process, they continued to practice testing and
debugging. Frequent operations helped develop their ability. In
the LAP model classroom, the teacher explained the problem-
solving solutions, and the students practiced on this basis,
thereby avoiding many errors. Therefore, the students’ testing
and debugging practices were lacking in this model.

Testing and debugging are indispensable for any type of
problem solving (McCauley et al., 2008). Strict and systematic
testing and debugging is an art and science in the field of
computing, especially in the field of software development
(Grover and Pea, 2013). However, the difference between the
“testing and debugging” abilities of students in the two groups
was not significant, which is consistent with previous studies.
Fessakis et al. (2013) proposed that some students did not
show any clear planning but rather tried commands one by
one. For novice programmers, it is often difficult to link
upper and lower command lines in groups (Robins et al.,
2003), and they only analyze the single command line that
includes a mistake (Lehrer et al., 1999). Hence, it is difficult to

accurately and quickly find errors, correct them, and develop
testing and debugging capabilities. Reusing and remixing involve
comprehensive migration of problem solutions, and mastering
skills in the original environment is essential for migration
(Kurland and Pea, 1985). However, under the two learning
models, the difference in the ability of students to “reuse and
remix” was not significant. Previous research has shown that
skill development usually requires sufficient training time (Bers
et al., 2014; Atmatzidou and Demetriadis, 2016). On the other
hand, most of the computer-based questions in this study were
structured programming problems, and there was a lack of
unstructured practical problems. Although this is conducive
to the solution of the problem, it is not conducive to the
development of migration capacity.

Computational Thinking Perspectives
In this study, CT perspectives consist of “creation and
expression,” “communication and cooperation,” “questioning,”
and “problem solving.” The results showed that the CT
perspectives of the students who adopted the POL model were
better than those of the students who adopted the LAP model,
and the difference was significant, indicating that the POL
model was more effective in terms of cultivating students’ CT
perspectives than the LAP learning model. Under the POL model,
students expressed their own understanding of programming
problems through programming to achieve self-creation and
expression; in the process of finding solutions, students actively
thought and discussed, and improved their communication and
collaboration skills. When the solution was wrong or there was
a conflict between their own thinking and the ideas of their
classmates, the students would have doubts, so as to realize the
optimal design of the algorithm. In the LAP model, teachers
directly explained the process of problem-solving, while students
were involved in the process of absorption, and there was less
questioning and less interaction between students.

The result is consistent with previous research findings.
Mouza et al. (2020) designed a 9-week after-school computational
programming course, and collected long-term records of changes
in students’ CT concepts, practices, and perspectives. Through
interviews, it was found that the students’ CT perspectives greatly
improved. Students were more willing to share programming
works with classmates, which was a way to help them build
confidence in programming. Moreover, repeated participation in
computing courses made students use a number of computing
perspectives. Burke (2012) found that middle school students
could create their own digital stories through programming tools
to express their CT perspectives. Kong and Wang (2020) also
found that programming could improve CT perspectives. CT
perspectives are connected to the formation of students’ thinking
habits and personality, which have a significant influence on
shaping teenagers’ cognition and values of the digital society
(Deng et al., 2020). The CT perspectives require students to
develop an understanding of themselves and relationships with
others people and the technological world. When students
express themselves in programming, CT perspectives are evident
(Lye and Koh, 2014).
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CONCLUSION

This study constructed a POL model oriented to programming
problems, and used a quasi-experiment to verify its effect on
the cultivation of CT. In all, 60 eighth-grade students from a
middle school in China were divided into an EG which adopted
the POL model, and a CG which adopted the LAP learning
model. The results showed that the students who were instructed
with the POL model performed better than those who were
instructed using the LAP model in terms of CT concepts, CT
practices, and CT perspectives. Significant differences were found
in CT concepts and CT perspectives, but no significant difference
in CT practices.

Implications
In terms of theory, although there have been studies on the
relevance of CT and problem solving, there have been few
empirical studies based on this theory. This study explored
CT from the perspective of problem solving, and conducted
empirical research, which not only enriches the related research
on CT, but also provides theoretical references to explore
CT in depth with a focus on problem solving. In terms of
practice, this study provides a new practical perspective on
how to cultivate the CT of middle school students, that is,
relying on Python programming courses, applying the POL
model, and imperceptibly cultivating students’ computational
thinking. The study provides reference cases for computational
thinking training and Python programming teaching, and
provides an experience reference for teachers to carry out
programming teaching.

Limitations and Future Works
It should be noted that this study has some limitations. Firstly, the
intervention time was short, just one semester. CT involves the
use of computational science concepts and cognitive processes to
solve problems creatively and efficiently (Anderson, 2016), and
consists of multiple elements. Therefore, the cultivation of CT is

not accomplished overnight. This study applied the POL model
to a programming course. It is difficult to comprehensively and
significantly improve students’ CT through only one semester of
study. Further research can be conducted to investigate the effects
of long-term use of this model.

Secondly, the fatigue response of the participants may have
been a factor in the study. During the Python programming
course, experimental participants needed to solve and complete a
large number of programming problems and phased tests which
could have led to their fatigue response in the later stage of
the experiment. In addition, the assessment instrument modality
may have had an impact on students’ performance (Atmatzidou
and Demetriadis, 2016). CT can be applied in a wider learning
environment instead of computational solutions (Kalelioğlu et al.,
2016). Therefore, in future research, more CT evaluations that
do not require a computer or programming platform should be
developed (Tang et al., 2020).
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