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Abstract
Stochastic Simulation Algorithm (SSA) is crucial for modeling biochemical reactions and
gene regulatory networks. Traditional SSA is characterized by Markovian property and
cannot naturally model systems with time delays. Several algorithms have already been
designed to handle delayed reactions, yet few easy-to-use implementations exist. To
address these challenges, we have developed DelaySSA, an R package that implements
currently available algorithms for SSA with or without delays. Meanwhile, we also pro-
vided Matlab and Python versions to support wider applications. We demonstrated its
accuracy and validity by simulating two classical models: the Bursty model and Refrac-
tory model. We then tested its capability to simulate the RNA Velocity model, where it
successfully reproduced both the up- and down-regulation stages in the phase portrait.
Finally, we extended its application to simulate a gene regulatory network of lung can-
cer adeno-to-squamous transition (AST) and qualitatively analyzed its bistability behav-
ior by approximating the Waddington’s landscape. Modeling the therapeutic intervention
of a SOX2 degrader as a delayed degradation reaction, AST is effectively blocked and
reprogrammed back to the adenocarcinoma state, providing a useful clue for targeting
drug-resistant AST in the future. Taken together, DelaySSA is a powerful and easy-to-use
software suite, facilitating accurate modeling of various kinds of biological systems and
broadening the scope of stochastic simulations in systems biology.

Introduction
Stochastic Simulation Algorithm (SSA) has become a widely used tool in modeling biochemi-
cal reactions [1]. This algorithm directly simulates the temporal evolution of a spatially homo-
geneous system of molecular species undergoing reactions, providing exact time trajectories
that reflect the stochastic and fluctuating nature of biochemical processes [2–5].
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recently under extensive studies. For instance, one class of models is the molecular mecha-
nisms driving gene expression state dynamics of individual cells, which have become a highly
influential and fruitful field in single-cell studies of development and diseases [6–9]. Another
example class of models includes the molecular driver networks underlying various biolog-
ical processes, such as the lung cancer adeno-to-squamous (AST) lineage transition mod-
els explaining targeted-therapy-related drug resistance [10–12]. Simulating these models
with SSA is expected to produce results that are consistent with those obtained using ordi-
nary differential equation (ODE) methods, while offering a more natural examination of the
fluctuations inherent to these complex biomedical systems.

One of the characteristics of SSA is the Markovian property, with the future state depend-
ing on the present state only and not on the past. Thus, the current state fully specifies the
probability of a reaction occurring in the very next infinitesimal time interval [13,14]. This
Markovian assumption is a simplified modeling of dynamical processes for efficient compu-
tation. However, such simplification also leads to its incapability of modeling processes where
historical events influencing the timing of the future events. In biological systems, delays are
widespread. For example, gene expression processes such as transcription and translation
inherently do require time to complete [15–18].

To take into account those delay effects, several methods have been developed to extend
the standard Gillespie algorithm by simulating delayed reactions [19–21]. These algorithms
are effective in handling delays, though with additional complexity introduced and techni-
cally being more difficult to understand and apply, particularly for researchers without com-
putational expertise [22]. On the other hand, currently available software packages mainly
focus on simulate SSA reactions without delay effects [23,24] and very few efforts have been
devoted to implementing delayed simulations [25]. In order to provide a user-friendly and
open-source implementation of available SSA algorithms accounting for delay effects, we
sought out to develop the software package DelaySSA in three data-science languages popular
in bioinformatics (R, Python and Matlab). Researchers familiar with any of these three lan-
guages could now perform SSA simulations conveniently. DelaySSA and tutorials with com-
prehensive examples and applications are available at https://github.com/Zoey-JIN/DelaySSA
and https://github.com/FangZY-Lab/DelaySSA-dev.

Design and implementation
In the stochastic simulation of biochemical reaction systems, Stochastic Simulation Algorithm
(SSA)[1] is an important method that can describe the dynamic process of chemical reactions
in the system with high accuracy. A detailed account of the theoretical background and algo-
rithms could be found in S1 Appendix. Here, we implemented these algorithms with a com-
mon interface in the three most popular languages for systems biology, namely, R, Python,
and Matlab (Fig A in S1 Appendix). Below we will illustrate the design considerations (Fig 1).

SSA can realistically reproduce the dynamic changes of species in the reaction system,
including the intermediate processes of the system state. The core of the algorithm depends on
the initial state of the system, including the types of species involved in the reaction and their
initial quantities, as well as the reactions in the system. To prepare for simulation using the
SSA, each reaction in the system must be described in detail, including reactants, products,
and the rates of each reaction.

For non-Markovian processes with delays, we need to pay special attention to the charac-
teristics of delayed reactions. The key to delayed reactions lies in two aspects, the changes in
the quantities of reactants and products and the time points at which these changes occur.
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Fig 1. Design and implementation of DelaySSA.The input data for DelaySSA are reaction information, initial states, parameters and delays. Combining
these into the simulation function, the temporal molecular states n at specific time t will be generated for further visualization.

https://doi.org/10.1371/journal.pcbi.1012919.g001

According to these criteria, reactions with delays can be divided into two categories: one with
immediate changes in reactants at the start of the delay, and the other with latent changes in
reactants at the end of the delay[21] (see S1 Appendix and Fig B in S1 Appendix for more
comparison). For a reaction of the first type, the amount of reactants changes immediately at
the beginning of the delay and generates products at the end of the delay when the reactions
finish. Thus the amount of species is adjusted twice, both before and after the delay time 𝜏.
For a reaction of the other type, the amount of reactants does not change at the beginning of
the delay when the reaction initiates, and it is not updated until the end of the delay. Thus the
amount of reactants and of products are both updated at the end of the delay time 𝜏. These
two types of delayed reactions bring fundamental differences and diverge from the Markovian
process which assumes an immediate change in response without any time delay.

In our implementation, reactant matrix represents the quantity of reactants (row of species
and column of reactions). Reaction rate is the speed of chemical reaction. Two stoichiomet-
ric matrices are used to describe the non-delayed (S_matrix) and delayed (S_matrix_delay)
reactions respectively. S_matrix represents the changes in molecular numbers for non-delayed
reactions at the specific moment of reaction occurring. Each row corresponds to a species,
while each column corresponds to a reaction. Each element of the matrix indicates the net
changes of each species during each reaction. The quantity of species, the reaction rates, and
the random numbers generated in the algorithm together specify when and which reaction
is carried out. S_matrix_delay is used to describe changes in material quantities for reactions
that involve delays. Similar to the S_matrix, the rows represent species, the columns represent
reactions, and the elements indicate the net change in each species after the delay time 𝜏 has
elapsed.

The delay time 𝜏 plays a critical role in the dynamics of delayed reactions. It can be either
a fixed value or generated by a function, enabling more complex and realistic modeling of
delays based on reactions.

The propensity function fr is fundamental for modeling reaction dynamics. We use the
form of mass-action kinetics type [5] and fr(n)dt represents the probability of each reaction r
occurring in the time interval dt, by taking into account the stochastic nature of the reaction
process and the trend of the quantity of species. In combination with the random number
generator, it determines which reaction to occur at each next moment and advances the simu-
lation in discrete time steps. The system state is updated step by step iteratively until reaching
a specific termination condition, either a maximum simulation time or a stable system state.
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It is worth noting that each simulation results in one sequence or sample of the stochas-
tic system. It is typically necessary to perform multiple repeated simulations to determine the
average behavior of the system.

During the simulation, non-delayed reactions can influence the state of delayed reactions.
For instance, if a non-delayed reaction causes a change in the quantity of a species that con-
flicts with the expected change from an ongoing delayed reaction, which must be resolved.
A common method to handle such conflicts is to randomly remove one of the conflicting
events from the delayed reactions. This approach maintains the consistency of the system
state by preventing disruptions to the overall system dynamics caused by inconsistent species
quantities.

Results
Evaluation on the Bursty and refractory models
To evaluate the validity of DelaySSA, we first applied it to two classical time-delayed models,
the Bursty model and the refractory model.

The Bursty gene expression model describes the transcription bursts of mRNA [18,26]
(Fig 2A). During short periods, multiple mRNA molecules are synthesized rapidly and then
degraded after the time delay 𝜏. Simulation results were consistent with the transcription rate
as a function of burst frequency and burst size, and highlighted the phenomena that gene
expression occurs in sporadic transcriptional bursts.

In the Refractory model [18,27,28], the gene state can switch between G0, G1 and G2, but
gene expression only occurs at G2 (Fig 2B). The degradation of mRNA occurs after time delay
𝜏. Simulation showed that mRNA expression has a bimodal distribution with a high probabil-
ity of being zero, corresponding to refractory periods of remaining silence before switched to
gene transcription, consistent with previous studies.

Evaluation on the RNA velocity model
RNA Velocity is a widely used model in computational methods inferring cell trajectories
based on single-cell RNA-sequencing (scRNA-seq) data [7]. In this model, the unspliced
mRNA (U) is initially produced at a rate denoted by 𝛼. The unspliced mRNA undergoes
splicing at a rate 𝛽 to generate mature spliced mRNA (S). After splicing, the mature mRNA
undergo degradation at a rate 𝛾. Simulation shows that before 𝛼 becomes 0, the average val-
ues of U and S continue increasing until the steady state. In the down-regulation phase, 𝛼
becomes 0, and the average value of U and S gradually decrease until returning to 0. The rela-
tionship between U and S can be seen from the U-S phase portrait (Fig 3A). This character-
istic phase portrait is guaranteed by mRNA processing mechanism and have been widely
accepted in single-cell data analysis to infer RNA-based cell differentiation. Since the gene
transcriptional process (e.g. mRNA degradation) is inherent to time delays, and it still adheres
to the maturation mechanism of mRNA, it would be reasonable to expect a similar U-S phase
portrait after the introduction of time-delayed degradation. Indeed, when simulated with
a time delay 𝜏 = 3 in the mRNA degradation step, we again observed a similar U-S phase
portrait (Fig 3B). Thus this simulation provides a further verification for DelaySSA.

Application to concentration-based gene regulatory network models
We further consider applying DelaySSA to gene regulatory network models. One thing to
note here is that, a number of such networks are described in concentration-based math-
ematical models, whereas SSA simulations are molecule-based. To better approximate
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Fig 2. Bursty model and Refractory model simulation results. (A) Bursty model simulation results (105 samples). The production of nascent
mRNA occurs in bursts and degrade after delay time 𝜏. The burst frequency 𝛼 = 0.0282, the mean burst size b = 3.46 and 𝜏 = 120. (B) Refractory
model simulation results (104 samples). The gene has three states, G0, G1 and G2, and can switch from one state to another. Moreover, nascent
mRNA is produced only when the gene is in state G2. The parameters are k1 = 0.15, k2 = 0.1, k3 = 0.05, k4 = 10 and 𝜏 = 1.

https://doi.org/10.1371/journal.pcbi.1012919.g002

concentration-based gene regulatory models, it would be useful to first perform a conversion
from concentration-based models to molecule-based models. Here we demonstrate such a
conversion in a lung cancer transition gene network model.

The network underlying lung cancer phenotypic transdifferentiation has been proposed
and validated in recent studies of AST, which are closely related to drug-resistance during
targeted therapies [10–12] (Fig 4A). The AST network has four core transcription factors:
FOXA2 (F), NKX2-1 (N), P63 (P) and SOX2 (S). Among them, FOXA2 and NKX2-1 are in
the adenocarcinoma lineage, whereas P63 and SOX2 are in the squamous carcinoma lineage.
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Fig 3. RNA Velocity model simulation results. (A) Simulation results for RNA Velocity model without delay (2× 104 samples). The simulation is composed of
an up-regulation phase (both production and degradation) and a down-regulation phase (degradation-only). In the first phase, 𝛼 = 1, 𝛽 = 1 and 𝛾 = 0.2 for the
reaction time t = 50. In the second phase, 𝛼 = 0, 𝛽 = 1 and 𝛾 = 0.2. (B) Simulation results for RNA Velocity model with delay in degradation (2 × 104 samples). RNA
degradation is specified as a delayed reaction. In the first (up-regulation) phase: 𝛼 = 1, 𝛽 = 1 and 𝜏 = 3. In the second (down-regulation) phase: 𝛼 = 0, 𝛽 = 1 and
𝜏 = 3.

https://doi.org/10.1371/journal.pcbi.1012919.g003

The set of ODEs describing this network is as following [11]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dF
dt
= 𝛼F
1 + a1P2 + a2S2

– dFF

dN
dt
= 𝛼N

1 + F2

1 + a3F2 + a4S2
– dNN

dP
dt
= 𝛼P

1 + S2

1 + a5S2 + a6N2 – dPP

dS
dt
= 𝛽S

S2

a27 + S2
+ 𝛼S
1 + a8F2 + a9N2 – dSS

All these proteins are described in terms of concentrations [11], and thus it is a prerequi-
site to convert to a molecule-based model by rewriting these ODEs.

Given the concentration (xmoles per liter, or mol/L) and the number of molecules (X), we
have the the relationship X = xVNA, where NA ≈ 6.023 × 1023 is the Avogadro constant denot-
ing the number of molecules in one mole, and V is the system volume. Whenever the system
volume is not specifically modeled, we can define B =VNA and simplify the relationship as
X = Bx. In the following simulations, we used B = 6023 that corresponds to a system volume
of V = 10–20 liters [29].

Taking the first equation of the above AST network model as an example, we will show
how to deduce its molecule-based version below. In this equation, FOXA2 is inhibited by P63
and SOX2 (the first term on the right-hand side) and undergoes spontaneous degradation
(the second term),

dF
dt
= 𝛼F
1 + a1P2 + a2S2

– dFF (1)
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Fig 4. Modeling lung cancer AST network and its perturbation with a SOX2 degrader. (A) Lung Cancer AST Network and the corresponding
stochastic equations. Parameters are 𝛼N =𝛼P = 1, dF = dN = dP = 1, 𝛼1 =𝛼2 =𝛼6 =𝛼8 =𝛼9 = 1, 𝛼F = 2.9, 𝛽S = 1.3, 𝛼3 = 0.8, 𝛼4 =𝛼7 = 2, 𝛼5 = 0.8,
dS = 0.4 with different 𝛼S. The control parameter is 𝛼S. (B) The potential landscape is approximated by simulating a large number of molecules
corresponding to concentrations (3× 103 samples) with parameter values 𝛼S = 0.05, 𝛼S = 0.2, and 𝛼S = 0.8, respectively representing the adeno-
carcinoma state, the intermediate state, and the squamous carcinoma state. FOXA2 and SOX2 amounts are chosen to visualize the landscape. (C)
Principle of SOX2-targeted degradation by the PROTAC technique. The PROTAC molecule here is designed to recognize SOX2 proteins and to
recruit E3 ligases to induce an addition of ubiquitin (Ub) proteins onto SOX2, which causes degradation of SOX2 subsequently. (D) Application of
a SOX2 degrader to the squamous carcinoma state (𝛼S = 0.8) reprogram the AST network back to the adenocarcinoma state. Here the treatment
effect of the SOX2 degrader is modeled as a delayed reaction (𝜏S = 1).

https://doi.org/10.1371/journal.pcbi.1012919.g004
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Multiplying B to both sides of Eq. 1, we have

dF
dt

B = B 𝛼F
1 + a1P2 + a2S2

– BdFF,

dF
dt

B = B B2𝛼F
B2(1 + a1P2 + a2S2)

– BdFF,

d(FB)
dt
= B3𝛼F
B2 + a1(PB)2 + a2(SB)2

– dF(FB).

Here, FB, PB, and SB respectively represent the numbers of molecules corresponding to
the concentrations F, P, and S. Thus, scaling the four molecules by a factor of B, we obtain the
following molecule-based version of equation,

dF
dt
= B3𝛼F
B2 + a1P2 + a2S2

– dFF. (2)

Similarly, We can obtain the other three equations. Together, the four molecule-based
version of equations of the system are as following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dF
dt
= B3𝛼F
B2 + a1P2 + a2S2

– dFF

dN
dt
= B𝛼N

B2 + F2

B2 + a3F2 + a4S2
– dNN

dP
dt
= B𝛼P

B2 + S2

B2 + a5S2 + a6N2 – dPP

dS
dt
= B𝛽S

S2

B2a27 + S2
+ B3𝛼S
B2 + a8F2 + a9N2 – dSS

Modeling the lung cancer cell transition network with therapeutic
interventions
We stochastically simulated the molecule-based equations to illustrate how the system state
transits from the adenocarcinoma lineage to the squamous carcinoma lineage (Fig 4A). We
sought out to portray the quasi-potential landscape of the network, which is also an evalua-
tion of the capability of our package in simulating Waddington’s landscapes.

Stochastic simulation produces large numbers of molecules for each protein that better
correspond to concentrations. We collected dynamical samples with random initiation and
appropriate noise, estimated the frequency P in two-dimensional bins (FOXA2 and SOX2 as
variables), and the quasi-potential U can be approximated through U≈ – lnP (Fig 4B). When
𝛼S is low (0.05), the system converges to a single stable point of FOXA2-high and SOX2-low,
which corresponds to the lung adenocarcinoma phenotype (Fig 4B). When 𝛼S is at an inter-
mediate level (0.2), the system has two stable points simultaneously, suggesting a mixture of
lung adenocarcinoma and squamous carcinoma phenotypes (Fig 4B). When 𝛼S is large (0.8),
the system again converges to a single stable point but of FOXA2-low and SOX2-high, which
corresponds to the lung squamous carcinoma phenotype (Fig 4B). Taken together, stochas-
tic simulation of this system clearly demonstrates the bistability of two phenotypic states of
lung cancer, as well as the qualitative transition from FOXA2-high to SOX2-high when 𝛼S
increases dramatically.
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From the therapeutic perspective, blocking lung cancer AST might reprogram squamous-
state cells back to the original adenocarcinoma state and re-sensitize them to anticancer
drugs. We can see that SOX2 plays a critical role in the AST network, based on above simula-
tions, making it a seemingly candidate target for blocking AST. The technical challenge, how-
ever, is that transcription factors (TFs) like SOX2 are often considered “undruggable” with
conventional inhibitors [30]. Recent advances in the proteolysis-targeting chimera (PROTAC)
technology might alleviate this issue with rationally designed TF degraders [31]. In principle,
SOX2-targeting PROTACs could be developed to degrade SOX2 (Fig 4C). Although research
in this direction is still in its early stage [30] and it remains largely unclear whether SOX2
PROTACs would effectively block AST, we could test this rationale through model-based
stochastic simulations. To model the effect of SOX2 degraders, we represent it as a delayed
SOX2 protein degradation reaction (Fig 4D). Interestingly, whereas the system was stabilized
in the squamous state given a large 𝛼S (0.8), in silico addition of SOX2 degraders successfully
produces a ‘reprogramming’ effect that pushes the system back to its original adenocarcinoma
state (Fig 4D).

In conclusion, DelaySSA not only captures the potential landscapes underlying gene regu-
latory networks, but also proves to be highly valuable in simulating therapeutic interventions
of network nodes.

Computational efficiency
We have taken advantages of the Rcpp package to accelerate the simulation processes. Rcpp
allows the incorporation of fast C++ routines within the R framework. In addition, we also
employed a dynamical memory allocation mechanism to reduce the need of frequent mem-
ory allocation at each iteration during simulation, which reveals significant improvements for
prolonged sampling.

We first compared the three delay algorithms in Rcpp-accelerated DelaySSA on the clas-
sical Bursty and Refractory models. DelayDirect and DelayRejection are faster on the Bursty
model, whereas DelayMNR is faster on the Refractory model (Fig C in S1 Appendix). We fur-
ther evaluated the Genetic Toggle Switch model with or without delays (see S1 Appendix for
model details). There are slight differences among the three non-delay algorithms, whereas all
three delay algorithms perform similarly (Fig D in S1 Appendix).

To compare the Rcpp-accelerated version of algorithms with the non-accelerated pure R
version, we benchmarked the running time by simulation on all the three above models. As
expected, optimization with Rcpp has significantly improved the computational efficiency
for all algorithms, almost 10 times faster than their corresponding unoptimized versions on
the Refractory and Toggle Switch models (Fig E in S1 Appendix). In comparison with the
respective algorithms developed in Julia, a programming language featured by efficiency,
Rcpp-optimized version of algorithms show a closely comparable performance (Fig E in S1
Appendix), indicating a high efficiency of the current DelaySSA implementation.

Availability and future directions
DelaySSA (https://github.com/Zoey-JIN/DelaySSA and https://github.com/FangZY-Lab/
DelaySSA-dev) currently implements a range of stochastic simulation algorithms with or
without delays. For both simple and more complex biochemical gene networks, it already
reaches a fast execution time. For extremely large-scale networks, further reducing the com-
putation time remains a valuable direction in the future. Interesting explorations include
integration of multi-scale approaches, hybrid deterministic-stochastic algorithms, and
dimensionality-reduction methods.
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In biological research, stochastic simulations offer several advantages compared to actual
biological experiments. Experiments typically require significant expenditure whereas simu-
lations primarily depend on computational resources. Biomedical experiments are often time-
consuming whereas simulations can be completed in a shorter time. In certain cases, experi-
mental techniques might not even yet be fully developed (such as in the above SOX2-targeting
example). In all these scenarios, stochastic simulations offer a unique and important value in
rationale development or evaluation.

Given the importance of SSA in simulation of biochemical and molecular networks, it is
surprising that few user-friendly packages have been developed in popular programming lan-
guages such as R, Python and Matlab, especially those non-Markovian algorithms capable of
handling time delays inherent in more realistic biological systems. This new implementation
DelaySSA fills the current gap in three programming languages altogether, thus providing a
powerful platform for enormous researchers from different backgrounds and for applications
in diverse fields. By integrating both traditional SSA and delayed SSA, DelaySSA provides a
unified and intuitive interface for a wide range of stochastic simulations, allowing users to
describe and simulate reaction networks with minimal coding effort. In addition, DelaySSA
does not require additional dependencies, simplifying the installation and setup process. A
series of concrete tutorials are also accompanied in the Github websites of DelaySSA.

One of the significant benefits of DelaySSA is its ability to generate accurate simulation
data. This feature is particularly valuable for researchers who may lack precise experimental
data [32–35], enabling them to test and improve biological models, and to optimize or fine
tune computational methods according to simulated data. As we have demonstrated in the
lung cancer AST intervention example, although targeting SOX2 with PROTAC is practical in
principle, in reality it is not yet fully established. Nonetheless, with DelaySSA we could simu-
late a therapeutic intervention model with the SOX2-targeting PROTAC modeled as a delayed
degradation reaction. Our simulation data allow a portrait of the ‘reprogrammed’ system state
landscape after SOX2-degrader intervention, theoretically predicting the efficacy of SOX2-
based intervention for blocking lung cancer AST. This provides a new valuable clue for future
research on blocking drug-resistant AST in lung cancer [12,36,37]. Following our applica-
tion case, researchers could further perform valuable applications to reveal novel biomedical
insights in various studies of systems biology.

Supporting information
S1 Appendix. Mathematical foundations and supplementary data.The S1 Appendix file
contains Mathematical Foundations, Algorithmic Details, and Supplementary Data which
includes five supplementary figures.
(PDF).
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