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Abstract

Identifying the potential compound–protein interactions (CPIs) plays an essential role in drug development. The computational
approaches for CPI prediction can reduce time and costs of experimental methods and have benefited from the continuously improved
graph representation learning. However, most of the network-based methods use heterogeneous graphs, which is challenging due to
their complex structures and heterogeneous attributes. Therefore, in this work, we transformed the compound–protein heterogeneous
graph to a homogeneous graph by integrating the ligand-based protein representations and overall similarity associations. We then
proposed an Inductive Graph AggrEgator-based framework, named CPI-IGAE, for CPI prediction. CPI-IGAE learns the low-dimensional
representations of compounds and proteins from the homogeneous graph in an end-to-end manner. The results show that CPI-IGAE
performs better than some state-of-the-art methods. Further ablation study and visualization of embeddings reveal the advantages
of the model architecture and its role in feature extraction, and some of the top ranked CPIs by CPI-IGAE have been validated by a
review of recent literature. The data and source codes are available at https://github.com/wanxiaozhe/CPI-IGAE.

Keywords: compound–protein interaction prediction, homogeneous graph, end-to-end learning, inductive graph neural network

Introduction
Identification of potential compound–protein interac-
tions (CPIs) plays an essential role in drug hit identifica-

tion, understanding drug side effects, and finding new
indications of existing drugs [1, 2]. However, it is also
a costly, laborious and time-consuming step through
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wet-lab experiments due to the need of searching over
large compound space [3]. Computational approaches
can significantly reduce the time and costs of exper-
imental methods, and thus, it is of high interest to
develop computational models that can provide reliable
CPI candidates for the biologists. Among the traditional
in silico methods for predicting CPIs, one commonly
used is molecular docking [4–6]. Although remarkable
improvements have been made in this area, practical
challenges are still open, such as protein structural flexi-
bility, appropriate scoring function and high requirement
of computational resources [3].

In the past decade, with massive biomedical data being
collected and accessible, along with the advances of
data mining technologies, which have been successfully
applied in many areas, numerous data-driven compu-
tational methods have been developed rapidly for CPI
prediction [2, 3, 7]. According to the types of input data,
these methods can be roughly divided into feature-based
methods and network-based methods [8].

Feature-based methods feed descriptors that repre-
sent the features of compounds and proteins to the
downstream machine learning algorithms to model CPI.
Commonly used descriptors for compounds are molec-
ular fingerprints that include the extended connectivity
fingerprints (ECFPs) [9], the Molecular ACCess System
(MACCS) keys [10] and so on. For proteins, the avail-
able descriptors include the composition–transition–
distribution descriptors [11], the position-specific scoring
matrix (PSSM) [12] and so on. With the wide application
of natural language processing methods, sequential
features such as the simplified molecular input line
entry system (SMILES) [13] for compounds and the amino
acid sequences for proteins can be directly used as
input to the downstream models. Different statistical
methods were applied as the data-mining algorithm
at the early stage. The similarity ensemble approach
(SEA) [14] relates proteins based on the statistically
calculated similarity of their respective ligands, which
was further applied for target identification success-
fully [15]. Many machine learning models were also
proposed to mine the similarity from input features,
with improved predictive performance. For instance,
TarPred [16, 17] integrates the k-nearest neighbors (KNN)
algorithm with the molecular similarity-based searching
strategy for target identification and shows a significant
improvement compared with the SEA. Recently, deep
learning algorithms have shown further enhancement
due to their capability to explore complex nonlinear
information behind the input features. Various effective
deep learning-based models were proposed to predict
potential CPIs, such as deep belief networks in DeepDTIs
[18], convolutional neural networks in DeepDTA [19],
tranformer architecture in TransformerCPI [2] and so
on. These feature-based methods improve the accuracy
of CPI prediction to some extent and can be generalized
to the CPIs outside their training dataset due to their
relatively strong scalability. However, these methods do

not take compound–compound similarities and protein–
protein interactions into account explicitly [20].

Network-based methods first construct a network
from the collected dataset and then use the graph-
related algorithms to explore useful information from
the network for CPI prediction. The network can describe
the interactions between various biological entities,
such as compounds and proteins. Bipartite graphs are
a frequently used structure [21], and more complex
heterogeneous graphs including more relation types (e.g.,
drug–disease relations and target–disease relations) have
been proposed [22–25]. Although a heterogeneous graph
can integrate multiple types of entities and interactions
in a single network, it is still challenging to aggregate
heterogeneous attributes of different types of nodes
or edges to obtain the graph representation [26]. In
the early stage, network propagation algorithms were
used for feature extraction, such as random walk with
restart in DTINet [22]. The extracted features are then
used as inputs of simple machine learning models to
predict CPIs, such as the Hybrid algorithm in DT-Hybrid
[27], the support vector machine (SVM) in Bipartite
Local Model with Neighbor-based Interaction-profile
Inferring (BLMNII) [21] and the matrix completion in
DTINet [22]. These models show moderate performance
partly because of their lack of the nonlinear expressive
power. Furthermore, the feature extraction and the CPI
prediction of these models are independent steps, i.e. the
parameters involved in the network propagation algo-
rithms cannot be optimized by the CPI prediction task
[26]. In recent years, graph neural networks (GNNs) have
been utilized in extracting representations for hetero-
geneous graphs, such as graph convolutional networks
in NeoDTI [23], and graph convolutional autoencoders
and generative adversarial networks (GANs) in GANDTI
[28]. Deep models have shown stronger performance
than these two-step methods in CPI prediction. However,
as GNNs were designed to process the homogeneous
graph, they project the nodes of different types into
a common feature space via direct aggregation and
concatenation, which may lead to substantial loss of
the valuable heterogeneous information. Moreover, most
of these graph-related algorithms are transductive and
cannot be easily adapted to CPIs outside the dataset.

To overcome the drawbacks of heterogeneous graphs,
we transformed the compound–protein heterogeneous
graph to a homogeneous graph with directed and
weighted edges by integrating the ligand-based protein
representations and overall similarity associations. The
ligand-based representation has been proved to be an
efficient way for protein characterization [29] and has
been widely used such as in TarPred and SEA. The
specially designed homogeneous graph can simplify
the graph structure and maintain the consistency
of node and edge attributes, which is beneficial for
message aggregating and updating in the graph, as most
GNN operations are aimed at homogeneous graphs. In
addition, the IGAEs for representation learning, which
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were adapted from the inductive GNN GraphSAGE,
makes it possible to predict CPIs outside the dataset.
Thus, we propose a novel inductive GNN model, named
CPI-IGAE, to identify CPIs based on a specially designed
homogeneous graph. Via comprehensive comparisons of
performance, we show that our model outperforms some
feature-based methods and network-based methods and
has competitive performance with molecular docking.
The ablation study and visualization of embeddings
further demonstrate the effectiveness of our method.
Moreover, some of the top ranked CPIs have been
validated by a review of recent literature, which indicates
its ability to provide potential CPI candidates for further
explorations.

In summary, the major contributions of this research
are summarized as follows:

(i) To better conduct message passing and aggregating
in graph, we transformed the heterogeneous graph
to a homogeneous graph with directed and weighted
edges.

(ii) We adapted the inductive aggregators from Graph-
SAGE to fit the CPI prediction task and this enables
our methods to predict CPIs outside the modeling
dataset, which improves the generalization ability of
this method.

(iii) We proposed an end-to-end framework, which can
help learn the task-specific node embeddings for CPI
prediction.

(iv) The comprehensive performance evaluations of this
model indicate that CPI-IGAE outperforms some
state-of-the-art CPI prediction methods.

Methodology
As shown in Figure 1, this work can be divided into four
parts: (i) collection of modeling dataset; (ii) construction
of a homogeneous graph with directed and weighted
edges; (iii) IGAEs for obtaining the low-dimensional node
embeddings and (iv) a discriminator for CPI identifica-
tion.

Collection of modeling dataset
As shown in Figure 1A, the modeling dataset was col-
lected from ChEMBL (v23). Here, only CPIs meeting the
following criteria were used:

(i) the protein tax_id is 9606, which means the
sequence is derived from human;

(ii) the protein type is ‘single protein’;
(iii) the assay relationship type is ‘B’, which means a

direct protein–ligand interaction;
(iv) the target confidence score is 9, which indicates

a direct assignment of single protein target to the
ChEMBL ligand with a high degree of confidence and

(v) the bioactivity type is Ki, Kd, IC50 or EC50, and the
activity value is better than 300 nM using relation
‘=’ or ‘<’.

Then, data cleaning was made to merge the com-
pounds which have same structures but different
ChEMBL ids, and the same operation was used for the
protein targets. Next, the compounds were clustered
according to their ECFPs with a distance cutoff of 0.4
using RDKit [30], and the center point of each compound
cluster was selected. The purpose of this operation is
to avoid the ‘analogue bias’ [31], which means that
the predictive ability can be improved artificially if the
modeling dataset contains many compounds with the
same chemotypes. Subsequently, to ensure that the
protein targets within the training set can be efficiently
represented by their ligands, the proteins with less than
five ligands were removed. Finally, a total of 55 212 CPIs
including 34 908 compounds and 784 protein targets were
used to train the model.

The 34 908 compounds were randomly split into train-
ing, validation and test set with a ratio of 8:1:1, with
guaranteeing that each protein has at least one ligand in
each set. Finally, the training set has 29 058 compounds
with 42 025 CPIs, the validation set has 2939 compounds
with 6566 CPIs and the test set has 2911 compounds with
6621 CPIs.

Construction of a homogeneous graph
As shown in Figure 1B, a homogeneous graph with
directed and weighted edges was designed to organize
the collected dataset.

In the training process, 42 025 CPIs involving 29 058
compounds and 784 proteins in the training set were
used to construct a graph of 29 842 nodes to learn the
parameters of CPI-IGAE. (i) For compound nodes, the
feature is the 1024 bit ECFPs. (ii) For protein nodes, the
1024 bit ECFP-like vector is constructed by its ligands in
the training set. More specifically, for each bit of a protein
feature vector, if more than one-third of the bit of its
ligands in the training set is 1, it is set to 1, otherwise
0. The value ‘1/3’ was chosen due to its best performance
(Supplementary Document Section 1.1 available online
at http://bib.oxfordjournals.org/).

Edges in this graph were constructed by the Dice
similarity coefficients (DSCs) [32] between the node
features. For each node, 40 incoming edges to it were
constructed from the top 20 compound nodes and
the top 20 protein nodes with DSCs to it, because
choosing top 20 has been tested to show the best
tradeoff between model performance and runtime
(Supplementary Document Section 1.2 available online
at http://bib.oxfordjournals.org/). The corresponding
DSC values were used as weights of these directed edges.
Besides, a self-connected edge was set for each node
with a weight of 1. Until now, we have constructed a
homogeneous graph with directed and weighted edges.

In the testing process, the DSCs of the new compounds
relative to all nodes in the modeling graph need to be
calculated. Then, the top 20 compound nodes and protein
nodes with the largest DSCs will be chosen to construct
the edges pointing to the new compounds, and thus, the
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Figure 1. The workflow of CPI-IGAE. (A) Collection of the modeling dataset. (B) Construction of a homogeneous graph with directed and weighted edges.
(C) IGAEs to project the nodes into a latent space. (D) Discriminator to transform the node embeddings in the latent space to probabilities of CPI.

new compounds can be added to the modeling graph to
form a larger inference graph for testing.

IGAEs for feature extraction
The IGAE inspired by GraphSAGE enables the CPI-
IGAE to predict new CPIs outside the modeling dataset.
Some adjustments were made for the GraphSAGE
aggregators to better meet our requirements (see
Supplementary Document Section 2 available online at
http://bib.oxfordjournals.org/). For each node v in the
k-th aggregator, all the previous embeddings hk−1

ui
from

its full neighbor set N(v) are first aggregated together
through a max-pooling operation according to:

hk
N(v) = max

({
σ

(
Wpool • suiv

• hk−1
ui

+ b
)

, ∀ui ∈ N(v)
})

,

(1)
where the weight suiv

of the directed edge from node ui

to v is multiplied by the learnable pooling matrices Wpool

for neighborhood information aggregation. Edge weights
can provide useful initial information to improve the
accuracy and speed of training, and the directed edges
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can prevent information redundancy caused by repeated
aggregations. σ is a nonlinear activation function using
the rectified linear unit. Then, the aggregating informa-
tion hk

N(v) is concatenated to the previous embedding hk−1
v

according to

hk
v = σ

(
Wk • concat

(
hk−1

v , hk
N(v)

))
, (2)

where Wk represents learnable updating matrices and hk
v

is the updated node embedding.
Since the attributes of nodes or edges in this homoge-

neous graph have the same meaning, they can be fused
directly through the operations. Each aggregator is in
charge of one-hop distance neighbors.

Discriminator for CPI identification
Through the IGAEs, every node in the graph is rep-
resented as a 500 bit vector, which can be regarded
as being projected to a low-dimensional latent space.
These information-intensive embeddings contain the
structural information and the overall relationships. For
the CPI prediction task, we aim to shape this latent space
to follow the constraint that a compound node and a
protein node would be closer to each other if there is an
interaction between them. A discriminator was designed
to covert the distance between a compound node and
a protein node in the latent space into a probability of
CPI. Given a compound–protein pair, the discriminator is
defined as:

ŷ = σ
(
embm • embt

)
. (3)

As shown above, the probability ŷ of existing an inter-
action between this pair is obtained by using the sigmoid
function σ to regularize the dot product of the compound
node embedding embm and the protein node embedding
embt to a range of 0 to 1.

CPI prediction is a sparsely labeled problem, i.e. the
number of negatives is much higher than that of pos-
itives, whereas positive samples greatly dominate neg-
ative samples in the most of open-sourced database.
Therefore, the number of negative samples in this work
was set to 10 times of the positives in order to mimic
this typical application scenario [23]. An adjusted neg-
ative sampling was used to generate negative samples
(Supplementary Document Section 1.3 available online
at http://bib.oxfordjournals.org/). We use Focal Loss to fit
the predict score and the label value [33], which is a loss
function for dealing with the hard-classified examples in
dense object detection, and can be regarded as a dynamic
scaled cross entropy loss as below:

FL =
{ −α

(
1 − p

)γ log(p), if y = 1
− (1 − α) pγ log

(
1 − p

)
, if y = 0

(4)

where y is the true label, p is the predicted result,γ (γ ≥ 0)

is a tunable parameter and (1 − p)γ is a modulating factor
which can focus training on hard-classified samples.

The model was optimized through grid hyperparameter
searching along with an early stopping strategy. The
implement details are shown in the Supplementary Doc-
ument available online at http://bib.oxfordjournals.org/.

Results
Model performance
CPI prediction can be treated as a binary classification
task. Thus, the performance of this model was evaluated
by the area under the precision-recall curve (AUPRC)
and the area under the receiver-operating-characteristic
curve (AUROC). The best performance model shows an
AUPRC of 0.956 and an AUROC of 0.985 on the test set,
which was chosen for further evaluations.

Comparison with feature-based methods

To evaluate the inductive generalizability of CPI-IGAE,
we tested our model on two external datasets from
DrugBank (v5.1.1) [34] and Therapeutic Target Database
(TTD) (v6.1.01) [35], which have different distributions
from the modeling dataset (Supplementary Figure S5A
available online at http://bib.oxfordjournals.org/). On
these two convincing external datasets, we compared
CPI-IGAE with feature-based methods which can be
divided into ligand-based methods and chemogenomics-
based methods [36]. The formers are SEA [14, 15] and
TarPred [16, 17], and the latters are self-build SVM,
random forest and a fully connected neural network,
as well as previous reported models including DeepDTA
[19], GraphDTA [37] and TransformerCPI [2]. Details
for this experiment can be found in Supplementary
Document Section 4.1 and Table S2 available online
at http://bib.oxfordjournals.org/. The results show that
CPI-IGAE outperforms other methods according to
AUROC and AUPRC (Figure 2A–B and D–E). Particularly,
although the number of negative samples is 10 times
of the positive ones, the AUPRC of CPI-IGAE is over
5% higher than the AUPRCs of three state-of-the-
art chemogenomics-based methods, i.e. DeepDTA,
GraphDTA and TransformerCPI, and 7% higher than
that of the best ligand-based method TarPred, which
demonstrates the convincing predictive ability of CPI-
IGAE, as AUPRC can provide a more informative criterion
than AUROC on imbalanced datasets [38]. Moreover,
we conducted more detailed evaluations of CPI-IGAE
compared with the best ligand-based method TarPred
on the external DrugBank dataset.

(i) We first compared the model performance for
compounds with various degrees of similarity to the
training compounds, because CPI-IGAE and TarPred
both use similarity information. As Figure 3A shows,
the performance of TarPred becomes worse for
the test compounds with low similarities to the
training set while CPI-IGAE is robust to compounds
with both high and low similarities to the training
set. Moreover, CPI-IGAE significantly outperforms
TarPred within every similarity interval.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac073#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac073#supplementary-data
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Figure 2. Comparison results with other methods. (A) Comparison with other feature-based methods on DrugBank in terms of AUPRC. (B) Comparison
with other feature-based methods on TTD in terms of AUPRC. (C) Comparison with other network-based methods on the NeoDTI dataset using 10-fold
cross-validation in terms of AUPRC. (D) Comparison with other feature-based methods on DrugBank in terms of AUROC. (E) Comparison with other
feature-based methods on TTD in terms of AUROC. (F) Comparison with other network-based methods on the NeoDTI dataset using 10-fold cross-
validation in terms of AUROC.

(ii) We then compared the model performance for pro-
teins with various number of ligands, as CPI-IGAE
and TarPred both use ligand-based representation
of proteins. Figure 3B shows that CPI-IGAE is robust
to proteins with various number of ligands, while
TarPred is biased towards the targets with more
ligands. CPI-IGAE significantly outperforms TarPred
with AUROCs greater than 0.8 when ligand num-
bers are less than 100 (Figure 3B). Because most
of the ligand numbers of the target are less than
100 (Supplementary Figure S5B available online at
http://bib.oxfordjournals.org/), this further confirms
the applicability of CPI-IGAE.

(iii) We further compared the model performance for
various protein families, because it is important
to check whether the prediction model is biased
towards one particular protein family. The pro-
teins were mapped to different protein families
according to the annotations in the ChEMBL (v23),
and there are mainly five classes: 156 G-protein-
coupled receptors (GPCRs), 180 kinases, 77 proteases,
28 nuclear receptors and 63 transport proteins
(including 38 ion channels and 25 transporters).
Figure 3C reveals that CPI-IGAE is robust across all

of the five protein families and performs better than
TarPred.

Although TarPred and CPI-IGAE both utilize the ligand-
based representations for proteins, TarPred uses the KNN
algorithm for data mining while CPI-IGAE uses the GNN
architecture. GNNs can deeply explore the overall asso-
ciation information among the data and learn mean-
ingful task-specific node representations in an end-to-
end manner. According to the embedding visualization
shown in Figure 4C, targets within the same classes are
spatially grouped, indicating that CPI-IGAE can learn
distinguishable characteristics of different proteins.

Comparison with network-based methods

We then compared CPI-IGAE with some heterogeneous
network-based methods, including DT-Hybrid [27],
BLMNII [21], Heterogeneous Network Model (HNM)
[39], Multiple Similarities Collaborative Matrix Fac-
torization (MSCMF) [40], NetLapRLS [41], DTINet [22],
NeoDTI [23] and End-to-End heterogeneous Graph
representation learning-based framework for Drug-
Target Interaction prediction (EEG-DTI) [20]. This com-
parison is conducted on the dataset from NeoDTI.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac073#supplementary-data
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Figure 3. More detailed performance evaluations of CPI-IGAE. (A) Violine plot to show the distribution of AUROCs of CPI-IGAE (red) and TarPred (blue)
for test compounds in the DrugBank dataset with the increase of their maximum Tanimoto similarities relative to the training compounds. (B) Violine
plot to show the distribution of AUROCs of CPI-IGAE (red) and TarPred (green) for targets in the DrugBank dataset with the increase of their ligand
numbers in the train set. (C) Violine plot to show the distribution of AUROCs of CPI-IGAE (red) and TarPred (yellow) for targets in the DrugBank dataset
of different protein families. (D) Results of the ablation studies in terms of AUPRC in the external test set DrugBank and TTD. Note: The effects of the
two models were compared using the Mann–Whitney–Wilcoxon one-tailed hypothesis test with Bonferroni correction of P-values ∗∗∗∗, P < 0.0001; ∗∗∗,
0.0001 < P ≤ 0.001; ∗∗, 0.001 < P ≤ 0.01; ∗, 0.01 < P ≤ 0.05 and ns, 0.05 < P ≤ 1.0.

The details of the experiment setting can be found
in Supplementary Document Section 4.2 available
online at http://bib.oxfordjournals.org/. Figure 2C and F
shows that CPI-IGAE outperformed these baselines, with
significant improvement (5% in terms of AUPRC and 3%
in terms of AUROC) over the second-best method NeoDTI
(the specific values are shown in Supplementary Table S3
available online at http://bib.oxfordjournals.org/). The
results demonstrate the effectiveness of our specially
designed homogeneous graph. We also conducted per-
formance comparisons on several challenging scenarios
provided by the original NeoDTI paper, which can be
found in Supplementary Section 4.2 available online at
http://bib.oxfordjournals.org/.

Comparison with molecular docking

We also conducted virtual screening on the collected LIT-
PCBA dataset using CPI-IGAE and a molecular docking

method Surflex-Dock (v.3066) [42]. The details of the
experiment setting can be found in Supplementary Sec-
tion 4.3 available online at http://bib.oxfordjournals.org/.
The enrichment factors in true actives at a constant 1%
false positive rate (EF1%) was chosen as the performance
indicator. As Table 1 shows, the average of all the results
of CPI-IGAE is close to that of the molecular docking. This
comparison demonstrates that CPI-IGAE has competitive
performance with molecular docking. Moreover, for some
targets such as Estrogen receptor alpha (ESR1), Mech-
anistic target of rapamycin (MTORC1) and vitamin D3
receptor (VDR), CPI-IGAE performs better than molecular
docking, while for some targets like Aldehyde dehydro-
genase 1 (ALDH1), Glucocerebrosidase (GBA) and Pyru-
vate kinase muscle isoform 2 (PKM2), molecular docking
performs better than CPI-IGAE. This indicates that our
model can be complementary with traditional computa-
tional methods in CPI prediction task.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac073#supplementary-data


8 | Wan et al.

Figure 4. Visualization of embeddings. (A) Visualization of the embeddings of 12 randomly selected targets and their ligands on the surface of a
hypersphere by Uniform Manifold Approximation and Projection (UMAP) with the Haversine metric. (B) 2D map projection of (A). (C) Visualization
of the embeddings of GPCRs (red) and kinases (blue) on the surface of a hypersphere by UMAP with the Haversine metric. (D) The cluster tree generated
from hierarchical clustering using the embeddings of 25 proteins which were randomly selected from the mixed up GPCRs and kinases in (C). (E) The
phylogenetic tree generated from MSA of Clustal Omega using the amino acid sequences of the 25 proteins. (F) The heat map to show the Euclidean
distance between the pocket vectors of the proteins, and different colors of the protein names corresponds to different clusters in (D). (G) The pockets of
GPR55 (red) and PIK3C3 (blue) found by SiteMap. (H) The cluster tree of the ligands of G-protein coupled receptor 55 (GPR55) (red) and Phosphatidylinositol
3-kinase catalytic subunit type 3 (PIK3C3) (blue) by hierarchical clustering using ECFPs. G5 and P2 are the most similar compounds in the ligand set,
and the similar fragments of them are marked in red.
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Table 1. Comparison results of CPI-IGAE and molecular docking

Target Ligands in the
train set

Actives: decoys Max_sim to the train
set (actives: decoys)

CPI-IGAE EF1% Molecular docking
(Surflex-Dock v.3066) EF1%

ADRB2 82 4: 78120 0.1633: 0.2110 0 0
ALDH1 7 1344: 25868 0.1829: 0.1745 0.744 1.25 ± 0.23
ESR1 240 28: 2632 0.2309: 0.2172 3.679 Agonist: 0.00/Antagonist:

1.60 ± 2.03
FEN1 5 92: 88850 0.1524: 0.1548 1.087 3.26
GBA 25 41: 74013 0.1725: 0.1711 0 4.47 ± 3.59
IDH1 3 9: 90512 0.1403: 0.1580 0 0.79 ± 2.97
MAPK1 89 77: 15657 0.2186: 0.2133 1.302 1.99 ± 1.38
MTORC1 210 24: 8243 0.2247: 0.2283 4.201 1.52 ± 2.10
OPRK1 288 6: 67454 0.3336: 0.2379 0 0
PKM2 5 136: 61380 0.1630: 0.1579 0 0.90 ± 0.61
PPARG 140 6: 1302 0.3408: 0.1953 16.77 5.56 ± 8.13
VDR 18 165: 66635 0.1378: 0.1525 3.636 0

Average – – – 2.618 1.64 ± 1.62

IDH1, Isocitrate dehydrogenase; OPRK1, Kappa opioid receptor; PPARG, Peroxisome proliferator-activated receptor γ

Model ablation study
To investigate which part of the specially designed homo-
geneous graph model attributes to its effectiveness, we
further conducted an ablation study with the following
setup:

(i) No EdgeWeight: we removed the edge weights to
form an unweighted homogeneous graph.

(ii) No ProteinNode: we removed the protein nodes
to construct a different homogeneous graph with
only compound nodes, and the CPI prediction task
was converted to a multilabel node classification
task where the node labels are the targets of
compounds.

(iii) Hinsage: we replaced the ligand-based ECFP-like
vectors with sequence-based vectors for protein
node features to construct a heterogeneous graph.
The sequence-based vectors were generated from
POSSUM [43] and were then cleaned to remove
the highly correlated bits to form 420 bit vectors.
HinSAGE is a variant of GraphSAGE extended for
heterogeneous graphs, which was developed in
StellarGraph (version 0.11.1) [44].

As shown in Figure 3D, these ablation procedures sig-
nificantly compromised the performance of CPI-IGAE.
From ‘-No EdgeWeight’, we can see the importance of
edge weights, which can provide useful initial informa-
tion to improve the accuracy and speed of training. The ‘-
No ProteinNode’ and ‘-Hinsage’ demonstrate the protein
features, especially our specially designed ligand-based
protein features, are essential for the effectiveness of
our homogeneous graph and can explain the perfor-
mance improvements of CPI-IGAE over the other pro-
tein sequence-based methods and heterogeneous graph-
based methods.

Embedding visualization
We employed the UMAP to visualize the node embed-
dings learned by CPI-IGAE. As the regularized dot product
used in our decoder can reflect the angular associa-

tion between a target and ligand embedding, the vec-
tors were projected onto a hypersphere by UMAP with
the Haversine metric to measure their distances on a
sphere [45]. Figure 4A shows the visualization of ran-
domly selected 12 targets and their ligands, and we also
transformed the 3D terrestrial globe to a 2D map and
obtained the result as shown in Figure 4B. As expected,
these results show that targets and their ligands are
clustered together, which can demonstrate that CPI-IGAE
can learn meaningful task-specific node representations.
This is attributed to the ligand-based protein representa-
tions of our homogeneous graph.

We further visualized the protein embeddings in the
same way. Figure 4C shows the embeddings of GPCRs
and kinases, which reveals that targets within the same
classes are spatially grouped. This is also the reason for
the aforementioned robustness of CPI-IGAE to various
protein families, i.e., CPI-IGAE can learn the character-
istics of different proteins to distinguish them correctly.
However, there are some nodes mixed up with the other
class, and the hierarchical clustering tree of their embed-
dings is consistent with the visualization (Figure 4D). In
contrast, the sequence-based phylogenetic tree gener-
ated from multiple sequence alignment(MSA) [46] sepa-
rates GPCRs and kinases clearly (Figure 4E). As CPI-IGAE
takes ligand-based representations for protein nodes to
create a homogeneous graph, the protein embeddings
of it can reflect the information of protein pockets
to a certain extent, thereby making the embedding-
based clustering differ greatly from the sequence-based
clustering.

To prove this, the Euclidean distance between the 3D-
structure-based pocket vectors of these proteins were
calculated. Based on the 3D protein structures collected
from the Protein Data Bank [47] and the AlphaFold pro-
tein structure database [48], the pocket-related parame-
ters were calculated by SiteMap (Schrödinger Suite 2017)
and then were normalized and concatenated to obtain
the pocket vectors. As a heatmap shown in Figure 4F,
the pocket vectors have smaller distances (deeper colors)
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Table 2. Top 20 predict scores of the DrugBank dataset

DrugBank_ID Protein_name (Gene_name) Predict_score Verification

DB04617 Cholinesterase (BCHE) 1.0 Proved in the literature [ 49 ] (the BCHE protein was
from equine serum)

DB04669 Mitogen-activated protein kinase
14 (MAPK14)

1.0 Unproved

DB06713 AR 1.0 Verified by DrugBank
DB00294 AR 1.0 Proved in the literature [ 50 ]
DB00367 AR 1.0 Verified by DrugBank
DB11619 AR 1.0 Verified by DrugBank
DB07356 Dipeptidyl peptidase 4 (DPP4) 1.0 Verified by DrugBank
DB07356 Dipeptidyl peptidase 8 (DPP8) 1.0 Unproved
DB08208 Dual specificity mitogen-activated

protein kinase kinase 1 (MAP2K1)
1.0 Verified by DrugBank

DB06813 Thymidylate synthase 1.0 Verified by DrugBank
DB06321 ALK tyrosine kinase receptor (ALK) 1.0 Unproved
DB07211 Cathepsin S (CTSS) 1.0 Unproved
DB00091 CTSL 1.0 Proved in the literature [ 56 , 57] (molecular

docking and MD simulation)
DB08755 Cathepsin D 1.0 Unproved
DB08755 Cathepsin K 1.0 Unproved
DB08755 CTSS 1.0 Verified by DrugBank
DB08755 CTSL 1.0 Unproved
DB08755 Calpain-1 catalytic subunit 1.0 Unproved
DB08755 CTSB 1.0 Unproved
DB00910 VDR 1.0 Verified by DrugBank

Note: Bold entries indicate that the new CPI was verified in the literature. ALK, Anaplastic lymphoma kinase

for the proteins being clustered into the same group
in Figure 4D. For example, Phosphatidylinositol 3-kinase
catalytic subunit type 3 (PIK3C3) (kinase) and G-protein
coupled receptor 55 (GPR55) (GPCR) have quite different
sequences but are clustered together by their embed-
dings. Their pockets are both formed between the helices
and are in similar shape and size (Figure 4G), which
makes their ligands share similar structures. As shown
in Figure 4H, some ligands of PIK3C3 and GPR55 are clus-
tered closely through hierarchical clustering using ECFPs.

Taken together, the visualization analysis demon-
strates that CPI-IGAE can learn the protein embeddings
that implicitly represent the features of the binding
pocket as it creates a homogeneous graph by using
ligand-based protein features. Therefore, CPI-IGAE can
project the embedding of targets and their ligands onto
closer points and thus outperform the methods based on
protein sequences as shown in the ablation test.

Some of the predicted novel CPIs were verified in
the literature
We list the top 20 CPIs with highest predict scores in
the DrugBank dataset (Table 2), and there are eight CPIs
already existing in the database which are marked as
‘Verified by DrugBank’. Among the rest of the predicted
novel CPIs, three pairs can be supported by previous
studies in the literature:

(i) DB04617 is an experimental compound with a target
of acetylcholinesterase in DrugBank. CPI-IGAE pre-
dicts DB0416 interacts with butyrylcholinesterase
(BCHE), and this can be verified by a previous work

[49], although the BCHE protein in this study was
from equine serum.

(ii) DB00294 is an approved progesterone receptor
agonist for long-acting contraception, which is also
known as etonogestrel. CPI-IGAE predicts DB00294
interacts with an androgen receptor (AR), and this
can be verified by a previous work [50].

(iii) The most worth mentioning is that CPI-IGAE
predicts DB00091 interacts with Procathepsin L
(CTSL). DB00091, also named cyclosporine, is
an approved calcineurin inhibitor known for its
immunomodulatory properties that prevent organ
transplant rejection and treat various inflammatory
and autoimmune conditions. Many studies [51–
54] including clinical research studies have proved
that cyclosporine is a therapeutic drug agonist
for coronavirus disease 2019 (COVID-19), which
is an ongoing global pandemic caused by severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Meanwhile, CTSL plays an essential role in
the entry of SARS-Cov-2 into the host [55]. This
predicted novel CPI may provide an insight into
the therapeutic of cyclosporine for COVID-19 and
has been verified through the molecular docking
and molecular dynamics (MD) simulations in the
literature [56, 57].

Specially, the targets of the novel CPI such as AR [58],
VDR [59], CTSL and Cathepsin B (CTSB) [60] have been
reported to be relevant for the treatment of COVID-19,
thus these new predicted CPIs that have not been veri-
fied are good candidates for wet experiment exploration.
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Overall, these novel CPIs predicted by CPI-IGAE with
literature supports further prove the strong predictive
power of this model.

Conclusion
In this paper, we propose an IGAE-based model, named
CPI-IGAE, for the CPI prediction task. To overcome
the challenges in heterogeneous graph representation
learning, a homogeneous graph was transformed from
the compound–protein heterogeneous graph by inte-
grating the ligand-based protein representation and
overall similarity associations. The low-dimensional
node embeddings are learned by IGAEs based on the
homogeneous graph in an end-to-end manner. Moreover,
it can be applied for new compounds outside the
modeling dataset.

Via comprehensive performance comparisons, we
show empirically that CPI-IGAE outperforms some state-
of-the-art methods for CPI prediction. The ablation tests
and analysis of embeddings obtained from the model
further demonstrate the effectiveness of our method.
Moreover, some of the predicted CPIs are verified in the
literature, which indicates its ability to provide potential
CPI candidates for further studies. Therefore, we believe
that CPI-IGAE is a powerful and practical tool for CPI
prediction, which can promote the development of drug
discovery and drug repurposing. In the future, we will
develop CPI-IGAE to incorporate more information in a
better homogeneous way into the graph. For example, as
the model shows the ability of characterizing the binding
pockets to some extent, introducing pocket information
to protein feature may further benefit the prediction of
less-studied proteins.

Key Points

• To better conduct message passing and aggregating in
graph, we transformed the heterogeneous graph to a
homogeneous graph with directed and weighted edges.

• We adapted the inductive aggregators from GraphSAGE
to fit the CPI prediction task and this enables our meth-
ods to predict CPIs outside the modeling dataset, which
improves the generalization ability of this method.

• We proposed an end-to-end framework which can help
learn the task-specific node embeddings for CPI predic-
tion.

• The comprehensive performance evaluations of this
model indicate that CPI-IGAE outperforms some state-
of-the-art CPI prediction methods.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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