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Long-term studies have shown significantly lower mortality rates in patients with
continuous clozapine (CLZ) treatment than other antipsychotics. We aimed to evaluate
epigenetic age and DNA methylome differences between CLZ-treated patients and
those without psychopharmacological treatment. The DNA methylome was analyzed
using the Infinium MethylationEPIC BeadChip in 31 CLZ-treated patients with psychotic
disorders and 56 patients with psychiatric disorders naive to psychopharmacological
treatment. Delta age (1age) was calculated as the difference between predicted
epigenetic age and chronological age. CLZ-treated patients were stratified by sex,
age, and years of treatment. Differential methylation sites between both groups were
determined using linear regression models. The 1age in CLZ-treated patients was
on average lower compared with drug-naive patients for the three clocks analyzed;
however, after data-stratification, this difference remained only in male patients.
Additional differences were observed in Hannum and Horvath clocks when comparing
chronological age and years of CLZ treatment. We identified 44,716 differentially
methylated sites, of which 87.7% were hypomethylated in CLZ-treated patients, and
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enriched in the longevity pathway genes. Moreover, by protein–protein interaction,
AMPK and insulin signaling pathways were found enriched. CLZ could promote a lower
1age in individuals with long-term treatment and modify the DNA methylome of the
longevity-regulating pathways genes.

Keywords: DNA methylome, clozapine, psychotic disorders, epigenetic age, longevity

INTRODUCTION

There is evidence of premature mortality and an increase in
physical comorbidity in patients with psychiatric disorders (1).
On average, their life expectancy is reduced from 12 to 15 years
compared with the general population (2, 3). Some authors
have proposed that the increased mortality could correlate
with increased biological aging (4–6). Various epigenetic age
estimators of biological age have been developed based on DNA
methylation status across a set of CpG sites in cells/tissues,
and these have been shown to correlate with the risk of
developing age-related conditions and diseases (7–9). Moreover,
the presence of psychotic symptoms is observed in different
psychiatric illnesses (mainly schizophrenia and bipolar disorder),
contributing to this mortality. A recent study reported a positive
correlation between epigenetic aging and psychosis severity (10).
Fortunately, psychotic symptoms can be controlled with the
use of antipsychotics, which also help in reducing the risk of
psychotic relapse (11).

On the other hand, the adverse cardiac and metabolic effects
of antipsychotics are well known. However, their use in patients
with schizophrenia is associated with lower mortality (12). There
is evidence demonstrating a 30–50% lower risk of mortality
related to the use of antipsychotics compared with non-use (13,
14). In particular, the long-term use of clozapine (CLZ) has
been associated with the lowest mortality (12, 15, 16). CLZ is
the antipsychotic of choice for patients with refractory psychosis
(17), for reducing suicide, and for improving longevity (18).
Epidemiological data (19, 20) have supported this last point.
Some studies suggest that CLZ promotes epigenetic changes with
pro-longevity effects (21, 22), and a recent work has proposed
that CLZ may reduce epigenetic aging (23).

The present work aimed to evaluate epigenetic age
and DNA methylome differences between patients
treated with CLZ and psychiatric patients without
psychopharmacological treatment.

MATERIALS AND METHODS

Sample Population
In this study, 87 individuals of Mexican ascendancy were
included. Of them, 31 were diagnosed with refractory psychosis
and treated with CLZ (CLZ-treated patients), and 56 had early
onset psychiatric disorders. This last group of patients has not
had any previous psychopharmacological treatment and will
be called as drug-naive patients. Samples from both groups of
patients were recruited from the outpatient clinics. The CLZ-
treated patients with refractory psychosis were recruited from the

Instituto Nacional de Neurología y Neurocirugía Manuel Velasco
Suárez (INNNMVS), and drug-naive patients from the Hospital
Psiquiátrico Infantil Juan N. Navarro and the Hospital General
Dr. Gustavo Rivorosa Pérez. At least one specialized psychiatrist
performed the diagnosis. Individuals with intellectual disabilities,
heavy drinkers, smokers, or substance abusers were excluded.
In addition, we excluded drug-naive patients who had begun
psychopharmacological treatment. The study was conducted
according to the guidelines of the Declaration of Helsinki and
approved by the Institutional Research and Bioethics Committees
of INNNMVS (protocol 38/19), the Ethics Committee of the
Children’s Psychiatric Hospital Dr. Juan N. Navarro with
approval No. II3/01/0913 (11 October 2017), and by the Ethics
Committee of the National Institute of Genomic Medicine
(INMEGEN) with approval No. 06/2018/I. Furthermore, all
individuals signed informed consents. For those patients under
the age of 18 years, an informed assent letter was signed by both
parents/guardians and the minor.

Analysis and Quality Control of
Microarrays
Blood DNA extraction, bisulfite-conversion (Zymo, Irvine, CA,
United States), and microarray hybridization (Infinium
MethylationEPIC BeadChip, Illumina, San Diego, CA,
United States) were performed according to the manufacturer’s
protocol. We used the Genome Reference Consortium Human
Build 37 (GRCh37/hg19) as position reference for all the
analyses. The fluorescence intensities were measured with
the iScan instrument and transformed into idat files with
the algorithm implemented in the GenomeStudio software
(Illumina, San Diego, CA, United States). Specialized staff carried
out microarray analyses in the INMEGEN. The ChAMP (24)
package was used for quality control. Briefly, the probes using
the following filters were removed: (i) detection p greater than
0.01, (ii) less than three beads in less than 5% of the samples, (iii)
all non-CpG sites, (iv) single nucleotide polymorphism (SNP)-
associated probes, (v) probes associated with sex chromosomes,
and (vi) multi-hit probes. In addition, samples with a ratio
greater than 0.1 were removed, resulting in one individual
filtered out. After quality control, a matrix of beta values
was constructed.

Epigenetic Age Calculation
We normalized the previous beta value matrix by beta-mixture
quantile normalization (25) and calculated epigenetic ages with
the ENmix package (26). This package allowed us to calculate
three epigenetic clocks: Hannum (7), Horvath (8), and DNAm
PhenoAge (9). The epigenetic ages calculated with the Horvath,
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Hannum, and PhenoAge clocks and the chronological age in
both groups were compared by correlation analysis. Then, we
calculated the delta of age (1age = epigenetic age− chronological
age), subtracting the chronological age from the estimated
epigenetic age in all samples and by each clock. Finally, we
compared the 1age of each clock between CLZ-treated patients
and drug-naive patients. First, stratified analysis by sex and
age was carried out, comparing the CLZ-treated patients vs.
drug-naive patients. The CLZ-treated patients’ group was later
subdivided into subgroups according to the time’s mean of
treatment with CLZ (>9 and ≤ 9 years of treatment; i.e., few
and many years of treatment, respectively) and according to the
mean chronological age (cut-off value = 37 years; i.e., young and
older patients). Due to the small sample size, and to achieve
subgroups with a similar number of patients (n), the mean values
of the years of CLZ treatment and chronological age of patients
were used. The student’s t-test was applied for the analysis of
these four subgroups.

Differentially Methylation Sites Analysis
We removed the batch effect and adjusted blood cell proportion
on the normalized beta values matrix with a single-value
deconvolution (champ.SVD and champ.runCombat) and a
reference base analysis (champ.refbase), respectively (24, 27).
Once adjusted, we analyzed differentially methylated sites
analysis by linear models implemented in champ.DMP function
of the ChAMP package (28). First, we analyzed differentially
methylated sites considering significance at a p lower than
1e-08 (a summary of statistics is available in Supplementary
Table 1). Then, after identifying differentially methylated sites,
a differentially methylated region analysis was carried out
with the ProbeLasso algorithm (29) (a summary statistics
of the differential methylation region analysis is available in
Supplementary Table 2).

Pathway Enrichment and Protein-Protein
Interactions
We performed pathway enrichment after extracting genes
resulting from differentially methylated sites and regions through
the WebGestalt platform (WEB-based GEne SeT AnaLysis
Toolkit) with free access (30) (all pathways of this enrichment are
available on Supplementary Table 3). First, we analyzed protein–
protein interactions between gene products identified using the
web application String (31) and plotted the interactions with
Cytoscape 3.8.1 software (32). Then, a sub-enrichment analysis of
the longevity regulating pathway was performed in String using
the KEGG pathway database (33).

RESULTS

Study Population
In this study, eighty-seven individuals were included
and classified into two groups: the CLZ-treated patients
with refractory psychosis (n = 31), and the drug-naive
patients with psychiatric disorders (n = 56) (Table 1). The

TABLE 1 | Clinical and demographic characteristics of all patients.

Characteristic CLZ-treated
patients
(n = 31)

Drug naive
patients
(n = 56)

Age in years (mean ± DE) 37.74 ± 12.18 17.12 ± 7.84

Sex (%)

Male 18 (58.1) 13 (23.2)

Female 13 (41.9) 43 (76.8)

Diagnosis (%)

Major depressive disorder 0 19 (33.9)

Attention-deficit hyperactivity disorder 0 32 (57.1)

Schizophrenia/early onset psychosis 19 (61.3) 5 (9.0)

Bipolar Disorder 3 (9.6) 0

Schizoaffective Spectrum Disorder 8 (25.8) 0

Psychotic Depressive Episode 1 (3.2) 0

Comorbidities (see text)

Yes 19 (61.3) 50

No 12 (38.7) 6

CLZ Treatment years (mean ± DE) 9.22 ± 7.54 0 (0.0)

Concomitant treatment (%)

Yes 29 (93.6) 0 (0.0)

Anxiolytics 17 (54.8) 0 (0.0)

Antidepressants 20 (64.5) 0 (0.0)

Anticonvulsants+ 13 (41.9) 0 (0.0)

Anticholinergics 2 (6.4) 0 (0.0)

No 2 (6.4) 56 (100)

Alcohol consumption (%)

Yes 10 (32.3) 0 (0.0)

No 21 (67.7) 56 (100)

Drugs consumption (%)

Yes 8 (25.8)U 0 (0.0)

No 23 (74.2) 56 (100)

Tobacco use (%)

Yes 14 (45.2) 0 (0.0)

No 17 (54, 8) 56 (100)

CLZ dosage (mg/day) 207.76 ± 128.71 0 (0.0)

UThese patients were former consumers of marijuana. + Including 1/1/8 patients
receiving carbamazepine/phenytoin/valproate. SD, standard deviation.

following comorbidities were observed in CLZ-treated
patients: diabetes (22.6%), epilepsy (16.1%), hyperlipidemia
(12.9%), hypercholesterolemia (6.4%), hypothyroidism (6.4%),
hypertension (9.7%), and obsessive-compulsive disorder (3.2%).
Details about the comorbidities found in the naive patients have
been previously reported (34).

Epigenetic Age in Clozapine-Treated
Patients vs. Drug-Naive Patients
The variable sex did not show a significant correlation with
epigenetic age; however, it was considered in the model as
previous reports have demonstrated differences in the epigenetic
age between men and women (23). The years of CLZ treatment
correlated with epigenetic age in the PhenoAge clock (t = 2.6041,
r2 = 0.4415, p = 0.01458); thus, these two variables were
included in the stratification of the patients. The chronological
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age positively correlated with the epigenetic age in all clocks,
Hannum (r2 = 0.679, p = 4.96e-13), Horvath (r2 = 0.662,
p = 2.85e-12), and PhenoAge (r2 = 0.664, p-value = 2.26e-
12) (Figure 1). After obtaining the 1age for all samples, we
found that the CLZ-treated patients’ group had a smaller 1age
compared with drug-naive patients (Figure 2). This difference
was significant for the three analyzed clocks: Horvath (t =−3.23,
p = 0.0018), Hannum (t =−4.83, p = 6.0740e-06), and PhenoAge
(t = −2.72, p = 0.0079). Hannum’s clock showed the most
significant value. The mean 1age in the CLZ-treated patients was
13.64, 9.65, and 1.54 years for Horvath, Hannum, and PhenoAge
clocks, respectively. In drug-naive patients, the mean 1age was
20.77, 18.84, and 8.15 years in the same mentioned order for
the three clocks.

The stratified analysis by sex and age, after comparing
CLZ-treated patients vs. drug-naive patients, showed significant
differences in the three clocks only for CLZ-treated male
patients with mean 1age values of 13.15, 10.07, and 1.60 years
for the Horvath, Hannum, and PhenoAge clocks, respectively,
showing corresponding values of p of 0.0376, 0.0073, and

0.0370 (Supplementary Figure 1A). The mean 1age in CLZ-
treated female patients was 14.30, 9.06, and 1.47 years for the
Horvath, Hannum, and PhenoAge clocks, respectively. However,
significant differences were only found in Hannum’s clock
(t = −3.2253, p = 0.0035). Thus, we did not identify differences
between age subgroups (Supplementary Figure 1B).

Comparison of 1age in Older and
Younger Patients Treated With Clozapine
We explored 1age differences in CLZ-treated patients,
subdivided according to the mean value of chronological
age (37.74 years) and the mean treatment time with CLZ
(9.22 years). Significant differences of 1age for the Horvath and
Hanum clocks were observed between patients by years of CLZ
treatment and chronological age (younger vs. older patients, and
few years of treatment vs. many years of treatment, respectively).
In addition, other significant differences were found for the
Hannum clock in the following comparisons: older patients with
more years of treatment (>9.22 years) vs. younger patients with

FIGURE 1 | Correlation between chronological age and epigenetic age. (A) Correlation with Horvath’s clock. (B) Correlation with Hannum’s clock. (C) Correlation
with PhenoAge’s clock.

FIGURE 2 | Violin plots showing the comparison of 1age between clozapine (CLZ)-treated patients and drug-naive patients estimated by using epigenetic clocks of
(A) Horvath, (B) Hannum, and (C) PhenoAge.
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more years of treatment (p = 0.0021); older patients with many
years of treatment vs. young patients with few years of treatment
(p = 0.0263); and older patients with few years of treatment
vs. young patients with many years of treatment (p = 0.0236)
(Figure 3A). Regarding Horvath’s clock, we only observed
differences between the group of older patients with many years
of treatment and younger patients with many years of treatment
(p = 0.019) (Figure 3B).

Differentially Methylated Sites
We identified 44,716 differentially methylated sites between
CLZ-treated patients and drug-naive patients. Of note, 39,204
CpG sites (87.70%) were hypomethylated in the CLZ-treated
patients, and the remaining (5,512 CpG sites, 12.30%) were
hyper-methylated.

According to the position of the differentially methylated sites
in relation to the gene structure, the following distribution was
observed: 9,573 (24.42%) hypomethylated sites were located at
200 nucleotides of the transcriptional start site (TSS200), 7,247
(18.49%) sites on TSS1500, 7,126 (18.18%) on gene body, 5,332
(13.6%) on 5′-UTR, 4,626 (11.8%) on first exon, 306 (0.78%) on
3′-UTR, and 22 (0.06%) on exon binding sites. The distribution
of the hypermethylated sites was as follows: 3,111 (56.44%) sites
were annotated to gene body, 266 (4.83%) on 5′-UTR, 265
(4.81%) on TSS1500, 262 (4.75%) on 3′- UTR, 138 (2.5%) were
located on the TSS200, 75 (1.36%) on first exon, and 55 (0.1%) on
exon binding sites.

The location of differentially methylated sites concerning CpG
islands was as follows: 29,895 (66.86%) sites on CpG islands, 7,860
sites (17.56%) on shores, 5,808 sites (12.99%) on the open sea,
and 1,153 sites (2.58%) on shelves. Regarding hypomethylated
sites, 29,020 of them (74%) were found on CpG islands, 6,822

(17.4%) on shores, 2,892 sites (7.38%) on the open sea, and 470
(1.2%) sites on shelves. The distribution of the hypermethylated
sites was: 2,916 (52.9%) sites located on the open sea, 1,038
(18.83%) sites on shores, 875 (15.87%) sites on CpG islands, and
683 (12.39%) sites on shelves.

Enrichment of the Genes Located Within
the Differentially Methylated Sites
In total, sixty-five pathways enriched at the hypomethylated
sites were identified, and the main ones were involved in the
biosynthesis of glycosaminoglycan, glioma, longevity regulatory
pathway, VEGF signaling pathway, and circadian rhythm.
Additionally, the hypermethylated sites are enriched on ABC
transporters and endocytosis pathways (Table 2). Supplementary
Table 2 contains the enrichment of all the observed pathways.
Among the enriched pathways at the hypomethylated sites, the
longevity pathway was identified, which, in turn, interacts with
others, such as the AMPK and the insulin signaling pathways.
The longevity regulating pathway occupied the 21st place of the
ranked list generated by the pathway enrichment; it showed an
overlap of 74 genes out of an expected 89 [p = 1.25e-7, false
discovery rate (FDR) = 1.14e-6, and enrichment ratio = 1.4578].
We sub-analyzed the longevity regulating pathway because CLZ
has been associated with a reduced mortality risk compared
with other antipsychotics. For this purpose, a sub-enrichment
analysis using protein–protein interaction on this pathway
(Figure 4) was performed.

Differentially Methylated Regions
A total of 286 differentially methylated regions were
identified, of which 247 regions were hypomethylated and
39 hypermethylated. Then, the FUMA platform [Functional

FIGURE 3 | Box plot showing the comparison of delta age (1age) using (A) Hannum’s clock and (B) Horvath’s clock in the four groups generated according to the
mean values of chronological age and years of CLZ treatment. Differences are observed between young patients with more or a few years of treatment vs. older
patients with many years of treatment. The four groups analyzed were: young patients with few years of treatment (YF); young patients with many years of treatment
(YM); older patients with few years of treatment (OF), and older patients with many years of treatment (OM). The asterisk (∗) denotes significant differences.
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TABLE 2 | Summary of the pathway enrichment for hypomethylated and hypermethylated sites.

Gene set Pathway Genes* FDR Enrichment
ratio

No of genes
found/expected

Hypomethylated

hsa05213 Endometrial cancer AKT1, AKT2, APC, APC2, AXIN1, AXIN2, BAD, BAK1, BAX, BRAF 2.4e-06 1.542 51/58

hsa03430 Mismatch repair EXO1, MLH1, MLH3, MSH2, MSH3, MSH6, PCNA, PMS2, POLD2,
POLD3

6.4e-03 1.525 20/23

hsa05226 Gastric cancer ABCB1, AKT1, AKT2, APC, APC2, AXIN1, AXIN2, BAK1, BAX, BCL2 3.8e-12 1.494 127/149

hsa00532 Glycosaminoglycan
biosynthesis

B3GALT6, B3GAT3, B4GALT7, CHPF, CHPF2, CHST11, CHST12,
CHST13, CHST14, CHST3

1.9e-02 1.490 17/20

hsa05214 Glioma AKT1, AKT2, BAK1, BAX, BRAF, CALM1, CALM2, CALM3, CALML4,
CALMK2B

4.4e-06 1.482 60/71

hsa00520 Amino sugar and
nucleotide sugar

metabolism

AMDHD2, CMAS, CYB5R1, CYB5R2, CYB5R3, CYB5R4, CYB5RL,
FUK, GALE, GALK1

3.9e-04 1.461 40/48

hsa04211 Longevity regulating
pathway

ADCY1- ADCY9, ADIPOR1, ADIPOR2, AKT1, AKT1S1, AKT2, APPL1,
ATF2, ATF4, ATF6B

1.1e-06 1.458 74/89

hsa04390 Hippo signaling pathway ACTB1, ACTG1, AJUBA, APC, APC2, AXIN1, AXIN2, BBC3, BIRC2,
BIRC5

3.2e-10 1.446 127/154

hsa03050 Proteasome ADRM1, POMP, PSMA1, PSMA3. PSMA4, PSMA5, PSMA6, PSMA7,
PSMB1, PSMB10

1.1e-03 1.442 37/45

hsa04370 VEGF signaling pathway AKT1, AKT2, BAD, CASP9, CDC42, HRAS, HSPB1,
JMJD7-PLA2G4B, KDR, KRAS.

2.8e-04 1.426 48/59

Hypermethylated

hsa02010 ABC transporters ABCA1, ABCA12, ABCA2, ABCA3, ABCA7, ABCB8, ABCB9, ABCC1,
ABCC12, ABCC2

1.6e-04 3.402 19/44

hsa04144 Endocytosis AGAP1, AP2A1, AP2A2, AP2B1, AP2M1, ARAP1, ARAP3, ARPC1B,
ASAP1, ASAP2

1.6e-04 1.873 244/58

*Only the top 10 genes of the top enriched pathways for differentially methylated sites between CLZ-treated patients and drug-naive patients are shown.
FDR, False discovery rate; No, number.

Mapping and Annotation of Genome-Wide Association Studies
(GWAS)] (35) was used to prioritize and interpret GWAS
results of the 307 annotated genes in this region. This analysis
revealed top genes, such as NOTCH4, MICA, TRIM27, PBX2,
and FKBPL, as enriched in GWAS of schizophrenia, CLZ-
induced agranulocytosis/granulocytopenia in treatment-resistant
schizophrenia, and bipolar disorder among other psychiatric
and non-psychiatric conditions (Supplementary Figure 2). In
this enrichment analysis of the differentially methylated regions,
we did not find any pathway with a statistically significant
association; nevertheless, in the nominal association, twelve
pathways were identified (Supplementary Figure 3).

DISCUSSION

Various analyses of DNA methylome in CLZ-treated patients
have been documented in European (36, 37) and Asiatic
populations (38, 39). Herein, we report the first differential
methylation analysis in a Latin American population between
CLZ-treated patients with refractory psychosis and drug-naive
patients with psychiatric disorders. Our results showed that
the proportion of hypomethylated CpG sites (87.7%) was
much higher than hypermethylated ones (12.3%) in the CLZ-
treated group. This finding agrees with previous studies that
found a higher proportion of hypomethylated sites in patients
with refractory schizophrenia treated with CLZ (40), and an

increase in the global DNA hypomethylation in leukocytes
obtained from patients with schizophrenia who received CLZ
(41). Additional studies have reported that CLZ induces DNA
demethylation at the level of specific genes; for instance, evidence
suggests that CLZ may attenuate the dysregulation of GABAergic
and glutamatergic transmission by reducing gene promoter
hypermethylation (42, 43). These findings raise CLZ as a potential
drug that deserves further investigation and, based on the
screening of new potential targets in CLZ, appears to be a
promising strategy for drug repurposing.

On the other hand, our results showed that patients with
psychosis treated with CLZ had a lower 1age than those
without psychopharmacological treatment. In addition, we found
a significant reduction in the epigenetic age for the three studied
clocks in the group of male patients; in this regard, a previous
study observed the same effect of CLZ in reducing epigenetic
age in male patients (23). Although the authors studied a larger
sample of patients with schizophrenia in that study, they included
very few CLZ users and did not perform differential methylation
analysis. In this sense, the previous findings are consistent with
ours. They suggested that treatment with CLZ could reduce
epigenetic aging and directly impact the mortality of individuals
treated with this antipsychotic.

Collectively, one of the pathways found to be hypomethylated
was the estrogen signaling pathway, including the gene encoding
for the estrogen receptor 1 (ESR1) (Figure 3). ESR1 is highly
involved in estrogen metabolism, and differences in the frequency
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FIGURE 4 | Protein–protein interaction between gene products of the longevity regulating pathway. Clusters are colored based on the Search Tool for Retrieval of
Interacting Genes/Proteins (STRING) analysis. The proteins involved in the longevity regulating pathway are highlighted in red and green colors (KEGG pathways:
hsa04211 and hsa04213, respectively). In contrast, AMPK signaling proteins (hsa04152) and the insulin signaling pathway proteins (hsa04910) are shown in blue
and yellow colors, respectively.

of some of its genetic variants have been associated with longevity
in humans (44, 45). The DNA methylation levels in this gene may
explain the difference in epigenetic age reduction only in men.
Estrogen levels in a mouse model treated with 17-alpha estradiol
affected metabolic parameters and delayed aging in male mice
(46, 47). If CLZ induces DNA hypomethylation, it will increase
ESR1 gene expression and estrogen sensitivity, which could fit
in a hypothesis behind the significant epigenetic age reduction
observed in our study. The longevity regulating pathway also
appeared to be potentially involved in CLZ-induced epigenetic
age changes. This is in line with epidemiological studies and a
meta-analysis by Vermeulen et al. (48), which have reported that
the long-term CLZ treatment is associated with an about 40%
lower all-cause mortality compared with other antipsychotics (12,
15, 16, 49). In addition, we were able to identify enrichment
of the membrane-bound adenylyl cyclase enzymes (also known

as adenylate cyclases) in this pathway. Contradictorily, the
hypomethylation of ADCYs genes would have a similar action to
that reported when these genes are inhibited. For instance, the
Adcy5 knockout mouse lives longer and is used as a model of
longevity (50–54). Taken together, our findings suggest that the
regulation of the longevity pathway by CLZ action may promote
epigenetic changes that need to be further explored. Interestingly,
another group of genes found in the protein–protein interaction
network analysis was related to AMP-activated protein kinases.
The activation of this pathway has also been associated with
longevity and aging delay (55–59).

Clozapine exhibits unique benefits for ameliorating symptoms
in patients with treatment-resistant psychosis, for reducing
suicide, and for improving longevity (18). This last characteristic
has been observed in some epidemiological studies (14, 19,
20, 49), and in a recent study using age classifiers to drug-
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induced transcriptomes that identified several geroprotectors,
such as CLZ (60). Thus, despite lethal adverse reactions of CLZ,
this molecule may have pro-longevity effects that should be
further investigated.

Some limitations of this study should be considered. First,
our sample size is small, however, this is the first study of
CLZ effect on DNA methylome in Latin American patients with
psychosis, and the number of CLZ-users included in other reports
is still restricted and similar in numbers to ours (which is partly
due to the misperception that CLZ is a dangerous therapeutic
agent). Despite this, some of our results confirm previous findings
from other recent studies. Second, our drug-naive patients had
different psychiatric disorders and were younger than CLZ-
treated patients’ group, which might influence the observed
findings. Third, this is a cross-sectional study performed in a
peripheral tissue, in which we did not evaluate other variables that
may modulate epigenetic aging, such as prior pharmacological
interventions or concomitant to CLZ that might impact DNA
methylation. For instance, eight CLZ-treated patients were also
receiving valproate, a drug that has been reported to be a potent
epigenetic agent, affecting the DNA and histone methylation
status (61). Nevertheless, due to a paucity of longitudinal
epigenetic data of CLZ-treated patients, we believe that this is
a good approach to evaluate the potential CLZ effects on the
epigenome. In this study, we only evaluated DNA methylome,
future longitudinal studies should confirm our findings and
explore whether CLZ may be considered as an epigenetic drug.
We could conclude that the long-term CLZ treatment might
reduce epigenetic aging in male patients with psychotic disorders.
In addition, our findings suggest a hypomethylation of genes of
the longevity regulatory pathway as a potential action of CLZ.
Thus, CLZ poses an exciting mechanism to be further explored
to improve life expectancy and ameliorate the aging effects of
patients treated with this antipsychotic.
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