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Abstract

Background: Leprosy is a disease of the skin and peripheral nervous system caused by the obligate intracellular bacterium
Mycobacterium leprae. The clinical presentations of leprosy are spectral, with the severity of disease determined by the
balance between the cellular and humoral immune response of the host. The exact mechanisms that facilitate disease
susceptibility, onset and progression to certain clinical phenotypes are presently unclear. Various studies have examined
lipid metabolism in leprosy, but there has been limited work using whole metabolite profiles to distinguish the clinical
forms of leprosy.

Methodology and Principal Findings: In this study we adopted a metabolomics approach using high mass accuracy
ultrahigh pressure liquid chromatography mass spectrometry (UPLC-MS) to investigate the circulatory biomarkers in newly
diagnosed untreated leprosy patients. Sera from patients having bacterial indices (BI) below 1 or above 4 were selected,
subjected to UPLC-MS, and then analyzed for biomarkers which distinguish the polar presentations of leprosy. We found
significant increases in the abundance of certain polyunsaturated fatty acids (PUFAs) and phospholipids in the high-BI
patients, when contrasted with the levels in the low-BI patients. In particular, the median values of arachidonic acid (2-fold
increase), eicosapentaenoic acid (2.6-fold increase) and docosahexaenoic acid (1.6-fold increase) were found to be greater in
the high-BI patients.

Significance: Eicosapentaenoic acid and docosahexaenoic acid are known to exert anti-inflammatory properties, while
arachidonic acid has been reported to have both pro- and anti-inflammatory activities. The observed increase in the levels of
several lipids in high-BI patients may provide novel clues regarding the biological pathways involved in the
immunomodulation of leprosy. Furthermore, these results may lead to the discovery of biomarkers that can be used to
investigate susceptibility to infection, facilitate early diagnosis and monitor the progression of disease.
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Introduction

Leprosy is caused by Mycobacterium leprae, an obligate intracellular

pathogen, which infects the skin and peripheral nerves. M. leprae

invasion of Schwann cells leads to nerve damage, disability and

deformity [1–2]. However, not all infected patients have the same

clinical course. The course of the disease may be punctuated by

spontaneous and/or recurring episodes of immunological imbalanc-

es that need immediate medical attention and immune suppressive

treatment. There are no routine laboratory tests for monitoring

clinical improvement, response to treatment or evolution of drug

resistance, aside from monitoring the reduction of bacillary levels in

skin smears. Even after several decades of multidrug therapy

programs to reduce leprosy transmission, incidence is not declining

at expected rates in some of the most endemic countries [3]. This

persistent incidence in some regions is commonly believed to be due

to undetected and undiagnosed subclinical cases [4].

Leprosy is conventionally described as a spectral disease using

the well-established Ridley-Jopling scheme [5]. At one pole is the

limiting form termed tuberculoid (TT) leprosy. In tuberculoid

leprosy the bacterial load is low due to effective cell mediated

immunity (CMI), and the infection is usually localized to either a

skin patch or nerve trunk. At the site of infection, the immune

response is dominated by Th1 associated pro-inflammatory

cytokines (IFN-c and IL-2) and granuloma formation. The

opposite profile form is lepromatous (LL) leprosy, which shows a

high bacterial load, poor CMI, and is characterized by Th2

associated anti-inflammatory cytokines (IL-4 and IL-10) and

antibody production. Between the poles are borderline tuberculoid

(BT), borderline (BB) and borderline lepromatous (BL).
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There are multiple known and undefined factors that modulate

the range of susceptibility to clinical outcomes, including metabolic

and immune functions. The individual contributions of host and

bacterium are not yet fully defined, although many human genetic

loci and bacterial components have been implicated in the process

of infection and perturbation of the immune response [6–10]. Host

factors include single nucleotide polymorphisms (SNPs) in genomic

regions associated with a variety of products such as TNF-a, IL-

10, vitamin D receptor (VDR), parkin (PARK2) and parkin co-

regulated gene protein (PACRG) [11–12]. Nutritional and

metabolic factors may also play a role in regulating the host

immune response [13–14]. The pathogen M. leprae is unique in

that its genome has undergone massive decay, particularly in

catabolic pathways and energy generating processes, and is

therefore thought to be highly dependent on the host system for

growth [15]. Novel overlapping mechanisms have been described

by which M. leprae modulates its environment for nutrition and

immune evasion [16].

In this context, where leprosy is a product of complex host-

pathogen relationships, there is a need for modern approaches to

uncover underlying and/or novel biochemical signals that may be

informative regarding those pathways that contribute to disease.

Though leprosy is a disease of the skin and peripheral nerves, there

may be biomarkers in the blood (circulatory biomarkers) which

may indicate systemic factors. Several investigators have studied

plasma and serum lipid composition in patients using traditional

analytical methods such as thin layer chromatography (TLC) or

gas chromatography (GC) [17–18]. With the advent of sensitive

ultrahigh pressure liquid chromatography (UPLC) quadrupole

time-of-flight (Q-TOF) mass spectrometry (UPLC-MS), separation

and detection of large numbers of small molecules (metabolites) in

complex starting mixtures has become feasible. UPLC-MS

provides rapid screening with accurate mass measurement, is of

high resolution, has low-detection limits, permits ion fragmenta-

tion, and does not require a large amount of sample or a

combination of different techniques to identify metabolites. This

technology has made it possible to rapidly identify biomarkers

which distinguish normal states from various disease states using

biological specimens such as urine, plasma and serum [19–21].

We sought to use this metabolomics approach to contrast the

serum metabolome of patients with high and low bacterial indices

(BI) using UPLC-MS. In the high-BI serum we discovered greater

levels of the polyunsaturated fatty acids (PUFAs) eicosapentaenoic

acid (EPA), arachidonic acid (AA) and docosahexaenoic acid

(DHA). We discuss these findings in the context of emerging

models regarding the interactions between lipid metabolism and

immunity. The methods and findings have implications for

discovery of novel biomarkers for diagnosis, identification of

therapeutic targets and elucidation of pathogenic mechanisms.

Materials and Methods

Ethical Statement
Ethical approval for the use of these stored samples for research

was obtained from the Institutional Review Board of Colorado

State University and the Cebu Skin Clinic. Patient samples were

collected following written informed consent.

Serum Sample Collection, Preparation and Selection
Sera were selected from a sample bank generated for ongoing

research into the molecular epidemiology of leprosy involving

newly diagnosed leprosy patients at the Cebu Skin Clinic in Cebu,

Philippines [22]. Samples were taken prior to the initiation of

multidrug therapy. Blood samples were drawn into a plain (no

additive) evacuated tube (BD Vacutainer Serum) and centrifuged

at 1,500 rpm for 10 min at 4uC in a refrigerated centrifuge. The

serum samples were aliquoted into multiple vials at 1 ml per vial

and frozen at 220uC until shipment. The sera were shipped on

dry ice to Colorado State University and stored at 220uC until

subsequent use in the laboratory.

Serum samples were selected from two groups of patients, those

with BI,1 (n = 10) and those with BI.4 (n = 13) (Table 1). Sample

selection was randomized and without consideration of clinical or

demographic data aside from BI. Though factors such as age,

gender, clinical presentation and medical history were not considered

in the study design or analysis, such data were collected during

patient intake and are presented in Table 1. BI was measured at the

Cebu Skin Clinic by microscopic examination of acid-fast stained slit-

skin smears taken from six sites, including representative active

lesions. BI was ranked on a log 10 scale from 0 to 6 [23].

A volume of 50 ml from each serum sample was prepared for

analysis by UPLC-MS. Sera proteins were precipitated by the

addition of 3 volumes (150 ml) of cold 100% methanol. The

samples were vortexed, placed at 220uC for two hours, then

centrifuged for 10 minutes at 15,000 rpm to pellet the protein

precipitate. The supernatants were carefully transferred to new

Eppendorf tubes. From each supernatant, 1 ml was analyzed by

UPLC-MS in both negative and positive modes with duplicate

injections. To confirm the observations and mass spectrometry

methods a subset of the selected sera were reanalyzed using new

aliquots and triplicate injections. Five each from the low-BI (L32,

L40, L76, L79, L85) and high-BI (L1, L11, L19, L58, L88) groups

were pooled and retested; two low-BI (L40, L85) and two high-BI

(L15, L88) samples were retested individually.

Instrumentation and UPLC-MS Methods
The serum methanol extracts were separated on a Waters

ACQUITY UPLC coupled with a Q-TOF under the control of

MassLynx v4.1 [Waters. Millford, MA, USA]. Sample injections

(1 ml) were performed on a Waters ACQUITY UPLC system.

Separation was performed using a Waters ACQUITY UPLC C8

column (1.7 mM, 1.06100 mm), using a gradient from solvent A

(89% water, 5% acetonitrile, 5% isopropanol, 1% 500 mM

ammonium acetate) to solvent B (49.5% acetonitrile, 49.5%

isopropanol, 1% 500 mM ammonium formate). Injections were

Author Summary

Leprosy is an infectious disease caused by the obligate
intracellular bacterium Mycobacterium leprae. M. leprae
infects the skin and nerves, leading to disfigurement and
nerve damage, with the severity of the disease varying
widely. We believe there are multiple factors (genetic,
bacterial, nutritional and environmental), which may
explain the differences in clinical manifestations of the
disease. We studied the metabolites in the serum of
infected patients to search for specific molecules that may
contribute to variations in the severity of disease seen in
leprosy. We found that there were variations in levels of
certain lipids in the patients with different bacterial loads.
In particular, we found that three polyunsaturated fatty
acids (PUFAs) involved in the inhibition of inflammation
were more abundant in the serum of patients with higher
bacterial loads. However, we do not know whether these
PUFAs originated from the host or the bacteria. The
variations in the metabolite profile that we observed
provide a foundation for future research into the
explanations of how leprosy causes disease.

Increased Lipid Levels in Lepromatous Leprosy
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made in 100% A, which was held for 0.1 min. A 0.9 min linear

gradient to 40% B was applied, followed by a 10 min gradient to

100% B which was held for 3 min, then returned to starting

conditions over 0.1 min, and then allowed to re-equilibrate for

5.9 min. Flow rate was constant at140 ml/min for the duration of

the run. The column was held at 50uC; samples were held at 5uC.

Mass data were collected between 50 and 1200 m/z at a rate of

two scans per second. The voltage and temperature parameters were

as follows: 3000 V capillary, 30 V sample cone, 2.0 V extraction

cone, 350uC desolvation temperature and 130uC source tempera-

ture. Calibration was performed prior to sample analysis via infusion

of sodium formate solution, with mass accuracy within 5 ppm. For

MS/MS, the parent ion was selected by quadrupole and fragmented

via collision-induced dissociation (CID) with argon at collision

energy of 20 eV for fatty acids and 30 eV for phospholipids.

Data Processing
UPLC-MS data were aligned, extracted and viewed using

MarkerLynx v4.1 [Waters. Millford, MA, USA]. Chromatograph-

ic peaks were detected between 0 and 28 min with a retention time

(RT) window of 0.1 min. Apex track peak detection parameters

were used, with automatic detection of peak width and baseline

noise. The spectrometric features were assigned by m/z and RT,

while the relative intensity was based on the area of all features.

Initial screening for compounds with significant differences in

abundance between the low-BI and high-BI groups was performed

by orthogonal projection onto latent structures (OPLS) with the

software SIMCA-P+ v12.0 [Umetrics. Umeå, Västerbotten,

Sweden], using a Po(corr) cut-off of 0.5. Further statistical analysis

was performed using several R packages within R 2.12.1 [24].

Principal component analysis (PCA) was performed using the

package stats::prcomp with both scaling and centering of the

variables. Generation of receiver operating characteristic (ROC)

curves for selected compounds was performed using the R package

pROC v1.4.3 [25]; a 95% confidence interval was generated for

sensitivity using 2,000 bootstrap replicates. For each selected

compound, histogram bins were calculated using the Freedman-

Diaconis rule and kernel density estimates were calculated using

Gaussian smoothing. In order to compare the first (individual

serum) and second (pooled sera) runs, data for each compound was

Table 1. Patient demographic and clinical data.

Samplea BIb R-J Classc PB/MBd Sex Age Duration of Symptomse Medical Historyf

Low-BI

L5 0.33 BT MB F 20 2 Y -

L32g 0.17 BT MB M 27 1 Y -

L40g 0.50 - MB M 38 - -

L49 0.00 BT PB M 36 2 Y -

L74 0.33 BT MB M 62 5 M Hypertension

L76 0.50 BL MB M 64 5 M -

L77 0.00 BT PB M 36 10 Y -

L79 0.00 BT PB F 64 2 Y -

L85 0.17 BL MB F 42 5 M -

L90 0.00 BT MB F 24 2 Y -

High-BI

L1 4.80 LL MB M 26 2 Y -

L9 4.70 LL MB M 25 5 Y -

L11 4.80 LL MB F 22 15 Y Congenital deformities

L15 5.00 LL MB M 25 2 Y -

L19 4.80 LL MB M 28 6 Y Appendicitis

L22 5.00 LL MB M 41 3 Y Peptic Ulcer

L29 4.80 LL MB M 18 3 Y -

L51 5.00 LL MB M 61 5 Y -

L53h 5.00 LL MB M 39 4 Y -

L58 5.00 LL MB M 37 2 Y -

L75 5.00 LL MB M 26 2 Y -

L88 5.00 LL MB M 49 3 Y -

L89 5.00 LL MB M 30 1 Y -

aSample names are as per Sakamuri et al, 2009 [22].
bBacterial index determined from slit-skin smear [23].
cRidley-Jopling classification of leprosy [5].
dClinical classification into either paucibacillary (PB) or multibacillary (MB) leprosy.
eSelf-reported duration of symptoms prior to treatment.
fSelf-reported medical history; reported conditions do not reflect current illness at the time of diagnosis with leprosy.
gPatients who presented at the clinic in a type 1 reaction state.
hPatients with deformities caused by leprosy.
doi:10.1371/journal.pntd.0001303.t001

Increased Lipid Levels in Lepromatous Leprosy

www.plosntds.org 3 September 2011 | Volume 5 | Issue 9 | e1303



standardized by subtracting the mean and dividing the result by

the standard deviation (standard score) to account for shifts in

instrument sensitivity over time; the data were then compared for

statistically significant differences using the Mann-Whitney test.

Identification of Compounds
Tentative compound class assignments (free fatty acid, glycer-

olipid, phospholipid, etc.) were made by querying the exact mass

against the LIPID MAPS database [26] and the online web server

MassTRIX: Mass Translator into Pathways [27]. The compounds

that showed significant differences in intensity between the low-BI

and high-BI groups, based on exact m/z and 0.05 min RT

differences, were further fragmented by MS/MS in both positive

and negative ion modes. Metabolite identities were manually

examined for signature ions and verified by comparing the

fragment spectra to those in LIPID MAPS and published data

[28]. MassTRIX was also used to explore related pathways that

may be associated with selected metabolites.

Standards
After preliminary assignments were made for some of the

selected compounds, pure standards were obtained and analyzed

by the previously described chromatographic methods. Pooled

sera were rerun along side the standards. Eicosapentaenoic acid

(EPA, 20:5), arachidonic acid (AA, 20:4) and docosahexaenoic

acid (DHA, 22:6) were purchased from Sigma-Aldrich [Saint

Louis, MO, USA]; 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phos-

phocholine (PAPC) was purchased from Avanti Polar Lipids

[Alabaster, Alabama, USA]. All standards were dissolved in 75%

methanol prior to UPLC-MS analysis.

Results

Global Characterization of Mass Spectrometry Data
The UPLC-MS data were first characterized globally. Across

both the low-BI (n = 10) and high-BI (n = 13) samples a total of

1668 features in the positive mode and 2489 features in negative

mode were observed (Supplement S1). A PCA, generated from

abundance data of all positive and negative mode m/z-RT pairs

(features), showed low-BI and high-BI patient sera clustering away

from each other (Figure 1). The separation of patient groups

indicates that there are m/z-RT pairs that are quantitatively

distinct in the two groups. Close clustering of injection duplicates is

also seen, which is the expected behavior.

Selection and Validation of Metabolite Biomarkers
To identify the compounds that distinguished the low-BI from

high-BI samples, the dataset was first pared down to features

which exhibited the greatest difference in abundance between the

two sample groups with OPLS (not shown). This yielded 48

features with masses up to approximately 1 kDa: 19 from the

positive mode and 29 from the negative mode. From these 48

features, 18 compounds were tentatively identified using the online

databases LIPID MAPS and MassTRIX (Table 2). The data

indicate an increase in the level of several lipids in the high-BI sera

compared to those in the low-BI sera. All of the 18 identified

compounds were more abundant in the high-BI samples except for

those with m/z 518.3245, 558.3196 and 566.3192, which were

more abundant in the low-BI samples. A confirmatory second

UPLC-MS analysis was performed using a pooled subset of

samples. Though m/z and RT values shifted slightly, due to

expected operational variability, we found the same 18 com-

pounds again showed quantitative distinctions between low-BI and

high-BI groups.

We also queried the complete list of m/z values against the

MassTRIX annotation system, which performs a search for

potential compound identities and associated pathways curated in

KEGG: Kyoto Encyclopedia of Genes and Genomes [29].

MassTRIX assigned a total of 74 negative mode features to 143

compounds in 40 pathways, and 79 positive mode features to 89

compounds in 51 pathways. The predominant hits were pathways

involved in AA metabolism (29 compounds) and synthesis of

unsaturated fatty acids (13 compounds); not all compounds were

unique.

Compound Identification by Tandem Mass Spectrometry
The 18 significant compounds that we tentatively identified

were further characterized by MS/MS. From these 18 com-

pounds, the compounds of the most interest to us - given their role

in modulation of the inflammatory response - were the n-6 PUFA

AA, the n-3 PUFAs EPA and DHA, and the compound with

structural similarity to PAPC. Commercial standards of EPA, AA,

DHA and PAPC were obtained and submitted to mass

spectrometry in parallel with the serum samples. Not all of the

18 ions fragmented, but compound confirmation was achieved via

MS/MS for 9 compounds by referencing the ion fragmentation

pattern against published spectra and/or available standards

(Table 2) [30–31].

The chemical structures and fragmentation patterns of

compounds listed in Table 2 are shown in Figures 2, 3, 4
and Supplements S2, S3. In each of Figures 2, 3, 4 and

Supplement S2 the chemical structure of the compound is

shown in Panel A, the fragmentation pattern of the commercial

standard is shown in Panel B, and the fragmentation pattern of

the corresponding compound in the pooled serum sample is shown

Figure 1. Principal component analysis of all positive and
negative mode m/z values detected in serum of leprosy
patients. A PCA score plot of all positive mode (n = 1668) and negative
mode (n = 2489) m/z values collected from UPLC-MS analysis of 23
serum samples (10 low-BI, 13 high-BI). The first two components
account for 20.4% of the variation in the data. Duplicate runs of each
sample are visible as clustered pairs. A separation of samples is seen
based on the BI of the patient.
doi:10.1371/journal.pntd.0001303.g001
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in Panel C. Supplement S3 shows the fragmentation pattern in

the pooled serum sample for the remaining compounds putatively

identified by MS/MS. The spectra illustrations have been adjusted

from the original MassLynx output files for clarity; the font of the

axes and labels has been changed, the line width of the spectra has

been increased, and extraneous text and borders have been removed.

The parent and daughter ions of EPA, AA and DHA appear as

expected in both the standards and patient samples. However, we

could not conclusively identify the feature we observed in the

serum samples with m/z of 798. The molecular weight of PAPC is

781, with an observed value of 766 under negative ionization due

to loss of the methyl group from choline (Supplement S2B). The

feature with m/z of 798 produced several fragments consistent

with the PAPC standard; specifically, ions with m/z 255, 303 and

480 (Supplement S2C), which correspond to palmitic acid,

arachidonic acid and lysophosphocholine (16:0/0:0), respectively.

The RT for the PAPC standard was 8.5 min, while the RT for the

feature with m/z 798 was 4.3 min. It is possible, but not

confirmed, that the observed feature with an m/z of 798 is an

oxidized form of PAPC [32]; additional investigation was

performed, but did not yield satisfactory results.

Statistical Support for Biomarkers
The diagnostic accuracy of each feature, as measured by the

extent to which each feature accurately distinguishes low-BI from

high-BI samples, was determined using receiver operating

characteristic (ROC) curves [33]. The ROC curve for the feature

compares the distribution of abundance between low-BI and high-

BI samples. The more the curve is pulled toward the upper-left

corner [higher sensitivity, higher specificity and higher area under

the curve (AUC)] the less overlap between the distributions in each

group, and thus the more effective the feature is at discriminating

low-BI from high-BI sera. The AUC for each significant feature,

along with a 95% confidence interval indicated as a 6 value, is

shown in Table 2. ROC curves for features of interest are shown

in Panel D of Figures 2, 3, 4 and Supplement S2.

Figure 2. Eicosapentaenoic acid (EPA) chemical structure, MS/MS spectra, ROC curve and distribution across sample groups. (A) The
chemical structure of EPA. (B) The MS/MS fragmentation pattern for the commercial standard. (C) The MS/MS fragmentation pattern of a
representative pooled serum sample. (D) An ROC curve, showing the diagnostic accuracy of EPA in distinguishing low-BI from high-BI samples. The
shaded (red) region surrounding the curve represents a 95% confidence interval for sensitivity. The AUC is shown on the graph with a 95%
confidence interval in parenthesis. (E) A histogram showing the distribution of EPA in the low-BI and high-BI groups. The overlaid curves show the
kernel density estimates for each sample group.
doi:10.1371/journal.pntd.0001303.g002

Increased Lipid Levels in Lepromatous Leprosy

www.plosntds.org 6 September 2011 | Volume 5 | Issue 9 | e1303



The distribution of abundance values of the individual samples

(first experiment) can be seen in Panel E of Figures 2, 3, 4 and

Supplement S2, as both a histogram and kernel density estimate.

In addition to comparing the abundance values across patient

groups, we also compared the first (individual sample) and second

(pooled sample) experiments for statistically significant differences.

Although the same qualitative differences were seen across patient

groups in both experiments, the two experiments showed marked

differences in mean abundance values, which we believe is due to

variation in instrument sensitivity between runs. The distribution of

abundance values between experiments was compared using the

Mann-Whitney test following standardization to account for

variation between runs. Between the two experiments, the

distributions for EPA (low-BI p = 0.15, high-BI p = 0.07;

Figure 2E), AA (low-BI p = 0.65, high-BI p = 0.34; Figure 3E),

DHA (low-BI p = 0.83, high-BI p = 0.53; Figure 4E) and the

PAPC-like compound (low-BI p = 0.62, high-BI p = 0.38; Supple-
ment S2E) were not found to differ significantly at 95% confidence.

We note that there is a sampling bias with regards to both age

and sex in the selected patients (Table 1). Specifically, the

median age is 37 in the low-BI and 28 in the high-BI, and the

ratio of male to female is 6:4 in the low-BI and 12:1 in the high-

BI. The parent study from which these patients were randomly

selected (n = 310) shows a concordant bias. In the parent study,

the median age of a low-BI patient (n = 63) is 37 and the median

age of a high-BI patient (n = 123) is 29. The odds of selecting a

male patient from the low-BI group are 37:26 (1.42), and the

odds of selecting a male patient from the high-BI group are

111:12 (9.25). Though patient age and sex were not considered

in the study design or the analysis as a whole, we investigated the

diagnostic accuracy of the features listed in Table 2 when

considering only the male patients. Though some shifts were

seen in the AUC and median abundance in the two BI groups,

the same set of features still showed statistically significant

differences between the low-BI and high-BI groups (data not

shown).

Figure 3. Arachidonic acid (AA) chemical structure, MS/MS spectra, ROC curve and distribution across sample groups. (A) The
chemical structure of AA. (B) The MS/MS fragmentation pattern for the commercial standard. (C) The MS/MS fragmentation pattern of a
representative pooled serum sample. (D) An ROC curve, showing the diagnostic accuracy of AA in distinguishing low-BI from high-BI samples. The
shaded (red) region surrounding the curve represents a 95% confidence interval for sensitivity. The AUC is shown on the graph with a 95%
confidence interval in parenthesis. (E) A histogram showing the distribution of AA in the low-BI and high-BI groups. The overlaid curves show the
kernel density estimates for each sample group.
doi:10.1371/journal.pntd.0001303.g003
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Discussion

The goal of our research was to explore the applicability of non-

targeted metabolomics to the study of leprosy. Most research

aimed at understanding variations in clinical presentations have

been studies of gene expression profiles and immune response

mechanisms using a variety of assays on whole blood, serum,

plasma, peripheral blood mononuclear cells or skin biopsies

[17,34–36]. To date, metabolite profiles in leprosy have only been

explored using target-based assays of blood samples [37–38].

These techniques are limited in terms of sample throughput, the

ability to resolve individual metabolites in complex specimens, the

sensitivity of feature detection, and the accuracy of compound

identification. By using a metabolomics approach based on mass

spectrometry, we were able to discover several metabolites in

serum with differential levels in low-BI and high-BI patient groups.

In particular, we found that in the high-BI group there was a

statistically significant increase in abundance of the n-3 PUFAs

EPA and DHA, and the n-6 PUFA AA. The identification of

differential levels of PUFAs in high-BI patients is intriguing, as

lipid metabolism and lipid mediators have been implicated in

many disease models, both infectious and non-infectious.

It has been widely thought that n-3 PUFAs (DHA and EPA) are

beneficial to human health, because of their association with

mitigation of the inflammatory response in conditions such as

autoimmune disorders, heart disease, arthritis and graft-versus-

host disease [13,39–40]. Conversely, the n-6 PUFAs (including

AA) are generally considered deleterious in chronic diseases

because they exert pro-inflammatory effects [39]. Ironically, it is

this pro-inflammatory property that would provide the necessary

anti-microbial activity to combat bacterial infections.

However, new research indicates that this is only a generalized

model for the properties of the n-6 versus n-3 PUFAs. Consensus is

absent on their strict pro- versus anti-inflammatory phenotypes,

due to their interconnected metabolic pathways and the

production of downstream products (eicosanoids). Recent studies

Figure 4. Docosahexaenoic acid (DHA) chemical structure, MS/MS spectra, ROC curve and distribution across sample groups.
(A) The chemical structure of DHA. (B) The MS/MS fragmentation pattern for the commercial standard. (C) The MS/MS fragmentation pattern of a
representative pooled serum sample. (D) An ROC curve, showing the diagnostic accuracy of DHA in distinguishing low-BI from high-BI samples. The
shaded (red) region surrounding the curve represents a 95% confidence interval for sensitivity. The AUC is shown on the graph with a 95%
confidence interval in parenthesis. (E) A histogram showing the distribution of DHA in the low-BI and high-BI groups. The overlaid curves show the
kernel density estimates for each sample group.
doi:10.1371/journal.pntd.0001303.g004
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have pointed to the benefits of AA and derived eicosanoids, finding

that they had both pro- and anti-inflammatory roles. Deckelbaum

and Calder found that prostaglandin E2 (PGE2) may inhibit the

production of pro-inflammatory cytokines (TNF-a and IL-1) from

monocytes and macrophages [41]. They also found that PGE2

inhibits production of leukotrienes (LTs), through control of 5-

lipoxygenese, and induces production of lipoxins, through 15-

lipooxygenase; leading to anti-inflammatory and pro-resolution

activities by the action of lipoxins [41]. Based on these results, AA

n-6 PUFAs may control the inflammatory response by regulating

both the pro- and anti-inflammatory cytokine networks. It has also

been suggested that both n-3 and n-6 PUFAs play an anti-

inflammatory role due to inactivation of reactive oxygen species by

the unsaturated double bond. Furthermore, PUFAs may bind to

peroxisome proliferator activated receptors, thus interfering with

signaling molecules such as NF-kB, and repressing transcription of

a variety of genes [42]. Zeyda et al found that both n-3 and n-6

PUFAs inhibit cytokine production (TNF-a and IL-12), T cell

stimulation and dendritic cell differentiation at the gene level.

PUFA treated dendritic cells were shown to be associated with

altered membrane lipid composition, specifically an increase in

unsaturated lipids, which implicates AA and EPA as anti-

inflammatory mediators [14]. In the mycobacterial disease models,

enrichment of n-3 PUFAs enhances susceptibility to Mycobacterium

tuberculosis infection in vitro (infected macrophages) [43–44]. Anes et

al showed that the pro-inflammatory effect of AA promotes

increased bacteria killing inside macrophages by stimulating

phagosomal actin assembly. In contrast, the same authors also

showed that EPA and DHA promote bacterial survival and growth

inside macrophages by lowering the levels of pro-inflammatory

cytokines (IFN-c, TNF-a, IL-1 and IL-6), weakening the oxidative

response and hindering phagosome maturation [45].

In leprosy, Cruz et al postulated that the fatty acids and

phospholipids which accumulate in lepromatous lesions are of host

origin. They found a pronounced upregulation of host genes

involved in lipid metabolism, such as phospholipase A2 (PLA2)

and phospholipase C (PLC), for which functional counterparts are

not encoded in the M. leprae genome [16]. An increase in

phospholipase activity may contribute to the increased serum

levels of AA we observed in our high-BI patients; PLA2 catalyzes

the hydrolysis of phospholipids to release arachidonate in a single-

step reaction, and PLC generates diacylglycerols, from which AA

can be subsequently released by diacylglycerol- and monoacylgly-

cerol-lipases.

Several other metabolites which modulate immunity either for

or against mycobacterial survival have been described in the

literature. These include cholesterol (HDL or LDL derived),

triglycerides and vitamin D [17–18,46–47]. We did not observe

differential levels of these metabolites in our patient groups,

though this does not imply variations were not present. The nature

of the starting sample and the fractionation conditions may affect

the metabolite pools; this study was based only on a simple one-

step methanol extraction followed by C8 reverse phase UPLC-

MS. Lysophosphatidylcholines (Lyso PCs) have been shown to

have a potential role in immunomodulation, particularly pro-

inflammatory functions [48]. We tentatively assigned some

significant features as Lyso PCs - three of which were more

abundant in the low-BI sera (Table 2). However, these

identifications are preliminary and unconfirmed at his stage.

In this study we focused solely on identifying compounds with

differential levels in patient sera based on the quantitative criterion

of BI, rather than the more qualitative Ridley-Jopling and

paucibacillary/multibacillary systems which are not always

consistent across clinics [49]. Sex was not a controlled factor in

our study. Though our results do not specifically indicate whether

the serum signatures we found can be explained by sex differences,

there is an inherent sex bias in leprosy [3], as also evidenced in our

sample sets. Further investigations which delve into whether there

are specific metabolites that differentiate leprosy patients based

upon other classification criteria, such clinical presentation, sex,

age or genetics, would provide valuable insight into the intrinsic

biological factors that contribute to bacterial growth in leprosy.

The metabolomic fingerprint we identified - higher levels of AA,

DHA and EPA in the sera of high-BI leprosy patients - is

consistent with diminished host innate immunity to infection [16];

reaffirming the role of altered host lipid metabolism in infection

and immunity. The increased serum levels of n-3 and n-6 PUFAs

we identified in high-BI patients may promote M. leprae survival

through inhibition of both the innate and adaptive immune

response of the host. These novel preliminary findings lend

themselves to pathway specific genome expression analysis and

further characterization of the AA derived lipid mediators. For

instance, the leukotriene A4 hydrolase (lta4h) gene has been

implicated as a susceptibility locus in leprosy and tuberculosis [50].

It is thought that the fine balance of lipoxin B4 and leukotriene B4

controls the propensity to infection or immunity. Of the 9

compounds we identified by MS/MS, those with m/z 317 and 335

are candidate AA derivatives suitable for further analysis. A

longitudinal study that employs a metabolomics approach may

shed light on the origins and dynamics of the lipid profile. By

collecting and analyzing sera before multidrug therapy, during

treatment, at the onset of reaction states and after the patient is

released, we may discover fluctuations in the lipid profile over the

course of the infection; enabling the ultimate aim of improving

diagnostics, treatment options and creating a deeper understand-

ing of the pathogenesis of leprosy.

Supporting Information

Supplement S1 Complete table of all features observed
in positive and negative mode UPLC-MS. A total of 1668

features in the positive mode and 2489 features in negative mode

are listed for the individual (non-pooled) sample set. RT, m/z and

integrated peak intensities are shown for each feature. Sample

injection duplicates are identified after the sample name (N1, N2

or P1, P2).

(XLS)

Supplement S2 1-palmitoyl-2-arachidonoyl-sn-phospha-
tidylcholine (PAPC) chemical structure, MS/MS spectra,
ROC curve and distribution across sample groups.
(A) The chemical structure of PAPC. (B) The MS/MS

fragmentation pattern for the PAPC commercial standard. (C)

The MS/MS fragmentation pattern for compound structurally

similar to PAPC from a representative pooled serum sample. (D)

An ROC curve, showing the diagnostic accuracy of the PAPC-like

compound in distinguishing low-BI from high-BI samples. The

shaded (red) region surrounding the curve represents a 95%

confidence interval for sensitivity. The AUC is shown on the graph

with a 95% confidence interval in parenthesis. (E) A histogram

showing the distribution of the PAPC-like compound in the low-BI

and high-BI groups. The overlaid curves show the kernel density

estimates for each sample group.

(PDF)

Supplement S3 Spectra for additional compounds iden-
tified by MS/MS. (A) The MS/MS fragmentation pattern for

the compound with m/z 317.21. (B) The MS/MS fragmentation

pattern for the compound with m/z 329.25. (C) The MS/MS
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fragmentation pattern for the compound with m/z 335.22. (D)

The MS/MS fragmentation pattern for the compound with m/z

516.31. (E) The MS/MS fragmentation pattern for the compound

with m/z 558.32.

(PDF)
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