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ABSTRACT
The immune system is capable of remarkably potent and specific efficacy against infectious diseases. For 
decades, investigators sought to leverage those characteristics to create immune-based therapies (immu
notherapy) that might be far more effective and less toxic than conventional chemotherapy and radiation 
therapy for cancer. Those studies revealed many factors and mechanisms underlying the success or failure 
of cancer immunotherapy, leading to synthetic biology approaches, including CAR-T cell therapy. In this 
approach, patient T cells are genetically modified to express a chimeric antigen receptor (CAR) that 
converts T cells of any specificity into tumor-specific T cells that can be expanded to large numbers and 
readministered to the patient to eliminate cancer cells, including bulky metastatic disease. This approach 
has been most successful against hematologic cancers, resulting in five FDA approvals to date. Here, we 
discuss some of the most promising attempts to apply this technology to cancers of the gastrointestinal 
tract.
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Early history of cancer immunology

A nearly two-century long period of “experimental immunol
ogy” ushered in much of the foundations related to the under
standing of the immune system. Although scholars have 
identified records of patients being inoculated with smallpox 
as far back as early Chinese antiquity, the English physician, 
Edward Jenner, is largely credited as the initial pioneer of 
vaccination in the late 1700s.1 Jenner’s work documented the 
first scientific attempts to inoculate an individual with an 
infectious agent to control a corresponding infectious disease. 
Although Jenner did not fully understand the mechanisms of 
vaccination and its shaping of immune responses, his efforts 
would eventually lead to the eradication of smallpox in the 
1980s, among several other infectious disease advancements.2

Further strides were taken across the subsequent century 
with the development of what was to become the modern 
“Germ Theory of Disease” by the separate efforts of Louis 
Pasteur and Robert Koch. Pasteur, a French chemist origin
ally interested in alcoholic fermentation, correctly identified 
the source of fermentation, and by extension “spoilage”, as 
a biological process that manifests from organisms in the 
air. Koch, a German physician, also observed similar organ
isms in the blood of sheep afflicted with anthrax. Koch 
correctly identified that anthrax transmission in animals 
could occur through exposure and proximity, even from 
bacterial spores dormant for many years. These findings 
were the foundation for “Koch’s postulates”, describing 
the relationship between microbes and disease.3 The correct 
identification of distinct pathogens as the causative agents 
in infectious disease further spurred a period of rapid 

vaccine development. Building upon Jenner’s observations 
of inoculation and conferred immunity, this led some to 
believe that perhaps cancer too could be stymied through 
immune modulation.2

While Jenner, Pasteur, and Koch established the early 
dogma of bacteriology and vaccinology, the study of immune 
modulation of cancer began with independent observations 
made by two German physicians in the mid-to-late 19th cen
tury. Drs. Busch and Fehleisen each observed tumor regression 
in patients intentionally infected with pathogens responsible 
for erysipelas.4 Shortly thereafter in 1891, an American sur
geon, William Coley, developed his cocktail of heat-killed 
bacteria that was used to treat sarcoma patients with remark
able success, including numerous documented cases of tumor 
regression following treatment.5 Although controversial dur
ing that period, Coley’s observations have been validated by 
our modern understanding of cancer immunology and retro
spective analyses.6,7

Immunosurveillance

While the “experimental immunology” era of the 19th century 
focused primarily on infectious disease and the roles of innate 
immunity, the 20th century revealed much of what we now 
know about immunity and cancer. Only sixteen years following 
Coley’s pivotal observations, Paul Ehrlich formulated 
a hypothesis that the high frequency of aberrant cell growth 
and transformation during human development is likely kept 
in check by “[an] organism’s positive mechanisms.”8 Although 
unable to evaluate this experimentally, Ehrlich’s “positive 
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mechanisms” roughly equated to the presence of an immuno
logical surveillance mechanism actively engaging and eliminat
ing neoplastic cells.9

Roughly fifty years later, Ehrlich’s proposition was indepen
dently revisited by both Australian, F. MacFarlane Burnet, and 
American physician, Lewis Thomas. Burnet believed heritable 
and acquired mutations in somatic cells undergoing abundant 
proliferation would push cells toward malignancy.10 However, 
these malignant cells would simultaneously possess acquired, 
and highly specific neoantigens, evoking an immune response 
that could eliminate those malignant cells.11 Thomas sup
ported a similar theory: that complex organisms evolved 
mechanisms to protect against malignancies using similar 
mechanisms that resulted in homograft rejection of trans
planted tissues.12

In hindsight, Ludwik Gross had already evaluated this phe
nomenon experimentally just over a decade prior. Gross found 
that low doses of chemically-induced sarcomas could be 
resected and then transplanted into syngeneic mice leading to 
periods of tumor growth followed by gradual regression, sug
gesting an immune response to the tumor. Moreover, rechal
lenge with high doses of those same sarcomas resulted in 
outright rejection of tumors due to acquired immunity.13 

A decade later, E. J. Foley, confirmed Gross’ observations by 
demonstrating that chemically-induced tumors could be trans
planted from one inbred mouse to another, and then subse
quently removed, preventing further challenge with 
transplanted fragments of that same tumor.14

Further experimental evidence for Ehrlich’s immunosur
veillance hypothesis was reported by Prehn and Main in the 
1950s. In their studies, sarcomas induced with the chemical 
carcinogen MCA were transplanted into partnered syngeneic, 
naïve mice. Further inoculation of these same mice with sar
comas from the original donors resulted in rejection, however, 
rechallenge with sarcomas from non-partnered mice resulted 
in engraftment. Moreover, transplantation of non-transformed 
skin tissues from the same sarcoma donor mice beforehand did 
not sensitize the recipient mice to sarcoma engraftment.15,16 

Prehn and Main’s series of experiments provided evidence that 
tumors indeed carried a unique antigen “signature”, resulting 
in tumor rejection by tumor-specific immunity.5

Chimeric antigen receptor (CAR)-T cell therapy

These and other early “immunosurveillance” studies provided 
the foundation of numerous investigators to search for immu
nosurveillance in humans,17 explore mechanisms of antitumor 
immunity,18,19 and ultimately create immunotherapies to treat 
cancer.20 Those studies revealed T cells as primary mediators of 
cancer immunity and adoptive transfer of tumor-specific 
T cells isolated from tumors (tumor-infiltrating lymphocytes; 
TILs) as a potential therapeutic approach.20,21 However, several 
factors limit the use of TILs as immunotherapeutics, leading to 
synthetic biology approaches that employ genetically modified 
peripheral blood lymphocytes with antitumor specificity to 
potentially mimic TILs.22 That approach has evolved into the 
field of CAR-T cell therapy.

A rapidly growing field in cancer immunotherapy are CAR- 
T cells, which are genetically modified T cells that express 
a synthetic T-cell receptor to recognize a tumor associated 
antigen (TAA), leading to cytotoxic T-cell function and sub
sequent target cell death upon antigen recognition.23 The pro
duction of CAR-T cells has been well documented but can be 
briefly summarized here. T cells are collected from a patient’s 
blood via leukapheresis, genetically modified to express the 
CAR construct, expanded to large numbers ex vivo, and admi
nistered back to the same patient (Figure 1).24 To better under
stand CAR-T cells it is important to recognize some biological 
principles of T cells (Figure 2). Naturally-occurring T cells 
require 1) activation of their T-cell receptor (TCR) by com
plexes of target antigen and MHC and 2) engagement of 
costimulatory signals. Both are provided by specialized 
immune cells known as antigen presenting cell (APC). Those 
two interactions induce downstream signaling events that lead 
to T-cell differentiation that includes acquisition of cytotoxic 
and inflammatory cytokine effector functions. Upon 

Figure 1. CAR-T cell manufacturing. The production of CAR-T cells begins with leukapheresis to collect patient blood cells followed by isolation of T cells. The T cells 
are then activated and genetically modified to express the CAR, typically by lentiviral transduction. The CAR-T cells are then expanded to large numbers and re- 
introduced to the patient.
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encountering cancer cells with the same antigen-MHC com
plexes on their surface, T cells use their effector functions to 
induce cancer cell apoptosis (Figure 2a).

Importantly, CAR-T cells do not require APCs for their 
activation (Figure 2b). Instead, this occurs in the laboratory 
during the manufacturing process. Moreover, the CAR incor
porates an antibody-derived, antigen-recognition domain that 
is attached to a transmembrane domain and intracellular sig
naling domain.25,26 The antibody-derived structure allows the 
CAR to recognize surface tumor antigens in their native form 
on tumor cells, without MHC molecules, stimulating produc
tion and release of cytotoxic granules and cytokines leading to 
target cell death.27,28 This is important because tumors can 
avoid immune surveillance by downregulating MHC mole
cules, which reduces antigen presentation and recognition of 
tumors cells.29 Bypassing antigen presentation eliminates an 
immune-escape tool from the tumorigenesis tool box and 
enables an important treatment option when a TAA is present.

First-generation CAR designs employed only CD3ζ chain 
without additional costimulatory molecules. This design 
resulted in poor CAR-T cell longevity and efficacy leading 
to the inclusion of costimulatory domains in future CAR 
constructs.29 Initial 2nd-generation designs linked 
a costimulatory domain of either CD28 (28z) or 4–1BB 
(BBz) to CD3ζ in the CAR construct.30 These designs 
have proven to be successful in treating hematological 
malignancies in patients and remain the only the FDA- 
approved CAR designs to date. The 3rd-generation CARs 

fuse both CD28 and 4–1BB to CD3ζ (28BBz) and are 
hypothesized to produce long-lived and highly functional 
CAR-T cells, though a clear clinical benefit of this design 
over 2nd-generation designs has not yet been identified.30 

The field of CAR design has expanded rapidly in the last 
five years, beyond the simple 1st, 2nd, 3rd generation para
digm. CAR-T cell designs may include constitutive or indu
cible cytokine production,31 cytokine signaling domains,32 

and others. These are intended to improve T-cell activation, 
proliferation, effector function, longevity, resistance to the 
hostile tumor microenvironment, and more.

CAR-T cell therapy for GI cancers

Currently, CAR-T cell therapy is approved for treating certain 
hematological malignancies, but not any solid tumors. Because 
CAR-T cell therapy involves administration of very large num
bers of highly activated T cells, one of the biggest barriers to 
this therapy is successfully targeting an antigen to produce 
robust antitumor immunity without collateral on-target or off- 
target toxicity in healthy tissues. On-target toxicity to healthy 
B cells and the resulting B-cell aplasia that arises from CD19- 
directed CAR T-cell treatment of hematological cancers can be 
managed clinically, while toxicity to organ systems from other 
CAR-T cell therapies can be fatal. While no CAR-T cell thera
pies are FDA-approved to treat solid tumors, there are several 
clinical trials ongoing and a variety of targets being investigated 
to treat different gastrointestinal (GI) malignancies.

Figure 2. CAR-T cells overcome some limitations of T cell immunobiology. a) Naïve T cells require encounter with antigen presenting cells (APCs) possessing 
antigens on MHC molecules with appropriate costimulatory signals (such as CD80/CD86) in lymph nodes. This induces T-cell differentiation and acquisition of effector 
functions, such as secretion of cytolytic granules containing perforin and granzyme and production of cytokines (IFNγ, TNFα, and others). Upon encountering the same 
antigen in the correct MHC molecules on cancer cells, T cells employ those effector mechanisms to induce cancer cell death. b) In contrast, CAR-T cells are manufactured 
in the laboratory and can detect cancer cell targets directly, without the need for MHC molecules, to induce cancer cell death.
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Epithelial cell adhesion molecule (EpCAM)

EpCAM is a transmembrane glycoprotein that is involved 
in proliferation and metastasis.33 While EpCAM is impor
tant for tumor cell survival it has been shown to reduce 
cell-to-cell adhesion by reducing E-cadherin, which 
increases cell motility leading to metastatic disease.34 

Originally identified in colon cancer,35 overexpression of 
EpCAM has been observed in several different cancers and 
is, therefore, a potential target for CAR-T cell therapy.36 

In preclinical trials a third generation EpCAM-targeting 
CAR-T cell was able to recognize and lyse target cancer 
cells in vivo, delay tumor formation and growth, and 
avoid inducing on-target, off-tumor toxicity.37 This CAR- 
T cell has since moved to Phase I clinical trials in patients 
with advanced gastric cancer with peritoneal metastasis 
(NCT03563326).38

Human epidermal growth factor receptor-2 (HER2)

HER2 is a membrane tyrosine kinase that plays an impor
tant role in breast cancer progression and pathogenesis. 
HER2 is overexpressed in breast cancer cell, is an important 
prognostic indicator in breast cancer, and has been a major 
therapeutic target for several decades.39 While HER2 has 
traditionally been linked to breast cancer it is being inves
tigated in various tumor types including GI cancers.40 For 
example, Bellicum Pharmaceuticals is currently investigat
ing the efficacy of its dual-switch HER2-specific CAR-T cell 
to treat breast cancer and gastric cancer (NCT04650451).41 

A unique aspect of this CAR-T cell therapy is that the 
activity of the T cells can essentially be eliminated using 
a “suicide switch” built into the CAR-T cells to treat or 
prevent toxicity.42 This is potentially critical reflecting the 
rapid toxicity and death of the first patient to receive 
a HER2-specific CAR-T cell therapy.43 A HER2-specific 
CAR-T cell clinical trial at Baylor Medical College is mon
itoring the efficacy of a CAR-T cell regimen to treat several 
different tumor types including gastric, colorectal, and eso
phageal cancer (NCT03740256).44 This CAR-T cell therapy 
is unique in that it incorporates an intratumoral oncolytic 
viral administration that enhances its efficacy in preclinical 
studies.45

Carcinoembryonic antigen (CEA)

CEA is a cell adhesion glycoprotein that is predominately 
expressed during fetal development.46 CEA is expressed in 
adult gastrointestinal tissues, predominantly at the luminal 
surface.47 Moreover, CEA is a common TAA that is overex
pressed in most colorectal tumors48 and detection in serum is 
a useful biomarker for monitoring colorectal cancer 
progression.46 While the role of CEA in tumor development 
or progression isn’t clear, CEA can be a therapeutic target. 
A completed Phase 1 trial of CEA CAR-T cells showed some 
efficacy in many of the treated patients, while even the highest 
dose was well-tolerated by patients in this trial.49 That research 
group is currently recruiting for a Phase 2 clinical trial 
(NCT04348643).50

B7-H3 (CD276)

B7-H3 (CD276) is a transmembrane protein and a member of 
the B7 family. This family of proteins is necessary for T-cell 
costimulation, while B7-H3 plays a predominantly inhibitory 
role in adaptive immunity, suppressing T-cell activation and 
proliferation.51 More importantly, this transmembrane protein 
is overexpressed in a variety of different cancer types and CAR- 
T cells targeting B7-H3 have shown positive results in treating 
pancreatic, ovarian, and brain cancers.52,53 Moreover, B7-H3 is 
overexpressed in esophageal cancer and CAR T-cell therapy 
effectively targets and treats esophageal squamous cell carci
noma (ESCC) xenografts in mice.54 Several B7-H3-directed 
CAR-T cell therapies are in early-phase clinical trials across 
a spectrum of adult and pediatric malignancies.

Claudin18.2

Claudin18.2, a splice variant of claudin 18, is part of a family of 
proteins that modulate the movement of molecules from cell to 
cell by interacting with tight junctions. While claudins are 
present in gastric, pancreatic, and lung tissue, claudin18.2 is 
specifically expressed in the stomach and, more importantly, it 
is highly expressed in gastric and gastroesophageal junction 
(GEJ) adenocarcinoma.55 With all cancer targets, the goal is to 
target cancer cells while ignoring the same target on healthy 
cells. Claudin18.2 has proven to be a promising target because 
it is not only highly expressed in carcinomas, but also isolated 
from therapeutics in healthy tissue because it is embedded in 
gastric mucosa.56

While monoclonal antibodies have been the main 
approaches to treating claudin18.2+ tumors in the clinic, 
CAR-T cell therapy clinical trials have recently commenced. 
Preclinical data provided by CARsgen Therapeutics demon
strated that their claudin18.2-directed CAR-T cell therapy 
effectively targeted claudin18.2+ patient-derived xenograft 
(PDX) models of gastric cancer without toxicity.57 This ther
apeutic has since moved to phase 1 clinical trials where it is 
being tested on patients with gastric and pancreatic cancer in 
both China (NCT04581473)58 and the US (NCT04404595).59

Emerging CAR-T cell therapies for GI cancers

While there are a variety of promising therapeutics currently in 
clinical trials, they are only the beginning for GI cancer thera
pies. Guanylyl Cyclase C (GUCY2C) is a transmembrane pro
tein expressed on the luminal surface of intestinal epithelium.60 

It has become an important target in colorectal cancer61–63 and 
recent data suggests that it can be targeted throughout the GI 
tract using a variety of approaches,64,65 including GUCY2C- 
directed vaccines.66,67 GUCY2C-directed CAR-T cells show 
efficacy68,69 and safety68 in animal studies of metastatic color
ectal cancer, and PDX model data suggests potential efficacy 
against gastric and esophageal cancers.70,71 GUCY2C-directed 
CAR-T cell therapies are expected to enter clinical trials in 
2022.

MUC1 is another potential CAR-T cell target that has 
shown promise in targeting GI cancers. MUC1 is an adhesion 
ligand for stromal and endothelial cells and plays an important 
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role in cancer metastasis.72 It is overexpressed and accessible to 
therapeutics in most epithelial cancers.73 There have been 
attempts to target MUC1+ tumors with CAR-T cells but 
there has not yet been any success in treating GI cancers. In 
addition to the above targets, there are many other potential 
targets for colorectal, gastric, and esophageal cancers in devel
opment, making it impossible to discuss them all here.

Conclusions

The study of immunology has been an evolving field for cen
turies. Primitive as it was, the initial principles of immunology 
were created centuries ago and led to the development of 
vaccines and eradication of life-threatening illnesses. 
Furthermore, it was these initial principles that not only led 
to prevention and treatment of bacterial and viral infections, 
but also discoveries in cancer treatment. It was discovered 
decades ago that tumor cells possess tumor-specific signatures 
that can be recognized by the host immune system leading to 
tumor rejection. Those and other observations laid the founda
tion for modern cancer immunotherapy.

T cells are critical mediators of natural antitumor immunity 
which can be leveraged by TIL therapy or immune checkpoint 
blocking (ICB) therapy, such as antibodies directed against 
PD-1/L1 and CTLA-4 that established cancer immunotherapy 
as a pillar of cancer care a decade ago. CAR-T cell therapies go 
a step farther using a synthetic biology approach to create 
tumor-directed T cells, rather than rely on endogenous immu
nity. While there is enormous enthusiasm for this technology, 
significant work is required to create and identify therapies 
with sufficient efficacy and acceptable toxicity (clinical, finan
cial, etc). Perhaps one or more of the strategies discussed here 
will become the first to meet those goals and become the first 
FDA-approved CAR-T cell therapy for GI cancers.
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