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Brain-machine interfaces (BMI) rely on the accurate classification of event-related potentials (ERPs) and their performance greatly
depends on the appropriate selection of classifier parameters and features from dense-array electroencephalography (EEG) signals.
Moreover, in order to achieve a portable and more compact BMI for practical applications, it is also desirable to use a system capable
of accurate classification using information from as few EEG channels as possible. In the present work, we propose a method for
classifying P300 ERPs using a combination of Fisher Discriminant Analysis (FDA) and a multiobjective hybrid real-binary Particle
Swarm Optimization (MHPSO) algorithm. Specifically, the algorithm searches for the set of EEG channels and classifier parameters
that simultaneously maximize the classification accuracy and minimize the number of used channels. The performance of the
method is assessed through offline analyses on datasets of auditory ERPs from sound discrimination experiments. The proposed
method achieved a higher classification accuracy than that achieved by traditional methods while also using fewer channels. It
was also found that the number of channels used for classification can be significantly reduced without greatly compromising the

classification accuracy.

1. Introduction

A brain-machine interface (BMI) is a system that allows
a person to control or communicate with a computer or
actuator using only brain signals. Since no muscle movements
are needed, such systems are particularly useful to assist
patients with motor disabilities such as amyotrophic lateral
sclerosis or spinal cord injury.

One type of BMI system makes use of the P300 event-
related potential (ERP), a neuroelectrical wave pattern that
can be measured with electroencephalography (EEG). This is
a pattern that carries information about the state of attention
of the user and that can be robustly elicited by various types
of stimuli through the oddball paradigm. In the oddball
paradigm, the user pays attention to a series of incoming
stimuli and must focus on the occurrences of a rare, task-
relevant target stimulus hidden amongst frequent, irrelevant
nontarget stimuli. Only the target stimuli elicit the P300
response when perceived by the user. The nontarget stimuli,
on the other hand, are more frequent and are ignored by

the user and thus do not elicit the P300 response. Therefore,
by presenting to the user a stream of stimuli while measuring
the user’s brain the activity and then detecting the presence
or absence of the P300 ERP, one can determine the intention
of the user.

An example of this kind of system is the one proposed
and investigated in [1-3]. This system allows a handicapped
patient to communicate to a computer the direction of
attention by detecting the P300 ERPs elicited with auditory
stimuli from virtual-sound sources. By using the virtual
sounds as the stimuli in the oddball paradigm, it is possible to
estimate the intended direction of the user and thus control
a transportation device like an electric wheelchair. The use
of virtual sound stimuli allows the construction of more
portable BMI systems and, in contrast to visual stimuli, allows
the user to dedicate his or her vision to other tasks.

The detection of the P300 component is performed by
means of a binary classifier fed with the signal features
provided by the EEG signals, and its performance greatly
depends on the chosen features. Ideally only the most
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discriminative features should be used to feed the classifier
but, in this case, it is usually not immediately clear which is
the channel set that provides the most relevant information.
Furthermore, the optimal set might not be equal for every
subject. One could attempt to perform an exhaustive test
of all possible combinations, but, in the case of dense array
measurements, the extremely high number of combinations
that exist (2%, for a 64-channel array) render this approach
intractable. Additionally, in practical applications, a BMI
system for transportation purposes like the one described in
[3] requires compact equipment and it is thus desirable to
use a ERP detection system that employs as few channels as
possible.

Stepwise Linear Discriminant Analysis (SWLDA) is one
of the most popular classifiers used for the detection of
ERPs, being used in numerous reports (see, e.g., [4-7]).
This classifier is based on the feature selection performed
by the Stepwise Regression algorithm in which the features
that contribute the most are selected in a stepwise manner;
that is, every feature is sequentially added or removed while
measuring the predicting power at each step. However, a
drawback of this algorithm is that the selection of the features
depends on the order on which they are evaluated, especially
when there are high correlations between the features [8]
which is precisely the case in EEG measurements. Another
algorithm worth mentioning is the one proposed by [9] that
achieved the best performance in the BCI Competition III
[10]. This algorithm performs a stepwise selection of channels
following a classification accuracy maximization criterion,
but, like SWLDA, the outcome of the procedure also depends
on the order of the evaluation of channels. There are also
algorithms that employ methods based on Principal Compo-
nent Analysis (PCA) to extract spatial features [6, 11, 12], but
these typically disregard channel selection and employ all the
channels available to identify the most discriminative spatial
information.

To address the abovementioned points, we propose an
alternative approach in which the channel selection pro-
cedure is performed in an automated manner aimed at
maximizing the classification accuracy of the system. Specif-
ically, we propose a method for classifying P300 ERPs in
which the features and the parameters of the classifier are
tuned using a random optimization algorithm and evaluate
it using experimental data. The proposed method performs
classification using Fisher Discriminant Analysis (FDA) and
uses a multiobjective hybrid real-binary Particle Swarm
Optimization (MHPSO) algorithm to search for the classifier
parameters and EEG channel set that simultaneously max-
imize the classification accuracy and minimize the number
of channels used for classification. The PSO algorithm is
multiobjective in the sense that it seeks to optimize a fitness
function product of an aggregation of two performance
metrics (i.e., the classification accuracy and the number of
EEG channels) and hybrid real-binary in the sense that the
search space is composed of both real and binary dimensions,
necessary to tune the FDA regularization parameter (a real
variable) and the addition or removal of EEG channels (a
binary variable per channel).
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PSO [13] is a relatively new stochastic algorithm for
function optimization that has become increasingly popular
and has also been applied in various fields [14]. This algo-
rithm, inspired in the motion of fish schools that search
for food, moves a swarm of particles around a parameter
space searching for a solution that maximizes a certain
fitness function. Like other stochastic search algorithms,
this is a method that does not rely on the gradient of the
function to optimize and instead looks for the best solution
in a quasirandom way, being particularly useful in problems
where an analytical expression for the optimization function
is not available. It is important to remark that the PSO
algorithm is not guaranteed to converge towards the global
maximum. However, this algorithm has been applied with
success in a wide variety of applications [14] and in practice
tends to find a suitable solution if not the optimal one.

This text is organized as follows. First, the main compo-
nents of the proposed algorithms, namely, the FDA and PSO
algorithms, and their integration to classify ERP signals are
described in Section 2. Then, the data and simulations used
to evaluate the algorithm are described in Section 3. Lastly,
in Section 4, the simulations results are shown and discussed
and conclusions are given in Section 5.

2. Methods

Note on Mathematical Notation. Throughout this work, sca-
lars are denoted by lowercase italic letters (e.g., x), vectors
are written in lowercase, bold letters (e.g., x), and matrices
are denoted by uppercase bold letters (e.g., X). All vectors are
column vectors unless stated otherwise.

2.1. Particle Swarm Optimization. The objective of the PSO
algorithm is to find the best parameters that maximize a given
fitness function, and it does so by iteratively moving a swarm
of particles around the parameter space according to especial
equations. Each particle of the swarm is a particular position
in the parameter space and represents a possible solution to
the problem. Mathematically, a particle in PSO is a vector in
an N-dimensional parameter space, and its position x and
velocity v change according to the following equations:
t

t—1 t
X=X FVip (1)

t t—1 t—1
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where xf, jand vf’ j are the jth components of the ith particle’s
position and velocity, respectively, at iteration f. p; ; is the
jth component of p, the best position that the ith particle
has found so far, and g; is the jth component of g, the best
position found by the swarm. The effect of p and g on the
particle’s motion is controlled by two constant parameters
¢ and ¢,, and two independent random variables #, and 7,
uniformly distributed in [0, 1]. The particle’s motion is also
influenced by the velocity at the previous iteration and this
effect is controlled by the inertia parameter w.

¢, and ¢, are constants set by the experimenter that
determine the balance between the exploitation of a potential
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solution (movement towards g) and the exploration for new
solutions (movement towards p). At each iteration, p and g
are updated if positions with better fitness were found. This
is the main feature of the PSO algorithm: each particle
uses the information of its own history and the swarm’s
history, together with random perturbations, to search for
the global maximum. The PSO algorithm, in an iterative
manner, updates the velocity and positions of each particle,
moving them around the parameter space, until the best
global solution g reaches the desired fitness.

In practical applications, the search space is typically
constrained to [ X", X7**] along each dimension j in order
to limit the search space to feasible values. In this work,
we enforced an invisible wall condition [15] in which the
fitness of the particles that fly out of this region is neither
calculated nor updated. Instead, the particles that stray out
are expected (but not guaranteed) to eventually fly back
into the admissible region. The invisible wall condition has
the advantage of being simple to implement and avoiding
the unnecessary computations required by the evaluation of
unfeasible solutions. Lastly, to avoid the particles flying out
of the feasible space too often, the velocity components are
limited to a maximum value V;"** such that

'v; j| <V 3)

Hybrid Binary-Real PSO. In order to perform channel selec-
tion, in this work, we adopted a hybrid binary-real PSO
algorithm that, in addition to real-valued variables, allows
the optimization of variables that can take only two discrete
values. In this case, the additional binary components are
updated as shown below [15-17]:

¢ 1 ifr<S(vf,.) a 1
xi»j_{o ifrzS(vf;)’ S(x)_1+e”"

where 7 is a random number with a uniform distribution
in [0,1] and the velocity components vf, ; are updated in a
manner similar to the real case (see (2)). This equation means
that, at each iteration, the binary component x; jwillbel(ie,
the associated channel will be selected) with a probability of
S(vf)j) (and 0 with a probability of 1 — S(vf)j)).

2.2. Fisher Discriminant Analysis. In this work, a linear
binary classifier based on Fisher Discriminant Analysis
(FDA) was applied to discriminate between target and non-
target signals. FDA is a machine learning technique proposed
by [18] used for data classification. Strictly speaking, FDA is
a dimensionality reduction used as a preprocessing step prior
to classification and its goal is to find a linear combination
of the features that maximizes the separation between the
classes’ distributions in the reduced space. Classification is
then performed in this 1-dimensional space by applying
some threshold criteria or by using any classifier trained
on the transformed samples. Given a training dataset of n-
dimensional samples {(z;, ¥;), i = 1,..., ¢} (i.e., each sample
has » features) were each of the samples belonging to either

one of two classes K; (positive, e.g., target examples) or
K_, (negative, e.g., nontarget examples) as indicated by the
categorical variable y; = {+1, -1}, the transformation vector
w is obtained by maximizing the following function:

<W7 m; — m—1>2

J(w) = (5)

wiS,,w

({-,-) denotes the inner product of vectors,) m; and m_, are
the means of the feature vectors of the positive and negative
classes, respectively, and Sy, is the within-class scatter matrix
given by

Sw= ) 2 (zi—mj)(zi—mj)T, (6)
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The maximization of J(w) therefore yields
w= Sw71 (m; -m_,), (8)

and the classification of a new, unknown sample, z, is
performed upon the score

s(z) = (w,z), €

which is the distance of the sample to the hyperplane
parameterized by the normal vector w and represents a
measure of the certainty about the class prediction. Regarding
the class prediction, in this work, the class of the sample was
determined by

(s@-1)’
y=arg min\|————, (10)
je{1,-1} g;

where y; and o; are the mean and variance of the scores
of the training samples belonging to class K; (j € {1,-1})
in the transformed space. Equation (10) means that the
predicted class corresponds to the class that yields the shortest
Mahalanobis distance to the sample.

The key element in the computation of w is the scatter
matrix Sy,. Sy is an unbiased estimator of the true, unknown
scatter matrix, and it may become imprecise when the
number of features is high in comparison to the number of
training samples. This is because the number of unknown
parameters (the elements of the matrix) is quadratic in the
number of features. An imprecise estimation of the within-
class scatter matrix results in a degradation of classification
performance [5]. To mitigate this effect, regularization is
typically applied to the scatter matrix estimation and this is
achieved by maximizing a modified target function J(w) [19]:

2
J(w) = e - moy)” a

wl'S, w+A|w|?’



which results in
w=(Sy + )LI)f1 (m; -m_,), (12)

where A is the regularization parameter. It can be seen that for
A = 0 the canonical, unregularized FDA is obtained. Thus,
it is necessary to appropriately choose the regularization
parameter in order to achieve the best performance.

2.3. The Proposed Algorithm

2.3.1. Particle Encoding. As was mentioned before, the algo-
rithm uses FDA for classification and a multiobjective hybrid
PSO to tune, for each particular user, the channel set and clas-
sifier parameters that maximize the classification accuracy
using as few channels as possible.

The proposed method employs a hybrid PSO algorithm
to search in a space that contains both real and discrete
(binary) dimensions in a similar fashion to [15, 17]. These
dimensions correspond to the variables that are to be tuned.
Thus, each particle is a position in the search space that
represents a particular combination of FDA parameters and
EEG channels and is a candidate solution for the problem. The
channel set and classifier parameters are encoded in a particle
x as follows:

x=[a b - bal, (13)
where a € [-1,1] and bj = {0,1} Vj denote the real and
binary components, respectively. Each binary component (64
in total) b; encodes whether the temporal features of the
corresponding jth channel are used for classification (b; = 1)
or not (bj = 0). Therefore, this encoding results in a search
space of 65 dimensions. The real component a encodes the
FDA regularization parameter A, which is decoded as

A =10" (14)

This decoding was chosen because the feasible values for
the regularization parameter usually range over several orders
of magnitude, and by adopting an exponential representation,
the particle can search with small steps for possible solutions
over a broader interval.

2.3.2. Fitness Function. As mentioned above, each particle is
a candidate solution and represents a possible combination of
set of channels and FDA parameters. In this work, we search
for the solution that yields the best performance measured in
terms of the fitness function F:

F(x) =w, f; (x) + w, f, (x)

TP TN (NCh—n+1) (15)
=w\|—=— X —tw, | ——— |,
N Nen

N

where TP stands for true positives, TN stands for true
negatives, P, and N are the total number of positive (target)
and negative (nontarget) samples, respectively, N, is the
maximum number of channels that can be selected (64 in this
work), and 7 is the number of channels in the set specified
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by the particle. In other words, F is a weighted aggregation
of the optimization objectives f; and f,: the maximization
of the geometric mean between the true positive rate (target
accuracy) and the true negative rate (nontarget accuracy) and
the minimization of the number of channels. The trade-oft
between accuracy and number of channels is controlled by
the fitness weights w, and w,. Since the ratio between the
weights is what actually determines the trade-off, in this work,
we chose weights such that w; + w, = 1. The geometric
mean was chosen over the arithmetic mean because it yields
an aggressive evaluation in which solutions with low and/or
highly unbalanced accuracies are heavily penalized. It is
important to notice that the target and nontarget accuracies
are not expressed as percentages and thus f; varies within
[0,1], being 1 the perfect accuracy. f,, on the other hand,
yields higher values for fewer channels and becomes 1 when
only one channel is selected. It is important to remark that,
although the algorithm attempts to find a solution that yields
a perfect classification using only one channel (fitness value
equal to 1), such a solution might not exist because the
information provided by one channel might not be enough
to accurately discriminate the ERP signals.

In the offline analyses, for each particle, a classifier is built
using the features and parameters encoded in the particle.
Then, the true positive and true negative rates achieved
by the classifier are estimated using 10-fold stratified cross-
validation on the training data (all folds share the same target
to nontarget sample ratio), and the particle fitness is finally
calculated using (15). The proposed algorithm’s flowchart is
shown in Figure 1. A final classifier can then be trained using
the best setup found by the algorithm and be used to classify
signals in a real-time setting.

3. Simulations

3.1. Data Set Used in the Study. The data used in this work
corresponds to the data gathered by [1, 2] of sound discrim-
ination experiments that consisted of random presentations
of virtual auditory stimuli from 6 directions. During these
experiments, the subject had to focus his attention on one
of these directions (the target direction) and count every
time the stimulus source corresponded to the target direction.
The subject had to ignore the stimuli from other directions
(the nontarget directions). Each session consisted of 150
trials and each trial consisted of a 300 ms stimulus interval
and an 800 ms silence interval. The stimulus was 300 ms
of pure white noise. One of the 6 directions was fixed as
the target direction throughout a single session and the
corresponding stimuli were presented with a probability of
20%. Each direction was measured twice, thus yielding 12
recording sessions and a total of 1800 trials. Thus, about
20% of the samples in the data set correspond to target
signals. This protocol is summarized in Figure 2(a) and
the directions of the virtual sound sources are shown in
Figure 2(b). The neural activity was recorded using a digital
electroencephalograph (Active Two, Biosemi, Amsterdam,
The Netherlands) with 64 electrodes attached to the subject’s
scalp using a cap. The electrodes were placed in accordance
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FIGURE 1: Flowchart of the proposed algorithm.

with the 10-20 system shown in Figure 2(c) and the reference
was attached to the earlobes. Twelve healthy men (aged 22-24
years) participated in the experiment.

3.2. PSO Algorithm Setup. Preliminary tests were carried
out to choose the best PSO parameters among the values
suggested in [20, 21]. The chosen values are summarized as
follows. All the PSO simulations were performed using 30
particles until a fitness value equal to 1 was achieved or until
100 iterations were exceeded. For the real part, the inertia
parameter w was varied from 0.9 to 0.4 linearly across 100
iterations and had a constant value equal to 1 for the binary
part. Both exploration and exploitation constants were set to
¢ = ¢ = 2. The search space of the only real component
was constrained to [-1,1]. The algorithm employed an
invisible wall boundary condition and particles that encoded
an empty channel set (ie., all binary components equal
to zero) were deemed as out-of-range. The maximum and
minimum velocities were set to —0.1 and 0.1, respectively,
for the real part, and —6 and 6, respectively, for the binary
part. Regarding the particle’s initial conditions at the start
of the PSO algorithm, the real component was initialized to
a random value in [-1, 1] and each binary component was
randomly initialized to either 0 or 1 with equal probability;

thus, on average, each particle began the search process with
half of the total channels selected.

3.3. Data Preprocessing and Features Used for Classification.
Prior to classification, the data was divided in trials, with
each trial being the 1100 ms segment of signal starting from
—100 ms before the stimulus onset. Then, a zero-phase 3rd
order Butterworth band-pass filter with cutoff frequencies
of 0.1Hz and 8 Hz was applied to all the signals across all
channels. A baseline correction was performed by subtracting
to each trial, at every channel, the mean of the signal in the
prestimulus interval [-100, 0] ms. Lastly, in order to reduce
the number of temporal samples, each trial was downsampled
by taking the average of every 10 samples.

The FDA classifier was fed with 25 temporal samples per
EEG channel corresponding to the [0, 1000] ms trial segment.
Thus the number of total features ranges from 25 to 1600
depending on the number of channels selected by the PSO
algorithm.

3.4. Validation. The performance of the proposed algorithm
was assessed by training and testing the algorithm on two
disjoint training and test subsets of the original dataset (1800
single-trial samples in total). First, using the training dataset,
the algorithm searches for the combination of channels and
FDA parameters that maximize the classification accuracy
and, when it finishes, it outputs the best configuration that
could be found. A final classifier is then trained using the
training dataset and the channel and classifier configuration
specified by the output of the algorithm. Lastly, the per-
formance of the final classifier is assessed by evaluating its
classification accuracy on the test dataset. For the sake of
consistency, all the classification accuracies reported in this
work are derived from the same criteria used in the fitness
function of the MHPSO algorithm, that is, the geometric
mean of the target and nontarget accuracies. The subsets were
made in such a way that trials of each type (i.e., target and
nontarget), each direction (1 to 6), and each session (1 and 2)
were present in the subsets with the same proportion as in the
original set. Both the training and test sets had approximately
900 samples.

In addition to the single-trial accuracy, in all cases, the
averaged-trial accuracy was also assessed. Trial-averaging is
a technique usually employed to counteract the high level
of noise typically found in EEG signals, and thus improve
the classification accuracy. The improved accuracy comes at
the cost of a reduced communication speed since several
trials must be measured to produce a single estimation.
In this work, a M averaged-trial was fabricated from the
average classification score (using the score defined in (9))
of M single-trials of the same class randomly chosen with
resampling. A set of averaged-trials is built by repeating
this process until a given number of trials are fabricated.
The number of samples in the averaged-trial dataset was
made equal to the number of samples in the single-trial data
set (around 900 samples) with the same ratio of target to
nontarget samples. In reality, we made a master list containing
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FIGURE 2: (a) Experimental protocol used to measure the auditory P300 signals. (b) Direction of the virtual sound sources. (c) 64 EEG channel
layout used in the experiments. DRL and CMS are the references attached to the earlobes.

the indexes of the single-trials used to make each averaged-
trial and used this list in all cases and all subjects to enforce
that the averaged-trial datasets were fabricated using exactly
the same information and thus ensure a fair comparison
between cases. The averaged-trial accuracy was assessed for
M=2...10.

Lastly, it is important to remark that score averaging
was chosen over signal averaging because, if signals are
averaged prior to classification, then (1) the number of
samples available to train the classifier is reduced, and (2) the
P300 component may cancel out if inter-trial jitter is present.

3.5. Simulation Cases. For every subject, eight cases were
simulated to study the effect of the fitness function weights on
the classification accuracy and number of selected channels
that are ultimately achieved by the MHPSO algorithm. These
cases are listed below.

Case 1: w; = 1.00, w; = 0.00.
Case 2: w; = 0.95, w; = 0.05.

Case 3: w; = 0.90, w; = 0.10.
Case 4: w; = 0.85, w; = 0.15.
Case 5: w; = 0.75, w; = 0.25.
Case 6: w; = 0.65, w; = 0.35.
Case 7: w; = 0.50, w; = 0.50.
Case 8: w; = 0.35, w; = 0.65.

Additionally, the algorithm was compared to a version
that uses all 64 channels without channel selection and
only tunes the FDA parameter (Fixed 64), SWLDA, and a
combination of spatial PCA and SWLDA (PCA-SWLDA)
similar to the one used in [6]. In the latter cases, the SWLDA
algorithm was configured with a feature insertion P value of
0.1 and a feature removal P value of 0.15 as recommended by
[7]. In the PCA-SWLDA case, the spatial principal compo-
nents that accounted for 90% of the variability (the specific
number of spatial factors varied between subjects) were used
to transform the data prior to classification with SWLDA. In
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FIGURE 3: Average classification accuracy of 12 subjects as a function
of the number of averaged samples for each case.

the SWLDA case, there were 1600 features to choose from (25
temporal features per channel) and, in the PCA-SWLDA case,
there were between 75 and 200 features available for selection
(25 transformed temporal features per principal component).

4. Results and Discussion

The average classification accuracy of 12 subjects as a function
of the number of averaged samples for each MHPSO case
is shown in Figure 3. From here, first, an improvement of
classification with increasing trial averaging can be seen, as
is usually expected. A two-way repeated measures analysis
of variance (ANOVA) on the classification accuracy (factors:
case and number of averaged samples) revealed a statistically
significant difference between cases (F(7,77) = 3.440,
P < 0.005) and between the number of averaged samples
(F(9,99) = 266.93, P < 0.001). Since a significant interaction
between the case and the number of averaged samples was
also found (F(63,693) = 2.733, P < 0.001), we performed
analysis separately for the single-trial and the 10 averaged-
trial cases.

The number of channels selected and the single-trial
and 10 averaged-trial accuracies achieved in each MHPSO
case are shown in Figure 4(a). The corresponding results for
the Fixed 64, SWLDA, and PCA-SWLDA cases are shown
in Figure 4(b). This figure illustrates the effect that fitness
weights have on the number of selected channels. A one-way
repeated measures ANOVA with Greenhouse-Geisser (GG)
correction was conducted on the number of channels (factor:
case), revealing a significant difference between the number
of channels selected by each case (¢ = 0.593, F(4.15,45.62) =
262.470, P < 0.001). A post hoc multiple comparison test
based on Holm’s method revealed a statistically significant
difference between all pairs of cases. Higher w,/w, ratios

indeed produced a more aggressive channel selection and
selected sets with fewer channels.

While greater values of w,/w, yielded fewer selected
channels on average, the single-trial and 10 averaged-trial
accuracies did not significantly change. A one-way repeated
measures ANOVA with GG correction conducted on the
single-trial accuracies (factor: case) found a significant dif-
ference between cases (¢ = 0.434, F(3.035,33.383) = 8.085,
P < 0.001), but a post hoc Holm test found that these
differences were only significant between pairs 1-8 (P =
0.027), 2-8 (P = 0.027) and 4-8 (P = 0.027). A similar
analysis performed on the 10 averaged-trial accuracies did not
find any significant difference between cases. These results
suggest that the number of channels can be reduced without
significantly hindering classification accuracy. For example,
in Case 7, it can be seen that, with as few as 3 channels,
the proposed algorithm could attain a single-trial accuracy
slightly slower (around 3%) and an averaged-trial accuracy
similar to what would be obtained using the full channel set.

The number of channels selected by the proposed and
SWLDA algorithms were also compared. The frequency with
which each channel was selected in both cases is shown in
Figure 5. Two observations can be made from this figure.
The first observation is that the SWLDA algorithm tended
to choose most of the channels in most of the subjects,
with the least frequently selected channels being chosen at
least half of the time. A one-way repeated measures ANOVA
conducted on the number of channels with GG correction
(factor: case) showed a significant difference between the
channels selected by the proposed method and SWLDA (e =
0.344, F(2.755,30.305) = 366.49, P < 0.001). All cases
were significantly different to SWLDA (P < 0.001 for all
pairs), confirming that indeed the proposed algorithm adapts
sets with fewer channels. We hypothesized that the random
initialization of the particles’ binary bits gave the proposed
algorithm an unfair advantage over other methods, but
simulations where all the particle’s binary part were initialized
to all ones (i.e., all the channels selected) yielded similar
results (results omitted for brevity). The second observation
is that the proposed algorithm had a tendency to choose
channels over the parietal, frontal, and frontal polar regions,
as evidenced by the warm-colored spots over channels Pz,
ECl, FCz, FC2, and FPz. While the parietal and frontal
channels are in line with the spatial behavior of the P300 [22],
the FPz channel is presumably being selected by the proposed
algorithm to provide a mean of indirect noise reduction in the
FDA classifier as suggested by [5, 23].

Another way to assess the trade-off relationship between
the number of channels and the classification accuracy is to
study the Pareto front encountered by the particles through-
out the course of the optimization process. The Pareto front in
this case represents the boundary at which an improvement of
classification accuracy necessarily induces an increase of the
number of channels or, conversely, an attempt to reduce the
number of channels produces a loss of accuracy. An example
of the Pareto front found in each case for a representative
subject is shown in Figure 6 to illustrate this phenomenon.
By looking at Figure 6, it becomes clear that, for increasing
values of w, /w,, the positions visited by the swarm gradually
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MHPSO case and (b) the Fixed 64, SWLDA, and PCA-SWLDA cases.
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FIGURE 5: Frequency of selection of channels in (a) the proposed algorithm (across all MHPSO cases and subjects) and (b) SWLDA (across
all subjects). Note that the color gradations denote different ranges in each figure.

move towards the bottom and that once an accuracy of
about 80% is reached, the Pareto front is encountered and a
trade-off between number of channels and accuracy begins.
Nevertheless, the existence of positions with equal accuracy
but different number of channels that can be seen in any of
the cases is in line with the abovementioned results.

Lastly, following the results shown in Figure 5(a), it is
worth asking if one could use MHPSO to find the most
important channels for classification, make a fixed a channel

set with a few of those channels, and use it as a general
purpose set for every subject. To assess this, we chose the
5 most frequently selected channels across all subjects and
cases and trained an algorithm on this reduced set of channels
(like Fixed 64, this case only tuned the FDA regularization
parameter). We call this case Fixed 5 and compared it to
the Fixed 64, SWLDA, PCA-SWLDA, and MHPSO(4) cases.
The channel set is shown in Figure7 and the results are
shown in Figure 8. A one-way repeated measures ANOVA
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FIGURE 6: Illustration of the Pareto front found by the algorithm in each MHPSO case for a representative subject. The vertical and horizontal
axes denote the number of selected channels and the average classification accuracy, respectively. The blue dots show the fitness of all the
positions visited by the swarm. The red dots represent are the positions that belong to the Pareto front. The first MHPSO case was omitted
because the Pareto front in this case is meaningless.

with GG correction conducted on the single-trial accuracies
of the 5 algorithms (factor: case) found a significant difference
between cases (¢ = 0.610, F(2.440,26.838) = 9.880, P <
0.001). After a post hoc Holm test, it was found that these
differences were significant between pairs Fixed 64-SWLDA

(P < 0.001) and MHPSO(4)-SWLDA (P < 0.001). Other
significantly different pairs are Fixed 64-PCA-SWLDA (P =
0.012), Fixed 64-Fixed 5 (P = 0.032), and MHPSO(4)-PCA-
SWLDA (P = 0.029). No significant differences were found
in the 10 averaged-trial case. These results show that, although
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FIGURE 7: Channel set of 5 fixed channels built from the channels
that were most frequently selected by the proposed algorithm.
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FIGURE 8: Average classification accuracy across 12 subjects achieved
by the Fixed 5 case (purple line). Other colors show the accu-
racy obtained by the Fixed 64, SWLDA, PCA-SWLDA, and the
MHPSO(4) cases.

the algorithm using the full channel set provided the best
accuracy, the Fixed 5 and MHPSO(4) algorithms yielded
a performance comparable to or better than SWLDA and
PCA-SWLDA using considerably fewer channels, thus being
adequate for BMI systems where portability and simplicity
are important. Although there was no significant difference
between the Fixed 5 and MHPSO(4) cases (P = 0.197), there
also seems to be a difference between using a fixed channel set
assessed with MHPSO across all users or using a channel set
adapted to each user. This difference, however, may become

The Scientific World Journal

significant if the number of subjects is increased. Ultimately,
the decision of whether to give priority to the accuracy or
the compactness of the EEG channel set will depend on the
particular constraints of each application. In the case that
classification accuracy can be spared, the proposed algorithm
can provide hints as to which channels can be used as general
purpose set or to adapt a channel set to each particular user.

5. Conclusions

An algorithm based on FDA and MHPSO for the classifi-
cation of P300 ERP signals was presented. The algorithm
used MHPSO to find the FDA parameters and set of the
fewest EEG channels that maximized the classification accu-
racy. The algorithm’s performance was evaluated through
offline analyses on datasets of auditory ERPs from sound
discrimination experiments. The proposed method achieved
a higher classification accuracy than that achieved by tradi-
tional methods while also using fewer channels. It was also
found that it is possible to reduce the number of channels
necessary for classification without greatly compromising the
classification accuracy. Future work will be aimed at finding
why, in addition to channels on the parietal and frontal
regions typically associated to the P300 ERP, channels on
the frontal polar region were selected. Also, given that the
proposed algorithm can be easily extended to spatiotemporal
feature selection, further research will focus on a version
that tunes more binary variables to select the channel set
and the time intervals within each channel that maximize
performance. Lastly, future research will also explore the
application of other swarm intelligence techniques such as
Ant Colony Optimization and the Firefly Algorithm and
compare it with the results obtained with MHPSO.
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