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ABSTRACT: Biochemical assay interference is becoming increasingly
recognized as a significant waste of resource in drug discovery, both in
industry and academia. A seminal publication from Baell and Holloway
raised the awareness of this issue, and they published a set of alerts to
identify what they described as PAINS (pan-assay interference
compounds). These alerts have been taken up by drug discovery groups,
even though the original paper had a somewhat limited data set. Here, we have taken Lilly’s far larger internal data set to assess
the PAINS alerts on four criteria: promiscuity (over six assay formats including AlphaScreen), compound stability, cytotoxicity,
and presence of a high Hill slope as a surrogate for non-1:1 protein−ligand binding. It was found that only three of the alerts
show pan-assay promiscuity, and the alerts appear to encode primarily AlphaScreen promiscuous molecules. Although not
enriching for pan-assay promiscuity, many of the alerts do encode molecules that are unstable, show cytotoxicity, and increase
the prevalence of high Hill slopes.
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The issue of biochemical assay interference resulting in
false positives has been well documented in the

literature1−6 and can result in significant waste of resources
for the original investigators, or worse, reporting of incorrect
information, potentially polluting the scientific literature, and
wasting the resources of others. Understanding the causes of
assay interference is of benefit to both academic and industrial
drug discovery teams to enable them to reduce waste through
focusing on hits most likely to be genuine actives. A complete
list of mechanisms causing this behavior is not fully
understood, but reported mechanisms include protein
alkylation by electrophilic moieties,7,8 redox cycling,9,10

compound aggregation,11−13 sample impurities,14 or interfer-
ence in the assay technology itself (e.g., metal chelation15 or
compound fluorescence16,17).
Working toward identifying mechanisms and substructures

prone to assay interference, Baell and Holloway3 analyzed six
AlphaScreen assays and described a set of alerts they suggested
captured the majority of their assay false positives (referred to
as BH2010). These alerts were proposed to be PAINS (pan-
assay interference compounds), despite being derived from a
series of AlphaScreen assays with some validation using two
fluorescence polarization assays. These alerts have become
commonly used in drug discovery, despite the data set
limitations in the original analysis, although it appears this
use has gone beyond what was initially intended in some
cases.18,19

Some of the PAINS alerts have been independently assessed
in the literature since the original publication. Nissink and
Blackburn describe their method for assessing “frequent-
hitters” and suggest that 10 out of the 15 PAINS alerts

considered did show an increased propensity for promiscuity.20

More recently, assessments from Capuzzi et al. and Jasial et al.
describe the assessment of PAINS alerts using the PubChem
data set.21,22 Both reports come to similar conclusions and
suggest that the PAINS alerts do not encode pan-assay
promiscuity, with matching compounds frequently found
inactive, and urge caution when applying them to novel hits,
although a subsequent criticism of this analysis has also been
published.19

Herein, we describe the assessment of 69 of the alerts (those
that matched 15 or more molecules in the BH2010 paper) over
a large, high quality data set, with assays separated by the
technology used, to determine if any of the alerts do show pan-
assay behavior. In addition to this promiscuity assessment, we
have looked at three other end points (compound stability,
Hill slope, and cytotoxicity) to try to further understand these
alerts and possible mechanisms of assay interference.
Our first step in the process was to translate the original

PAINS alerts from the format described in that publication:
SLN, into more robust SMARTS queries.23 This mostly
revolved around aromaticity perception and is a challenge
within cheminformatics. This is discussed further in the
Supporting Information (SI). The tools and queries used can
be found as part of a larger open source release of internally
developed cheminformatics methods: https://github.com/
EliLillyCo/LillyMol.
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Having curated a set of the PAINS alerts that we felt
maximally identified what was initially intended from the
original alerts, we gathered the necessary data to assess them.
We started by looking at promiscuity data, and 14,424,191 data
points from 3,048 assays covering six different commonly used
biochemical assay formats were collected. For each compound
tested in one of these assays, an active was defined as a
compound reporting XC50 (compound concentration that
produces a 50% effect in the assay whether that be an
antagonist or agonist effect) lower than the top screening
concentration; an inactive was defined as a compound
reporting an XC50 greater than the top screening concentration
(typically 10−20 μM) or reporting ≤30% inhibition if tested at
a single point (SP) concentration. Compounds reporting >30%
inhibition in a SP assay were excluded from the analysis as the
majority of these would be forwarded to a dose response. This
is a difference between our analysis and that of the BH2010
paper, whereby they used SP data only. For each assay, the
target and the gene family for that target were also considered
in the analysis. Compounds for which any sample had been
measured to be less than 80% pure (see SI for method) or
matched substructures used to filter the screening set in the
BH2010 paper were excluded from the analysis (assessment of
the PAINS alerts for increased instability can be found later in
the Letter). Molecules included in the analysis are broadly
similar for each assay format regarding both timing of testing
and heavy atom count. A summary of the activity data included
in the analysis can be seen in Table 1. Having gathered the
data, the next step was to assess the compounds that match
each of the PAINS alerts for promiscuity. Here, a degree of
normalization was required. Overall, for each assay format, and
for each rule, we calculated a “PAINS Activity Enrichment”,
which is the active rate of the PAINS compounds divided by
the active rate of the entire data set.24 A random selection of
compounds from the total set would be expected to yield an
activity enrichment of 1.0, whereas a subset of the whole that
showed an increased active rate over random we would suggest
is promiscuous. In addition to the enrichment values, which
are based on the raw data and can be biased, we have
calculated odds ratios and false discovery rates (FDR) where
appropriate on a subset normalized by target and corrected for

multiple hypothesis testing. The approaches here are described
in the SI.
Table 2 shows the data included, overall active rates, and

enrichment over random for the compounds that have been
tested in each of the assay formats that match the PAINS
alerts. Across all of the compounds tested, the compounds
hitting the PAINS alerts show 1.4-fold over the random active
rate, suggesting there is some enrichment for promiscuity;
however, this is not the case for every assay format.
Enrichment >1.5-fold for promiscuity is seen for the
AlphaScreen (AS), fluorescence polarization (FP), and
fluorescence resonance energy transfer (FRET) assay formats
with similar odds ratios (FDR < 0.0001), but not for the
enzyme-linked immunosorbent assay (ELISA), filter binding
(FB), and scintillation proximity assay (SPA) assay formats,
suggesting that the alerts may not be pan-assay from a
promiscuity perspective. Also, even though there is some
enrichment over random, many compounds containing these
structural motifs have been tested and found to be inactive at a
greater rate (similar to the findings of Capuzzi et al. and Jasial
et al.), suggesting that, although somewhat promiscuous, there
is some specificity to their inhibition (although not necessarily
via the intended mechanism).
Following on from the overall promiscuity statistics, we

looked at each rule contained within the PAINS rule set to see
if any particular alerts showed increased promiscuity. For
compounds matching each rule, we calculated the active rate,
the PAINS activity enrichment and associated FDRs (SI
Tables S1 and S7). Interestingly, only one rule shows
significant overall enrichment independent of assay format
here: anil_di_alk_A (1.9-fold), suggesting that most rules do
not enrich for pan-assay promiscuity. We compared the results
for each assay format by looking at the number of alerts that
achieved ≥1.5-fold (50% increase) over the active rate
expected at random and those showing a statistically significant
increase (FDR < 0.1) for the normalized subset. When looking
at each assay format, we observed that, for the AS format, more
alerts showed some promiscuity compared to the other formats
(Table 3). For the other two assay formats that overall showed
an increase in promiscuity (FP and FRET), this was coming
from a smaller number of alerts (anil_di_alk_A, ene_rhod_A,

Table 1. Summary of All Activity Data Included in Analysis of PAINS Alerts

assay format actives data points active rate (%) unique compounds unique assays unique gene families

AS 81704 1,688652 4.8 498,977 214 7
ELISA 82,514 416,841 19.8 304,478 228 7
FB 317,865 4,008,981 7.9 459,068 982 8
FP 138,393 1,791,893 7.7 492,831 225 6
FRET 486,748 4,565,466 10.7 537,795 932 11
SPA 277,196 1,952,358 14.2 534,701 467 11
overall 1,384,420 14,424,191 9.6 921,054 3,048 16

Table 2. Summary of Data for Compounds Matching the PAINS Alerts

format actives data points active rate (%) unique compounds unique assays unique gene families PAINS activity enrichment (odds ratio)

AS 3,490 32,471 10.8 9,813 173 7 2.2 (2.5)
ELISA 1,769 7,945 22.2 5,749 134 6 1.1 (1.1)
FB 8,523 102,141 8.3 11,134 721 8 1.1 (1.1)
FP 5,032 39,755 12.7 11,645 201 5 1.7 (1.5)
FRET 20,794 103,973 20.0 11,101 702 10 1.9 (2.5)
SPA 5,223 37,833 13.8 11,274 309 10 1.0 (1.6)
overall 44,831 324,118 13.8 20,492 2,240 16 1.4 (1.7)
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and anil_alk_ene, in particular). Together, this suggests that
the original PAINS alerts code primarily for AS interferers and
may not necessarily be pan-assay as originally proposed. For
ELISA and FB assays, there appears to be very little
enrichment for promiscuity.
We looked over each of the alerts to identify which of them

was truly pan-assay in their promiscuous behavior. We defined
this as showing ≥1.5-fold activity enrichment on the raw data
and statistical significance for the normalized subset for at least
four of the six assay formats tested (61 of the alerts matched
molecules that had been tested against at least four assay
formats). Out of the 63 alerts to which we matched
compounds, only two of the alerts met this criteria. These
were anil_di_alk_A and ene_rhod_A, which hit five and four
of the assay formats, respectively (Figure 1). Alert azo_A

shows enrichment in five of the assay formats in the raw data,
but only one of these reaches significance in the normalized
subset. All three of these were also assessed by Nissink and
Blackburn, and consistent with our analysis, these alerts
showed an increase in frequent hitter behavior relative to what
would be expected at random.18

A difference between our analysis and the BH2010 paper is
that we have filtered out compounds with measured instability.
One mechanism of assay interference could be compound
degradation yielding an electrophilic or other interfering motif.
We speculated that some of the PAINS alerts may encode
inherently unstable motifs rather than be interferers
themselves. To investigate this, 172,613 compounds with
measured purity were analyzed. A compound was considered
pure if all measured samples were ≥80% of the parent
structure, those with any sample <80% were considered impure
(assuming that they would be >90% at submission). Samples
that identified a single molecule, but with a correspondingly
incorrect m/z, were discarded through concerns said molecule
may have been incorrectly registered and not necessarily
unstable. Of the total number of compounds considered, 5.3%
were classified as impure. For each of the compounds matching
the PAINS alerts, an instability enrichment was calculated
similarly to the activity enrichment. Compounds matching the
PAINS alerts that show instability at a higher rate than the
overall set may have achieved their assay interference by

degradation products in the BH2010 paper but may be missed
by our analysis, which filtered known impure compounds.
Interestingly, 25 of the 46 alerts for which we had stability

data showed ≥1.5-fold enrichment for instability, 13 of which
reach statistical significance. Three of these showed greater
than 10-fold enrichment with statistical significance, suggesting
these motifs are frequently unstable (pyrrole_B, keto_keto_-
beta_A, and anil_alk_ene). Of the two alerts that showed pan-
assay promiscuity, ene_rhod_A showed instability, suggesting
this as a possible mechanism, but molecules matching the
anil_di_alk_A rule showed no enrichment in instability. This
stability data is summarized in SI Table S2.
In addition to instability and promiscuity, we also looked at

cytotoxicity. Frequently, primary actives showing a dose
response in a biochemical assay are evaluated in cellular assays
to show target or pathway modulation in a cellular context, or
to establish a cellular phenotype. For some of these assays, say
in oncology, cytotoxicity may be the primary end point, or
cytotoxicity may confound an assay result and provide an
additional mechanism of assay interference. Molecules that
interfere in a primary biochemical assay, but also in a cellular
assay through a toxicity mechanism, may get reported in the
literature as a true positive, despite interfering in both assays.
To assess the cytotoxicity of molecules matching the PAINS
alerts, 1,099,163 data points from 1,261 cytotoxicity assays
were considered and treated in the same manner as the
promiscuity data, looking for enrichment over what would be
expected at random. Of the 56 PAINS alerts for which we had
data, 15 of these showed an enrichment of ≥1.5-fold (nine of
which are statistically significant) suggesting they show some
enrichment for cytotoxicity, with quinone_A being the worst
offender here with 4-fold enrichment. Of the two alerts that
showed pan-assay promiscuity, anil_di_alk_A also shows
statistically significant enrichment for cytotoxicity. The data
for molecules matching this rule identified by a biochemical
assay and “confirmed” in a cellular assay should be used with
caution. Something to consider when interpreting this data is
the time frame of the assay; typically a cytotoxicity assay will
run for a period of days, but for assay readouts that occur in a
shorter time frame, this data may not be relevant. The
cytotoxicity data is summarized in SI Table S3.
Although many of the alerts do not appear to code for

promiscuity, we sought to try to gather some information as to
whether, when found active, the compound may be acting via
an MOA that may not be 1:1 protein/ligand binding. We have
used the Hill slope of the dose−response curve as a surrogate
for this. A high Hill slope can be an indicator of an undesirable
MOA such as compound aggregation, which is generally
regarded as an interference mechanism and almost impossible
to optimize to a molecule that would be effective in the
clinic.25,26 To assess this, the Hill slopes of 1,447,886 active
compounds were imported from 1,845 biochemical assays. A
High hill slope was defined as >2.0, a normal Hill slope
between 0.5 and 1.5, and slopes <0.5 or 1.5−2.0 were
discarded. Overall, the PAINS alerts did not show enrichment
in the presence of a high Hill slope or for any particular assay
format. However, when we looked at each of the alerts, 41 out
of the 61 alerts for which molecules with dose−response data
was available showed >1.5-fold enrichment for the presence of
a high Hill slope, 27 of which reach statistical significance.
Although many of the alerts did not show enrichment for
promiscuity, it appears that when found as hits, many of the
PAINS alerts code for molecules that deliver a high Hill slope,

Table 3. Numbers of PAINS Alerts Showing >1.5-Fold
Activity Enrichment for Each Assays Format

assay format AS ELISA FB FP FRET SPA

alerts hit 33 10 2 12 11 13
alerts hit signficantlya 11 5 2 8 6 9
alerts tested 57 55 61 61 60 61

aFDR < 0.1.

Figure 1. PAINS alerts showing pan-assay promiscuous behavior.
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with the inference being that the mechanism of action (MOA)
may not be 1:1 protein/ligand binding. The rule anil_di_al-
k_A, which showed both pan-assay promiscuity and cytotox-
icity, did not show overall enrichment in Hill slope, and given
that there were many matches to this rule, this resulted in
overall no enrichment for the PAINS alerts despite many of the
alerts enriching for a high Hill slope. The worst offending rules
regarding Hill slope are the amino_acridine_A and thiophe-
ne_amino_Aa rules, which both overall show a 3.5-fold
enrichment for the presence of a high Hill slope overall
(FDR < 0.1) and show enrichment of >1.5-fold for molecules
tested in at least five of the assay formats considered here.
Given the large, flat, and aromatic nature of these
substructures, there is a high probability these represent
aggregation prone molecules causing the high Hill slopes.
If we look at the Hill slope data by assay format, it is clear

that FP and FRET assays are the most prone to PAINS alert
containing molecules showing a high hill slope. For FP and
FRET assays, 10 and 15 of the alerts, respectively, show
statistically significant enrichment of high Hill slopes with a
further 17 and 15, respectively, showing enrichment but not
reaching significance. By comparison, the other formats have
<6 alerts each showing this enrichment for high Hill slopes,
suggesting that FP and FRET assays may be most susceptible
to colloidal aggregation interference. This Hill slope data is
summarized in SI Tables S4 to S7.
In summary, assay interference continues to be an issue that

reduces productivity in drug discovery, and publications such
BH2010 have helped the field recognize and understand the
issue. Here, we hoped to build on this knowledge through
analysis of the performance of those published alerts on a
larger pharmaceutical company database with respect to
promiscuity, but also looking at the behavior of the alerts in
compound stability, cytotoxicity, and Hill slope data types. For
promiscuity, only two of the alerts were found to show pan-
assay promiscuity, and the alerts appear to mostly enrich for
AlphaScreen promiscuity, the assay format used in the original
publication. Despite not showing significant enrichment for
promiscuity, a much larger fraction showed enrichment for
compound instability and presence of a high Hill slope
(although most prevalent in FP and FRET assays) suggesting
that the alerts may code for other undesirable behaviors
resulting in assay interference. In addition to this biochemical
assay interference, we find that 15 of the alerts enrich for
cytotoxicity. This may mean that cellular assays alone could be
inappropriate confirmatory assays for molecules matching
these alerts. We would always recommend that direct binding
to a target is established possibly through a biophysical assay
and that mechanistic studies are performed to understand the
function.
Overall, we hope that this analysis will help scientists

understand further when a compound hits one of the PAINS
alerts, what the issue might be, and whether it is relevant to
their assay format. Some assays do not show any interference
behavior for certain substructures, and inaccurate accusations
of the compound being a false positive can be reduced.
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