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Abstract

Despite a standardized diagnostic examination, cancer of unknown primary (CUP) is a rare metastatic malignancy with an unidentified
tissue of origin (TOO). Patients diagnosed with CUP are typically treated with empiric chemotherapy, although their prognosis is
worse than those with metastatic cancer of a known origin. TOO identification of CUP has been employed in precision medicine, and
subsequent site-specific therapy is clinically helpful. For example, molecular profiling, including genomic profiling, gene expression
profiling, epigenetics and proteins, has facilitated TOO identification. Moreover, machine learning has improved identification
accuracy, and non-invasive methods, such as liquid biopsy and image omics, are gaining momentum. However, the heterogeneity
in prediction accuracy, sample requirements and technical fundamentals among the various techniques is noteworthy. Accordingly,
we systematically reviewed the development and limitations of novel TOO identification methods, compared their pros and cons and
assessed their potential clinical usefulness. Our study may help patients shift from empirical to customized care and improve their
prognoses.
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INTRODUCTION
Despite standardized diagnostic workups, cancers of unknown
primary (CUPs) comprise a heterogeneous collection of metastatic
tumors with unknown primary tumors [1]. Epidemiologically,
CUPs are estimated to account for 2–5% of all diagnosed tumors
worldwide [2–4]. Indeed, most patients (80–90%) with CUPs
fall into an unfavorable subset, with median overall survival
(OS) durations ranging from 3 to 11 months and a 1-year
OS of 25–40% [5–7]. Clinically aggressive, early-spreading and
unpredictable metastases define these tumors [2, 4, 8]. Due to the
lack of standard treatment, most CUP patients receive empirical
chemotherapy, including platinum–taxane regimens [1, 9].

Patients diagnosed with CUP have a worse prognosis than those
with metastatic cancer of known origin [10, 11]. This suggests that
tissue of origin (TOO) identification and subsequent site-specific
therapy for CUP may enhance survival and prognosis. Data from
various clinical trials suggest the possibility of this hypothesis [12–
15]. Varadhachary et al. [14] were the pioneers in demonstrating,
using a small sample of patients with CUP associated with a
colon-cancer profile (CCP-CUP), and found that patients with
CCP-CUP derive substantial benefits from using specific treat-
ments developed for colon cancer. Similarly, Hainsworth et al.’s
[15] assay-directed site-specific therapy yielded a median sur-
vival time of 12.5 months, surpassing outcomes associated with
empiric CUP regimens. Furthermore, regarding whether patients
with CUP benefit from site-specific therapy, Ding et al. [16] con-
ducted a meta-analysis and concluded that identifying the TOO
and administration of site-directed therapy is effective, specif-
ically for CUP patients with responsive tumor types. Accord-
ingly, identifying the TOO of CUP is critical for optimizing and
pinpointing treatment. The meta-analysis by Ding et al. [16] also
showed that improving the accuracy of TOO identification could
significantly improve patient prognosis. From a psychological
point of view, CUP patients have more psychological perplexity
and stress than those with recognized TOO [17–21], which con-
cerns both clinicians and patients. Therefore, it is of great clinical
significance to develop TOO identification techniques for patients
diagnosed with CUP.

A comprehensive diagnostic approach for CUP typically
includes physical examination, medical history review, hema-
tology assessment, endoscopy, imaging studies and pathological
analysis, as depicted in Figure 1 [1, 2, 7]. However, these methods
may not consistently identify the TOO in all suspected CUP
patients. For example, conventional imaging techniques exhibit
a TOO detection rate of only 20–27%, while positron emission
tomography (PET) improves this rate slightly to 37% [22, 23].
Immunohistochemical analysis, although necessary, is a labor-
intensive and often inefficient method for TOO identification
in malignant tumors, with a notable 27% of cases remaining
undetermined. The concordance rate between pathological
and clinical diagnoses was only 59% [24, 25]. Notably, multiple
immunostainings consume a limited amount of the tumor tissue.
The limitations of traditional clinical methods underscore the
need for innovative and effective TOO identification techniques.

Identifying TOO in metastatic tumors is the cornerstone of
clinical work in oncology. However, a notable challenge emerges in
a small subset of cases, particularly within poorly differentiated
carcinomas and squamous cell carcinomas, where the diagnostic
process is significantly hampered by the absence of specific site-
specific immunohistochemical markers [24]. New TOO detection
techniques for CUP are being proposed and validated as technol-
ogy develops (Figure 2). On the one hand, the prediction accuracy,
sample requirements and technical principles of the different

identification techniques show significant diversity. Contrarily, a
comprehensive evaluation comparing the merits, demerits and
future prospects of these methods is yet to be undertaken. Thus,
we systematically assessed emerging TOO detection methods for
CUP to determine their clinical utility.

MAIN TEXT
Methods of literature search and criteria for
article selection
A systematic literature search was performed using PubMed, Web
of Science, Embase, Cochrane Library and ClinicalTrials.gov from
1 January 2000 to 1 May 2023, with English language restric-
tions. Conference abstracts from the American Society of Clini-
cal Oncology (ASCO) and European Society of Medical Oncology
(ESMO) meetings were also included. Search terms were as fol-
lows: [(cancer∗ OR carcinom∗ OR neoplas∗ OR malignan∗) AND
(‘unknown primary’ OR ‘occult primary’ OR ‘primary metastatic’)
AND (origin∗ OR type) AND (trace∗ OR infer∗ OR classif∗ OR identif∗

OR predict∗) AND (accuracy OR sensitivity OR specificity)]. Only
studies conducted on CUP patients were included. The primary
lesion was identified using non-routine clinical diagnostic meth-
ods, and the research was limited only to human model. Case
reports, editorials and commentaries were excluded (Supplemen-
tary Figure 1).

A total of 14 369 potentially eligible studies were initially
identified from the systematic literature search, as shown in
Supplementary Figure 1. After removing the duplicates from the
different databases (n = 7249), irrelevant studies (n = 7018) were
excluded by title and abstract screening. A total of 102 studies
were assessed for eligibility. Eight articles were excluded because
they did not introduce the technique to identify TOO, 16 articles
were excluded because they did not focus on patients with CUP, 20
articles were excluded because accuracy data were not available
and 15 articles were excluded because their sample size was
less than 30 cases. Due to the limited number of comparative
studies available, one comparative study conducted by Chen et al.
was still included in our research, despite its small sample size
(Supplementary Figure 1).

New techniques of identifying TOO of CUP
Based on genomic profiling
The TOO of CUP can be identified at the deoxyribonucleic acid
(DNA) level. DNA copy number variations (CNVs) [26, 27], somatic
and germline mutation [28–30], expression quantitative trait loci
(eQTL) [31] and single-nucleotide polymorphisms (SNPs) [32, 33]
have been used to identify TOO in tumor tissues (Table 1).

CNV, a genetic marker of the genome, is a variation of DNA
fragments ranging in size from 1 kb to 3 Mb. CNVs are critical
in affecting gene function through gene dosage, breakage, fusion
and position effects and have a strong association with tumors
[34, 35]. The machine learning (ML) model utilized genomic data
to identify TOO of CUP. One noteworthy tool in this context is
CNAOrigin, developed by Liang et al., which harnesses a convo-
lutional neural network (CNN) model. After subjecting the model
to rigorous 10-fold cross-validations, CNAOrigin demonstrated an
impressive predictive accuracy of 83.81% on internal datasets
and 79% on independent datasets [26]. Another useful DNA-
level method for TOO identification is eQTL, which explains the
association between SNPs and gene expression levels. A recent
study by Miao et al. explicitly integrated eQTL into the eXtreme
Gradient Boosting (XGBoost) classification model. This integration
yielded a remarkable prediction accuracy of over 96% in 10-fold

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
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Figure 1. Diagnostic methods recommended for the anticipatory diagnosis of CUP patients. The clinical evaluation of CUP begins with a thorough tumor
history, family history and physical examination. This is followed by analysis, including a basic hematologic examination; CT and PET scans of the chest,
abdomen and pelvis; and determination of tumor biomarkers. Endoscopy, like gastrointestinal endoscopy and laryngoscopy, can not only visualize the
location of the tumor but also provide the tissue samples needed for pathological examination, and various immunohistochemical combinations can
play a role in identifying the tumor category. If the location of the primary tumor cannot be determined, the diagnosis of CUP remains. αSMA, α-smooth
muscle actin; AFP, α-fetoprotein; CA, cancer antigen; CD, cluster of differentiation; CK, cytokeratin; CLA, cutaneous lymphocyte-associated antigen; CT,
computed tomography; CUP, cancer of unknown primary; hCG, human chorionic gonadotropin; HMB45, human melanoma black 45; myoD1, myoblast
determination protein 1; PET, positron emission tomography; PSA, prostate-specific antigen; S100, calcium-binding protein G. Potential cancer type
designation is determined by marker positivity unless otherwise noted (Figure 1 belongs to the Introduction section).

cross-validation using The Cancer Genome Atlas (TCGA) data
[31]. Combining multiple DNA-level methods may help detect the
TOO of CUP more accurately. For instance, Marquard et al. [30]
performed a comprehensive study in which an approach using
only point mutation had an accuracy of only 69% and an approach
that integrated point mutation and CNV significantly improved
accuracy to 85%.

Based on gene expression profiling
Metastatic tumors may retain gene expression patterns from cell-
type-specific tumors [36]. Therefore, gene expression profiling
(GEP) is vital for TOO detection. Currently, several GEP methods
(Table 1), such as reverse transcription-polymerase chain reac-
tion (RT-PCR) [15, 37–41], microarrays [42–51], second-generation
sequencing of ribonucleic acid (RNA) [38, 52–59] and relative gene
expression orderings (REOs) [60], are available to aid in the search
for the TOO of CUP.

RT-PCR was one of the pioneering methods used for discrim-
ination and is still utilized today. Several commercial platforms,
such as CancerType ID (a 92-gene RT-PCR-based cancer classifier),
have been developed. However, RT-PCR is limited compared to

microarrays and second-generation sequencing. Microarrays and
second-generation sequencing offer the advantage of identifying
a broader spectrum of tumor types, assessing older samples
with preservation periods extending up to a decade and facili-
tating targeted therapies [15, 39]. Our research group extracted
approximately 1000 signature molecules from the TCGA and RNA
sequencing of clinical samples from our institution to create the
Bayes algorithm for tissue origin diagnosis (TOD-Bayes algorithm)
to diagnose the TOO of hepatobiliary pancreatic malignancies
[58]. The accuracy rate of our internal data exceeded 95%, and
the external validation corroborated an accuracy rate of 94.4%
[58]. Sample REO is stable, which minimizes the impact of experi-
mental batch, data conversion, RNA degradation and tumor tissue
sampling site randomization [60, 61]. For example, Li et al. used
five gene pairs as markers to predict the TOO of metastatic
colorectal cancer (CRC), achieving accuracy rates of 99.36% and
100% for internal and external data, respectively [60].

MicroRNA (miRNA) is a non-coding family of 22-nucleotide
single-stranded RNA molecules encoded by endogenous genes
[62]. MiRNAs are persistent and resistant to ribonuclease (RNase)
degradation in compromised clinical samples, making miRNA



6 | Ma et al.

Figure 2. New techniques developed at different molecular levels for the detection of TOO in CUP are emerging. CUP, cancer of unknown primary; RT-PCR,
reverse transcription-polymerase chain reaction; TOO, tissue of origin (Figure 2 belongs to the New techniques of identifying TOO of CUP section).

array a reliable TOO detection technique [63–68]. Laprovitera and
colleagues used 89 miRNAs to deduce the TOO of CUPs. The
miRNA expression was evaluated in 159 samples using digital
droplet PCR and the least absolute shrinkage and selection oper-
ator (LASSO) model combined with the predictive analysis of
microarrays (PAMR) nearest shrinkage center of mass method.
This integrated approach yielded an internal data accuracy of 95%
and increased OS in CUP patients [64]. This study highlights the
potential utility of miRNA array in identifying the TOO of CUP.

Based on epigenetics
Epigenetics mechanisms, including DNA methylation, histone
modification and chromosomal remodeling, regulate gene
expression independently of changes in the DNA sequence [69,
70]. Studies have shown that CUP is characterized by a substantial
overall loss of DNA methylation, resulting in a decrease in 5-
methylcytosine levels ranging from 20% to 60%, making DNA
methylation an ideal biomarker for identifying the TOO of CUP
[71–73]. Recent research has used improved DNA methylation
platforms to detect 10 481 tumor samples with 99.6% specificity
and 97.7% sensitivity using approximately 450 000 CpG sites in
the human genome [12].

Based on proteins
Several proteomic methods are available, including tandem mass
tagging/isobaric tags for relative and absolute quantification
(TMT/iTRAQ) and data-independent acquisition/sequential win-
dow acquisition of all theoretical fragment ions (DIA/SWATH) [24].
Nonetheless, no research currently employs rigorous proteomic
techniques to identify the TOO of CUP. Hasegawa et al. conducted
a retrospective analysis of 90 patients with an unfavorable subset
of CUP using a combination of immunohistochemical markers to
identify TOO. Fifty-six patients (62.2%) with predicted TOO using
this technique received site-specific therapy and had a median OS

of 20.3 months, a significant improvement in survival compared
to 10.7 months for patients receiving empiric chemotherapy
[13]. Although this may not meet the criteria of a ‘stringent’
proteomic technique, it nonetheless underscores the considerable
prospective utility of proteomics.

Based on liquid biopsy
Liquid biopsy, a non-invasive methodology, has the potential to
revolutionize the diagnosis, treatment and prognosis of CUP [74,
75]. Key biomarkers employed in this approach encompass circu-
lating tumor cells (CTCs), circulating tumor DNA (ctDNA) [76–78],
extracellular vesicles (EVs) [79], peripheral blood circulating RNA
and tumor-educated platelets (TEPs) [80] (Table 1, Figure 3).

CTCs, originating from the primary tumor and circulating
within the bloodstream [81], contrast with ctDNA, which
comprises DNA fragments shed by cancer cells through apoptosis
or necrosis [82]. CTCs and ctDNA can reveal cancer genetic and
phenotypic traits and predict TOO [77, 82–85]. Lebofsky and
colleagues reported a remarkable 97% concordance between
ctDNA analysis and the accurate identification of TOO across 34
patients encompassing 18 distinct tumor types [76]. Nonetheless,
it is important to note that the effectiveness may be somewhat
limited in detecting early-stage tumors or in older patients [86]
because of the diverse metastatic nature of the tumor [74, 75, 87].

EVs refer to a heterogeneous population of small, membrane-
bound vesicles found in various body fluids, which contain diverse
biomolecules [88]. These EVs can be categorized into subgroups
such as exosomes, endosomes, microbubbles and apoptotic bod-
ies are EV subgroups, distinguished by their size and morpholog-
ical characteristics [88–91]. Hoshino et al. employed EV protein
patterns derived from tumor tissue and plasma to differentiate
melanoma, colorectal, pancreatic and lung cancers, with a 100%
accuracy rate. Moreover, the study showed that the specificity
of the EV-based diagnostic method remained consistent across
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Figure 3. Comparison between liquid biopsy and tissue biopsy for the detection of TOO in CUP. ARMS, amplification refractory mutation system;
CUP, cancer of unknown primary; NGS, next-generation sequencing; PCR, polymerase chain reaction; TOO, tissue of origin (Figure 3 belongs to the
Based on liquid biopsy section).

different stages of cancer and could even detect cancers in their
early stages [79].

TEPs are important in the systemic and local responses to
tumor growth, thereby altering their RNA profile. Best et al. deter-
mined the diagnostic potential of TEPs by mRNA sequencing of
283 platelet samples. The TOO was accurately identified in 71% of
cases across six different tumor types [80]. These findings suggest
that blood platelets are a valuable platform for detecting TOO
of CUP.

Circulating RNA in the peripheral blood has the potential
to aid in the diagnosis and treatment of CUP [92], although its
utilization in research remains limited. In a recent study by Yao
et al., the authors demonstrated the potential of this approach
by analyzing miRNA profiles from plasma samples obtained from
individuals with gastric cancer and non-cancer patients using two
independent gene expression synthesis datasets. Three miRNAs-
hsa-miR-320a, 1260b and 6515-5p have demonstrated excep-
tional specificity in distinguishing primary gastric tumors [93].

However, further research is needed to determine the efficacy of
this method for CUP patients.

Based on other techniques
In addition to the above techniques for TOO detection, tumor
developmental atlases and image omics show considerable
potential. Moiso’s team has constructed a comprehensive
human tumor development atlas by analyzing and comparing
single-cell data from TCGA tumor samples with the Mouse
Organogenesis Cell Atlas (MOCA). The atlas aims to establish
correlations between cancer biology and development. The team
used a developmental multilayer perceptron (D-MLP) classifier
constructed from this atlas, which showed remarkable accuracy
of 0.974 in identifying TOO [94]. Image omics could also determine
the TOO of CUP. Lu et al. developed an artificial intelligence–based
(AI-based) pathology training model capable of simultaneously
predicting the metastatic status and identifying the origin of 18
different tumor types. On the known primary tumor test set,
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the model demonstrated outstanding performance, achieving a
maximum level 1 accuracy of 0.83 and a level 3 accuracy of 0.96.
On the external test set, it also achieved the highest levels 1 and
3 accuracy of 0.80 and 0.93, respectively [95].

ML for identifying TOO of CUP
The basic f lowchart of building a TOO classifier with an
ML algorithm
The process of developing a classifier for TOO utilizing an ML algo-
rithm entails the following steps (Figure 4): initially, the training
set must be created by obtaining multimodal data either from
public databases like TCGA and International Cancer Genome
Consortium (ICGC) or through self-collection of the data. The
data collected may include genomic profiling, gene expression
profiling and proteins data from tumor tissue, CTCs and EVs
data from plasma and CT images or pathological images. Using
genomic profiling data as an example, bioinformatics and ML
algorithms are applied to score and rank the most relevant genes
for creating tumor–gene associations and constructing TOO clas-
sifiers. Several ML algorithms to identify the TOO of CUP have
been applied in this context [28, 29, 33, 42, 44, 45, 52–54, 57, 58, 64,
73, 96] (Supplementary Figure 3 and Table 2). These associations
are subsequently assessed through independent validation sets,
and the classifier’s efficacy is further verified with challenging
clinical cases. Finally, the classifier can calculate the ‘tissue origin
score’ when applied to CUP patients and then choose the tissue
source with the highest score for site-specific therapy [95, 97, 98].

The algorithm underlying these experimental techniques
for identifying TOO of CUP
Our literature review indicates a current concentration on apply-
ing supervised learning algorithms [27, 29, 30, 42, 54], with limited
exploration of unsupervised learning methods [96]. As repre-
sentatives of supervised learning algorithms, the random forest
(RF) model and the XGBoost model are frequently applied algo-
rithms for identifying TOO of CUP [29–31]. The algorithms pos-
sess high accuracy, incorporating strategies for handling miss-
ing feature data and thus provide an advantage in processing
DNA- and RNA-related information (Supplementary Figure 3).
Among the reviewed studies, only one article utilized the principal
component analysis (PCA) algorithm within the unsupervised
learning realm [96]. Notably, there is a conspicuous absence of
discussions regarding the application of reinforcement learn-
ing algorithms, highlighting a research gap at the algorithmic
level.

The feature extraction process is a crucial preliminary step
in model construction, involving selecting a subset of the most
relevant features from the original set. Different types of data can
adopt different types of feature selection strategies. For text data,
simple statistical methods like the Pearson correlation algorithm
employed by Zhang et al. [27] and Hoshino et al. [79] can filter fea-
tures. Yet, complex gene interactions challenge traditional meth-
ods assuming feature independence. Many studies have employed
decision tree models (such as RF) to address feature selection
[28, 30, 33]. In addition, Laprovitera et al. [64] used the LASSO
algorithm, and Jiang et al. [58] used correlation-based feature
selection (CFS), considering the correlation between the target
variable and features. Tang et al. [96] proposed a two-tier feature
selection strategy, with the first tier based on miRNA differential
expression and DNA differential methylation analysis and the
second tier mainly employing mathematical algorithms like the
PCA algorithm. Traditional ML algorithms, which often rely on a
limited set of genes or characteristics, may be constrained in their

capacity to discern numerous cancer subtypes. To overcome this
limitation, deep learning (DL) algorithms that use various image
features to achieve higher accuracy rates have been introduced
[99]. For image data, the CNN is a practical feature extraction
method, with Lu et al. [95] segmenting images on this basis and
extracting local feature descriptors to learn essential features in
the images.

Selecting the appropriate algorithm poses a challenge due to
significant variations in their advantages, limitations and appli-
cation areas (Supplementary Figure 3 and Table 2). Using DL
algorithmic models is a necessary approach when working with
image data. The most elementary of these models is the CNN
model. DL models, including Transformer and ResNet, can be
employed depending on the objective, such as image detection,
classification or segmentation [97]. For textual or sequential data,
such as DNA, RNA and proteins, employing XGBoost and lightGBM
classification models can produce the desired outcomes.

DISCUSSION
Progress over the past two decades
Over the past two decades, methods for TOO identification have
changed drastically (Figure 5). Firstly, the broadening of research
perspectives: whereas in earlier years, researchers focused on
traditional DNA and mRNA levels, the focus has shifted to the
novel, multifunctional analytes such as non-coding RNAs [63–68],
proteins [13], epigenetic markers [12, 71–73], ctDNA [76–78] and
EVs [79]. Another hallmark is the merging of multiple perspectives
and unique insights [96, 99–101]. Some studies including eQTL
[31] and REO [60] now analyze multiple genes simultaneously,
increasing dimensionality of research. Secondly, the expansion of
research tools: with the rapid changes in relevant technologies,
the tools used by researchers have changed from PCR to second-
generation sequencing [32, 52–56, 59] and tumor developmental
atlas [94], thus achieving greater efficiency and accuracy. Thirdly,
the expansion of materials used: research has expanded beyond
traditional tumor tissue. Liquid biopsy techniques have enabled
the shift toward plasma samples [76, 79, 80], whereas image omics
have also empowered pathomics to discover the TOO of CUP
[95]. Fourthly, expanding the scope of research: anticipated tumor
diversity is expanding, and researchers are entering previously
unreachable areas (Supplementary Figure 2A). Fifthly, advances in
accuracy: accuracy rates have increased from an average of about
80% to nearly 100% in 20 years (Supplementary Figure 2B and C).
This progress is, in part, attributed to the proliferation of ML,
fostering the growth of bioinformatics (Supplementary Figure 2D)
and enabling the analysis of extensive biological datasets, holding
significant promise [102–104].

Challenges of the current studies on experiential
methods
We identified some challenges in the current study by sum-
marizing all the studies. The following issues may need to be
addressed to improve TOO detection in CUP prognosis. Many
techniques used to identify TOO are highly accurate, but whether
this ‘digital’ accuracy can be translated into clinical benefits
remains to be discussed. Despite a predictive rate of 78.6% for
TOO, site-specific therapy based on microarray analysis did not
significantly enhance 1-year survival, according to a study by
Hidetoshi Hayashi and colleagues [51].

Compared to empirical chemotherapy, identifying TOO and
pursuing organ-specific treatment will inevitably result in some

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae028#supplementary-data
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Figure 4. The basic flowchart of building a TOO classifier with an ML algorithm. (A) Multimodal data used to identify the TOO of CUP. (B) The ML
algorithm for identifying TOO of CUP. (C) The Construction and Application of TOO Classifier. CTCs, circulating tumor cells; ctDNA, circulating tumor
DNA; CUP, cancer of unknown primary; EVs, extracellular vesicles; ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas;
TEPs, tumor-educated platelets; TOO, tissue of origin (Figure 4 belongs to the The basic flowchart of building a TOO classifier with an ML algorithm
section).

Figure 5. Progress for the detection of TOO in CUP over the past two decades. CUP, cancer of unknown primary; PCR, polymerase chain reaction; TOO,
tissue of origin (Figure 5 belongs to the Discussion section).
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Table 2: Comparison of ML algorithms used in the identification of the TOO in CUP

Machine learning algorithms [111] Strength Weaknesses Range of application

Stepwise additive logistic
regression [130]

1. Automatic feature selection: It
can automatically select features
that have significant predictive
power for the response variable,
simplifying the model.

1. Possibility for suboptimal
models: Stepwise selection or
elimination of features may not
always find the best model.

1. Suitable for classification
problems, especially when
interpretability is crucial.

2. Model interpretability: By
reducing unnecessary features, a
more interpretable model can be
obtained.

2. Instability in selection: Small
changes in the data can result in
significant variations in the
selected feature set.

2. Applicable when the dataset has
numerous features.

3. Control overfitting. 3. High computational cost of
iterative calculations.

3. Can serve as a preliminary
feature selection stage in a
multifaceted modeling procedure.

Random forest (RF) [131, 132] 1. High predictive accuracy. 1. Lack of interpretability. 1. Suitable for both classification
and regression problems.

2. Robust to overfitting: RF is less
prone to overfitting due to the
ensemble averaging effect.

2. Computational complexity: It
can be computationally expensive.

2. Applicable to datasets with a
mixture of numerical and
categorical features.

3. Feature importance estimation:
RF can provide information about
the relative importance of different
features.

3. Bias toward features with more
categories: Potentially leading to
biased feature importance
rankings.

3. Not suitable when
interpretability is a primary
concern or when computational
resources are limited.

4. Robust to outliers and missing
data.

Support vector machine (SVM)
[133, 134]

1. Effective in high-dimensional
spaces.

1. Computationally intensive and
time-consuming.

1. Effective in complex
classification problems with
datasets exhibiting complex
distributions or clear boundaries.

2. Robust to overfitting: SVM uses a
regularization parameter to control
overfitting.

2. Requires feature scaling: SVM is
sensitive to the scale of input
features and often requires feature
standardization.

2. Effective when dealing with
various features, especially when
the number of features exceeds
samples.

3. Versatility in kernel selection:
Different kernel functions can
handle non-linear relationships
between features.

3. Lack of interpretability.

4. Effective in small sample sizes. 4. No direct probability estimation:
Computing the probability of
instances belonging to a class
requires additional steps.

K-nearest neighbors classifier
(KNN) [135]

1. Simplicity: Easy to understand
and implement.

1. Computational complexity. 1. Small dataset scenarios.

2. Non-parametric: KNN makes no
assumptions about the underlying
data distribution.

2. Sensitivity to feature scaling. 2. Non-linear dataset scenarios.

3. No training phase: New data
points can be classified
immediately.

3. Lack of robustness to noisy data. 3. Choosing an appropriate
distance metric is crucial for
accurate classification.

4. Interpretable results: KNN
provides a transparent
decision-making process.

4. Boundedness of dimensionality:
KNN performance deteriorates as
the number of dimensions
increases, due to the sparsity of
data in high-dimensional spaces.

eXtreme Gradient Boosting
(XGBoost) [136]

1. High performance. 1. Complexity: It requires careful
tuning of hyperparameters to
achieve optimal performance.

1. Large dataset scenarios, various
classification and regression
problems.

2. Flexibility: It can handle various
types of data, including numerical
and categorical features.

2. Computationally expensive. 2. More suitable for structured data
tasks.

3. Handling missing values: It can
reduce the need for extensive
preprocessing.

3. Lack of interpretability.

4. Cross-validation: Allow
cross-validation to easily obtain
the optimal number of boosting
iterations.

(Continued)



New techniques to identify TOO for CUP | 11

Table 2: Continued

Machine learning algorithms [111] Strength Weaknesses Range of application

1. Dimensionality reduction. 1. Loss of interpretability. 1. It can be used for data
dimensionality reduction,
visualization and preprocessing.

Principal component analysis (PCA)
[137]

2. Feature extraction: PCA can
extract a smaller set of features
(principal components) that
capture the maximum variance in
the data.

2. Assumption of linearity: If the
underlying data have complex
non-linear relationships, PCA may
not capture the most important
features accurately.

2. It captures the maximum
variance by searching for the
principal components of the data,
thereby simplifying the data
structure.

3. Noise reduction: PCA can help
remove noise or irrelevant features
from the dataset by focusing on
the components with the highest
variance.

3. Sensitive to outliers.

4. Data visualization: PCA can be
used to visualize high-dimensional
data in lower-dimensional spaces.

4. Boundedness of dimensionality:
Its performance deteriorates as the
number of dimensions increases.

Naive Bayes algorithm [138] 1. Simplicity and efficiency. 1. Strong independence
assumption: In real-world
scenarios, features may have
dependencies, leading to
suboptimal performance.

Naive Bayes is a simple
probability-based classifier that is
particularly suitable for
high-dimensional data and text
classification tasks.

2. Scalability: It performs well with
a small amount of training data,
real-time or streaming data.

2. Limited expressiveness: Due to
its simplicity, it may struggle with
capturing complex relationships.

3. Robust to irrelevant features: It
assumes that features are
conditionally independent given
the class label, making it robust to
irrelevant features and helping
avoid overfitting.

3. Data scarcity issue: When data
are scarce, it may result in poor
performance and unreliable
predictions.

4. Interpretability. 4. Sensitive to feature distributions.
Majority vote algorithm [53] 1. Simplicity. 1. Increase computational burden. The algorithm is an integrated

technology that can combine the
prediction results of multiple
models to achieve better
performance and stability.

2. Reduction of bias: By combining
the predictions of multiple
classifiers, it can improve the
overall accuracy and robustness of
the ensemble.

2. Not always providing
improvements: If some of the
models have poor performance,
integration may not provide any
benefits.

3. Stability: It is less sensitive to
small changes in the training data.

3. Not applicable to all problems.

4. Interpretability. 4. Limited decision boundaries: It
may struggle to capture complex
or non-linear relationships.

Convolutional neural network
(CNN) [139, 140]

1. Effective feature extraction. 1. Computationally expensive. 1. Suitable for image-related image
classification, object detection and
semantic segmentation tasks.

2. Spatial invariance: CNNs are
able to capture spatial
relationships in data, making them
robust to translations, rotations
and scale variations.

2. Large memory footprint. 2. Suitable for scenarios with other
spatially structured data and a
large number of training samples.

3. Parameter sharing: CNNs utilize
weight sharing across different
spatial locations, reducing the
number of parameters.

3. Limited interpretability.

4. Data requirements: CNNs
typically require a large amount of
labeled training data to generalize
well.

time delay. John D. Hainsworth et al. found that TOO takes 2–
3 weeks to identify [15], which may not be feasible for CUP
patients with short OS. In this regard, reducing the time delay is
critical, and the time spent searching for TOO should be a vital

criterion for evaluating the technology’s efficacy. However, despite
its clinical importance [7, 105], few studies have reported the TOO
identification time [15, 64]. This requires researchers’ attention
and effort in the future.
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Moreover, in clinical practice, tumor tissue from patients with
CUP is limited (coarse needle aspiration/biopsy specimens) and
can only meet the needs of routine immunohistochemistry in
the clinic. Conducting TOO-related tests may require a second
tissue biopsy due to insufficient samples, a procedure patients
often avoid due to its inherent risks [74, 75, 87, 106, 107]. This
emphasizes the need for non-intrusive methods.

Notably, there are few comparative studies on different tech-
niques [96, 99–101, 108]. Atara Posner et al. used DNA features
to identify TOO in 51 out of 61 CUP cases, with GEP proving
useful in only 21 cases. Their study concluded that DNA muta-
tion analysis outperformed GEP in TOO identification [108]. The
authors also found that GEP had lower classification accuracy for
cholangiocarcinoma because its transcriptional profile resembles
that of pancreatic or upper gastrointestinal tract tumors [56].
On the other hand, DNA mutation profiling is particularly useful
because some gene mutations (alterations in IDH1, FGFR2 and
BAP1) are highly enriched and have diagnostic significance [108,
109]. While Wei Tang et al. applied miRNA expression and DNA
methylation profiles to identify the TOO, the overall accuracy
was 87.78% based on the miRNA dataset and 97.06% based on
DNA methylation [96]. Haiyan Liu et al. discovered that DNA
methylation, GEP and somatic mutation data were best clas-
sified by GEP (mean accuracy 94.63%) and worst classified by
somatic mutation (mean accuracy 43.33%) [100]. However, no
consensus has been regarding the superiority of the different
techniques.

Challenges of the current studies on
computational methods
In addition to experimental technical obstacles, computational
methods have significant pitfalls.

The first statistical challenge, known as the ‘curse of
dimensionality’, is a common concern among bioinformatics
experts [110]. This term refers to the overfitting problem
caused by the excessive number of features, resulting in poor
predictive performance on validation sets [111]. Due to the high
dimensionality of omics data, the problem of dimensional curse is
particularly prominent. Moreover, Chen et al. [110] pointed out the
presence of feature redundancy or lack of correlation, introducing
noise in high-dimensional space and making it more challenging
for models to extract genuine signals. One solution discussed in
the paper by Michuda et al. [57] is using regularization indicators
to penalize prediction models with too many features, thus
supporting simpler models with a relatively minor set of features.
Simultaneously, it is necessary to divide the dataset into three
subsets: the training, model selection and test set. The model
selection set is to identify models with optimal generalization
performance. However, new challenges arise, such as the current
high cost of next-generation sequencing for liquid biopsy samples,
leading to datasets often insufficient for three subsets [76, 79,
80, 90].

Though promising, developing models that integrate prior
biological knowledge (e.g. known gene regulatory pathways for
specific types of tumors) has not been extensively explored
due to the limited availability of such prior knowledge [110].
Selecting the most appropriate features from a multitude of
features may also alleviate the issue of the curse of dimen-
sionality. Despite these efforts, organically selecting features
from multimodal data and enhancing the interpretability
of selected algorithms remain significant challenges in the
future.

Future perspective
Different research methods are complex, and each has its own
advantages and disadvantages. However, with improvement of
medical quality, simple, applicable and accurate research may
be the future direction [112, 113]. Liquid biopsy, a safer, cost-
effective and less invasive alternative, has emerged as a novel
diagnostic, predictive and prognostic window for CUP. Blood is
widely believed to be a reservoir for tumor cells in vivo. Thus, liquid
biopsy can potentially reduce the sampling bias of tissue biopsy
and ultimately provide greater predictive accuracy. Liquid biopsy
evaluates prognosis, disease load, risk of recurrence, therapeutic
alternatives and dynamic mutational processes [74, 87, 114, 115].
Although the concordance between tissue and liquid biopsy in
CUP patients has not been fully evaluated [116–119], the perfor-
mance of liquid biopsy is a promising direction for predicting TOO
in CUP (Figure 3). Besides the above-mentioned materials for CUP,
future studies can be conducted on peripheral blood circulating
RNA [93, 120] and circulating tumor vascular endothelial cells
(cTECs) [121].

Lu et al. demonstrated the enormous benefit of pathomics
in identifying TOO of CUP [95], and another potential area is
radiomics [122–125]. Conventional tumor evaluation through
radiography relies primarily on qualitative features, also known
as ‘semantic’ features, like tumor density, enhancement pattern,
intratumoral cellular and acellular composition, regularity of
tumor margins and anatomical relationships with surrounding
tissues [102, 126]. Radiomics allows radiographic images to be
quantified according to their shape, size and texture patterns [103,
127, 128]. In cases of extremely high accuracy and integration of
multiple data sources, CT- or PET-based imaging may be desirable.

As shown above, comparing various strategies is difficult owing
to the significant variability of the tumor types selected in each
study, the diverse model development methods and the limited
data of the selected samples. Perhaps studies are also needed
to compare the ability of different biomarkers under the same
conditions, including the same dataset, preprocessing scheme and
classification algorithm.

Multi-omics is still intriguing as sequencing costs decrease
and technology advances, but its potential to enhance predic-
tion accuracy requires further investigation. Haiyan Liu et al.
downloaded GEP, somatic mutation and DNA methylation data of
7224 samples from TCGA and generated seven different feature
matrices through various combinations. They found that the best
accuracy was 94.63% for the single method and 94.02% after com-
bination, revealing that simply combining multiple biomarkers
did not do much to improve prediction accuracy [100]. In contrast,
He et al. employed the RF model and integrated gene mutations
and expression (TOOme) to infer tumor TOO, which differs from
Liu. Their approach yielded higher accuracy (95.77%) compared
to using somatic mutations (53.51%) or GEP data alone (89.28%)
[99]. While these findings indicate potential, it’s clear that simply
stacking multi-omics data is insufficient [129]. A more integrated
approach using ML models is likely necessary. Accordingly, further
studies are required to determine which omics approaches work
best and how to combine them to predict TOO.

CONCLUSIONS
In the era of precision medicine, the endless stream of new tech-
nologies has led to rapid advances in TOO identification of CUP:
accuracy rates are increasing by leaps and bounds; molecular
profiling, including techniques based on genomic profiling, gene
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expression profiling and epigenetics, is flourishing; and ML is ris-
ing. Liquid biopsy and image omics enable non-invasive methods
for TOO detection. However, it remains to be confirmed whether
the current technological advances have improved patient prog-
nosis. Large-scale clinical studies, multi-institutional collabora-
tions and a unified standard database may need more work.

Key Points

• Tissue of origin (TOO) identification for cancer of
unknown primary and subsequent site-specific therapy
can improve prognosis of CUP.

• Of these, techniques to identify the TOO are the criti-
cal part.

• We systematically review the development and limi-
tations of novel TOO identification methods, compare
their pros and cons and assess their potential clinical
usefulness in the future.
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