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Purpose: Skeletal muscle has a major influence on whole-body metabolic homeostasis. In 
the present study, we aimed to determine the metabolic effects of the β3 adrenergic receptor 
agonist CL316243 (CL) in the skeletal muscle of high-fat diet-fed rats.
Methods: Sprague-Dawley rats were randomly allocated to three groups, which were fed 
a control diet (C) or a high-fat diet (HF), and half of the latter were administered 1 mg/kg 
CL by gavage once weekly (HF+CL), for 12 weeks. At the end of this period, the serum 
lipid profile and glucose tolerance of the rats were evaluated. In addition, the phosphoryla-
tion and protein and mRNA expression of AMP-activated protein kinase (AMPK), peroxi-
some proliferator-activated receptor γ coactivator (PGC)-1α, and carnitine palmitoyl 
transferase (CPT)-1b in skeletal muscle were measured by Western blot analysis and 
qPCR. The direct effects of CL on the phosphorylation (p-) and expression of AMPK, 
PGC-1α, and CPT-1b were also evaluated by Western blotting and immunofluorescence in 
L6 myotubes.
Results: CL administration ameliorated the abnormal lipid profile and glucose tolerance of 
the high-fat diet-fed rats. In addition, the expression of p-AMPK, PGC-1α, and CPT-1b in the 
soleus muscle was significantly increased by CL. CL (1 µM) also increased the protein 
expression of p-AMPK, PGC-1α, and CPT-1b in L6 myotubes. However, the effect of CL on 
PGC-1α protein expression was blocked by the AMPK antagonist compound C, which 
suggests that CL increases PGC-1α protein expression via AMPK.
Conclusion: Activation of the β3 adrenergic receptor in skeletal muscle ameliorates the 
metabolic abnormalities of high-fat diet-fed rats, at least in part via activation of the AMPK/ 
PGC-1α pathway.
Keywords: CL316243, AMPK, PGC-1α, L6 myotubes, carnitine palmitoyl transferase

Introduction
Skeletal muscle accounts for 40% of body mass and plays an important role in 
homeostasis.1,2 It is quantitatively the most significant site of peripheral insulin resis-
tance in obesity and diabetes, which are associated with a higher risk of cardiovascular 
disease.3,4 Furthermore, the loss of skeletal muscle mass and function can contribute to 
metabolic syndrome,5,6 while the exercise-induced restoration of muscle function is 
paralleled by an improvement in skeletal muscle insulin sensitivity.7,8 Skeletal muscle 
insulin resistance is a predictor of the development of type 2 diabetes, and the 
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maintenance of appropriate muscle glucose and lipid dispo-
sal helps prevent obesity, diabetes, and metabolic syndrome.9

The β-adrenergic receptor (AR) is one of the key 
regulators of skeletal muscle mass and function,10 and β- 
AR agonists may represent a means of preventing or 
ameliorating the muscle wasting that is associated with 
aging.11,12 Knowledge of the role of β-AR signaling in 
skeletal muscle is mainly based on the results of studies of 
the effects of β2-AR agonists because the β2-AR is the 
predominant subtype in skeletal muscle.13 However, 
β3-ARs are also expressed in human and rodent skeletal 
muscles,14,15 and the selective activation of β3-ARs has 
been shown to induce muscle hypertrophy and inhibit 
protein breakdown in rat skeletal muscle.16,17 Although 
the role of β3-ARs in the regulation of skeletal muscle 
structure and function are recognized, less is known 
regarding the metabolic effects of β3-AR activation in 
skeletal muscle.

UCP is one of a protein groups participating thermo-
genesis and there are 5 main well-known isoforms includ-
ing UCP-1 to UCP-5.18 UCP-3, which is the predominant 
isoform expressed in skeletal muscle, increases metabolic 
rate in skeletal muscle.19,20. Administration of the 
β3-adrenergic agonist CL316243 (CL) has been shown 
to increase the expression of uncoupling proteins 3 
(UCP-3) in the skeletal muscle of mice.21,22 This suggests 
that the activation of the β3-AR in skeletal muscle might 
have beneficial metabolic effects and help maintain 
energy homeostasis. In the present study, we first aimed 
to determine whether the administration of the β3-AR 
agonist CL ameliorates the metabolic abnormalities in 
high-fat diet-fed rats. Then, to gain more insight into the 
direct effects of β3-AR in skeletal muscle, we aimed to 
determine whether CL activates the AMP-activated pro-
tein kinase (AMPK)/peroxisome proliferator-activated 
receptor gamma coactivator (PGC)-1α pathway in L6 
myotubes.

Materials and Methods
Reagents
CL was obtained from Sigma-Aldrich (St. Louis, MO, 
USA). Dulbecco’s-Modified Eagle’s Medium (DMEM), 
Opti-MEM, and fetal bovine serum were obtained from 
Invitrogen (Carlsbad, CA, USA). All other chemicals 
were of analytical grade and obtained from Guangzhou 
Chemical Reagents (Guangzhou, China).

Animals
All the experimental procedures were performed in accor-
dance with the Guidelines for Animal Experiments of the 
Committee of Medical Ethics, National Health Department 
of China. The animal experiments were approved by the 
Animal Research Center of Guangzhou University of 
Chinese Medicine. The ethical approval certificate number 
is 2,016,139. Male Sprague-Dawley rats (220–250 g) were 
obtained from the Laboratory Animal Center at 
Guangzhou University of Chinese Medicine. The rats 
were randomly allocated to three groups, which were fed 
a control diet and orally administered physiological saline 
(C group; n=10); fed a high-fat diet (60% hydrogenated 
coconut oil; D12492; Research Diets, Inc; New 
Brunswick, NJ, USA) and orally administered physiologi-
cal saline (HF group; n=10); or fed the high-fat diet and 
orally administered CL (1 mg/kg once weekly; HF+CL, 
n=10) for 12 weeks. CL was dissolved in dimethyl sulf-
oxide (DMSO) and then diluted in physiological saline.

Intraperitoneal Glucose Tolerance Testing
Intraperitoneal glucose tolerance testing was performed as 
previously described.23 Briefly, rats were administered 
25% w/v glucose solution intraperitoneally at a dose of 1 
g/kg body mass. Tail vein blood samples were collected 
immediately and 30, 60, 90, and 120 min later. Blood 
glucose concentrations were measured using a glucose 
meter (Johnson & Johnson).

Serum and Tissue Collection
Trunk blood was then obtained, left at room temperature 
for 30 min, and then centrifuged at 4500 × g and 4°C for 
15 min. The lipid concentrations of the serum obtained 
were measured using a Hitachi clinical analyzer.

Histological Analysis
Tissue sections (5 mm) were obtained from adipose tissue 
samples that had been fixed and embedded in paraffin. These 
were then deparaffinized in xylene, rehydrated, and washed 
in phosphate-buffered saline, prior to hematoxylin and eosin 
(HE) staining. The diameter of the adipocyte in the HF and 
HF+CL groups was normalized to that of the C group.

Cell Culture
The L6 cell line was purchased from the cell bank of the 
Chinese Academy of Sciences (Shanghai, China). For 
differentiation into myotubes, L6 myoblasts were cultured 
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at 37 °C with 95% humidity in DMEM supplemented with 
2% horse serum, which was changed every other day. 
Myotube formation was achieved after 5 days of incuba-
tion, at which time the cells were used in the experiments.

Immunoblotting
Immunoblotting was performed as previously 
described.23 Briefly, tissue lysates were separated by 
sodium dodecyl sulfate-polyacrylamide gel electrophor-
esis and then electrotransferred to membranes. The pri-
mary antibodies used were as follows: anti-PGC-1a 
(PA5-22,958; Thermo), anti-AMPK (5831; Cell 
Signaling Technology), anti-p-AMPK (2535; Cell 
Signaling Technology), anti-CPT-1b (ab134988, 
Abcam), and anti-glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) (5174; Cell Signaling Technology). 
Membranes were incubated with primary and secondary 
antibodies using standard techniques and the detection of 
specific protein bands was accomplished using enhanced 
chemiluminescence. Images of the bands were acquired 
and analyzed using a quantitative digital imaging system 
(Quantity One; Bio-Rad), avoiding saturation.

Real-Time Reverse Transcription-PCR
Real-time PCR was performed as previously described.24 

cDNA was synthesized using a Transcriptor First Strand 
cDNA Synthesis Kit (Roche, Basel, Switzerland), according 
to the manufacturer’s instructions. For PGC1-α, the primers 
were 5′-CAACAATGAGCCTGCGAACA-3′ (forward) and 
5′-TGAGGACCGCTAGCAAGTTTG-3′ (reverse), resulting 
in a 71-bp RT-PCR product. For CPT-1b, the primers were 5′- 
GGCTGCCGTGGGACATT-3′ (forward) and 5′-TGCCT 
TGGCTACTTGGTACGA-3′ (reverse), resulting in a 100- 
bp RT-PCR product. For GAPDH, the primers were 5′-AGA 
CAGCCGCATCTTCTTGT-3′ (forward) and 5′-CTTG 
CCGTGGGTAGAGTCAT-3′ (reverse), resulting in a 207- 
bp RT-PCR product. RT-PCR reactions were performed 
using a CFX96™ Real-Time System (Bio-Rad, Hercules, 
CA, USA) in final volumes of 20 μL, which contained 10 
μL of FastStart Universal SYBR Green Master (Rox) 
(Roche, Basel, Switzerland), 1 μL of each primer (10 μM), 
2 μL of cDNA, and 7 μL of PCR-grade water. The RT-PCR 
products underwent melting point analysis and were quanti-
fied using the ΔΔCT method, with GAPDH as the reference 
gene. The expression in the HF and HF+CL groups was 
normalized to that of the C group.

Immunofluorescence
L6 myotubes were grown on coverslips, treated as described 
below, then fixed with 4% paraformaldehyde and permeabi-
lized with 0.1% Triton-X. The cells were then blocked using 
3% normal serum for 20 min and incubated with an antibody 
against p-AMPK (BD Transduction Laboratories) and a FITC- 
conjugated secondary antibody (K00018968, Dako North 
America Inc., Dako, Denmark). After washing, the nuclei 
were counterstained with 4′,6-diamidino-2-phenylindole 
(Sigma). Immunofluorescence was visualized using an 
Olympus BX41 microscope (Tokyo, Japan) and images were 
obtained using a high-resolution DP70 Olympus digital camera.

Statistical Analysis
Data are presented as mean ± standard deviation (SD) and 
represent the results of at least three independent experiments. 
Statistical comparisons were made using Student’s t-test or 
one-way analysis of variance, followed by Tukey’s test where 
applicable, to identify significant differences between mean 
values. P < 0.05 was considered to represent statistical 
significance.

Results
CL Administration Reduces the Body 
Mass and Ameliorates the Serum Lipid 
Abnormalities and Glucose Intolerance of 
High-Fat Diet-Fed Rats
As expected, the body masses of the HF rats were signifi-
cantly higher than those of the C rats, but CL administration 
reduced the body mass of the HF rats (Figure 1A). The HF 
rats had significantly higher total serum cholesterol, trigly-
ceride, and low-density lipoprotein (LDL)-cholesterol con-
centrations than the C group, whereas the high-density 
lipoprotein (HDL)-cholesterol concentration in the HF rats 
was significantly lower. However, CL administration 
improved the lipid profile of the HF rats (Figure 1B). 
Intraperitoneal glucose tolerance testing showed the area 
under the glucose curve (AUC) was significantly larger in 
HF rats than C rats, and this difference was also eliminated 
by concurrent CL administration (Figure 1C and D).

CL Administration Reduces the 
Peri-Epididymal and Inguinal Fat Depot 
Masses of HFD-Fed Rats
HE staining of tissue sections showed that HF rats had 
larger lipid droplets in their peri-epididymal and inguinal 
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adipocytes (Figure 2A and B). Concurrent CL administra-
tion eliminated these differences.

CL Administration Increases the 
Expression of p-AMPK, PGC-1α, and 
CPT-1b in the Soleus Muscles of HF Rats
Immunoblotting showed that the protein expression levels 
of AMPK, p-AMPK, PGC-1α, and CPT-1b in the soleus 
muscles of HF rats were significantly lower than those of 
C rats, and CL administration eliminated these differences 
(Figure 3A and B). Consistent with this, CL administration 
increased PGC-1α mRNA expression in the soleus mus-
cles of HF rats (Figure 3C).

CL Treatment Increases AMPK, PGC-1α, 
and CPT-1b Expression in L6 Myotubes
Immunoblotting showed that CL increased PGC-1α and 
CPT-1b protein expression levels in a dose-dependent 
manner in L6 myotubes (Figure 4A). Treatment with CL 
(1 µM) for 4 h also increased AMPK phosphorylation, as 
demonstrated using Western blotting and immunofluores-
cence (Figure 4B and C). 5-Aminoimidazole-4-carboxa-
mide ribonucleotide (AICAR/acadesine, a cell-permeable 
activator of AMPK, 0.5 mM/L) increased PGC-1α expres-
sion, whereas the co-treatment of L6 myotubes with com-
pound C (an inhibitor of AMPK, 10 μM/L) alongside CL 
significantly reduced PGC-1α expression (Figure 4D).

A B

C D

Figure 1 CL administration reduces the body mass, and improves the serum lipid profile and glucose tolerance, of high-fat diet-fed rats. The body mass (A), serum lipid 
concentrations (B), glucose tolerance curves (C), and AUCs (D) of C, HF, and HF+CL mice. *p < 0.05 versus C, #p < 0.05 versus HF. Data are mean and SD, n = 8. 
Abbreviations: AUC, area under the curve; C, control group; HF, high-fat diet-fed group; HF+CL, high-fat diet-fed and CL-treated group.
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Discussion
Skeletal muscle plays an important role in the regulation 
of whole-body energy homeostasis, and energy production 
depends on mitochondrial function. The dysfunction or 
loss of skeletal muscle mass has been shown to contribute 
to obesity and type 2 diabetes.5,6 Mitochondrial dysfunc-
tion and/or a reduction in mitochondrial content has been 
reported in skeletal muscle and adipose tissue from obese 
and diabetic subjects.25,26 PGC-1α is a major transcrip-
tional regulator of mitochondrial function in skeletal 
muscle,27,28 and AMPK acts as a key sensor of energy 
status in skeletal muscle and regulates glucose and fatty 
acid metabolism.29 The activation of AMPK regulates the 
expression and activity of PGC-1α in skeletal muscle,30 

and high-fat diet-feeding has been shown to reduce the 
expression and activity of PGC-1 and AMPK and down-
stream signaling in skeletal muscle.31,32 Consistent with 
this, in the present study, high-fat diet-feeding induced 
metabolic abnormalities that were associated with lower 
expression of PGC-1α and p-AMPK in skeletal muscle 
(Figure 3).

The β3-AR is an established therapeutic target for 
obesity and metabolic disease.33,34 CL, a highly selective 
systemic β3-AR agonist, induces expression of UCP-1 in 
adipose tissue and has anti-obesity effects.35–37 Although 
β3-AR is principally expressed in adipose tissue, it is also 
expressed in human and rodent skeletal muscles.14,15 

Recently, the β3-AR agonist mirabegron has been shown 
to improve glucose homeostasis and increase the expres-
sion of PGC-1α in the skeletal muscle of obese humans.38 

Consistent with this, in the present study, we have shown 
that selective activation of β3-AR by CL in high-fat diet- 
fed rats reduces their body mass and ameliorates their 
glucose intolerance, as well as increasing the protein 
expression of PGC-1α and p-AMPK in skeletal muscle.

Long-chain fatty acids (LCFAs) are a major energy 
source in muscle. CPT-1 is a rate-limiting enzyme in the 
mitochondrial β-oxidation of LCFAs.39 The muscle iso-
form, CPT-1b, is mainly expressed in brown and white 
adipose tissue, the heart, and skeletal muscle.40,41 The 
activity of CPT-1b is lower in obese skeletal muscle, 
which contributes to the lower fatty acid oxidation.42 

Furthermore, mice with CPT-1b deficiency become 

A

B

Figure 2 CL administration reduces the peri-epididymal and inguinal adipose tissue depot masses of high-fat diet-fed rats. Representative images of peri-epididymal adipose 
tissue (A) and inguinal adipose tissue (B) are shown. Magnification 400×. *p < 0.05 versus CON, #p < 0.05 versus HF. Data are mean and SD, n = 8. 
Abbreviations: EAT, peri-epididymal adipose tissue; SAT, subcutaneous inguinal adipose tissue; C, control group; HF, high-fat diet-fed group; HF+CL, high-fat diet-fed and 
CL-treated group.
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severely insulin resistant after 7 months of high-fat diet- 
feeding.43 Consistently, we found that high-fat diet-feeding 
reduced the expression of CPT-1b in skeletal muscle and CL 
administration increased the protein and mRNA expression 

of this enzyme. These results suggest that the beneficial 
effect of CL on the lipid profile of HF rats is mediated 
through higher protein and mRNA expression of CPT-1b 
in skeletal muscle.

A

B

C

Figure 3 CL administration increases the expression of p-AMPK, PGC-1α, and CPT-1b in the soleus muscles of high-fat diet-fed rats. (A) CL increased the p-AMPK and 
AMPK protein expression levels in the soleus muscle of HF rats. Bars represent SD, n = 4. (B) CL increased PGC-1α and CPT-1b protein expression levels in the soleus 
muscle of HF rats, according to Western blot analysis. (C) CL increased PGC-1α and CPT-1b mRNA expression in the soleus muscle of HF rats, according to qPCR. The 
expression of each target protein/mRNA was normalized to that of GAPDH, then to that of the control samples. *p < 0.01 versus CON, #p < 0.05 versus HF. Data are mean 
and SD, n = 4–5. 
Abbreviations: C, control group; HF, high-fat diet-fed group; HF+CL, high-fat diet-fed and CL-treated group.
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Adipose tissue communicates with skeletal muscle through 
the secretion of adipokines, such as adiponectin, leptin, omen-
tin, osteopontin, and cardiotrophin-1; and batokines, such as 
bone morphogenetic protein 8b, fibroblast growth factor-21, 
endothelin-1, and interleukin-6.44,45 Adiponectin activates the 
AMPK/PGC-1α pathway and stimulates fatty acid 
oxidation.46,47 Furthermore, a 7-day infusion of CL316243 
increases adiponectin expression in white adipose tissue and 
the serum concentration of adiponectin.48 Therefore, the 
effects of CL on the skeletal muscle of the mice in the present 
study might have been secondary to effects on adipose tissue. 
However, the in vitro data confirm that CL has a direct dose- 
dependent effect to increase PGC-1α protein expression in 
muscle cells. Because PGC-1α expression is regulated by 
AMPK,49,50 we next determined whether AMPK inhibition 
would prevent the CL-induced activation of PGC-1α in L6 
myotubes. Indeed, CL (1 µM) treatment for 4 h increased 

AMPK phosphorylation, and compound C, an AMPK inhibi-
tor, reduced PGC-1α protein expression in CL-treated L6 
myotubes. These results suggest that CL increases PGC-1α 
protein expression by activating AMPK.

In addition to adipose tissue and skeletal muscle, 
β3-AR are also found in the brain, in areas such as the 
brain stem and the hypothalamus.51 Acute central injection 
of CL potentially reduced food intake and increased 
hypothalamic neuronal activity in rats.52 One limitation 
of our study is that we did not detect the food intake of 
the rats. Chronic effect of CL on the animal feeding habits 
needs to be further studied.

Conclusion
Our study suggests that CL improves glucose tolerance 
and lowers lipid profiles in the high-fat diet-feeding of rats 
by activating the AMPK/PGC-1α pathway. This finding 

A

B

C

D

Figure 4 CL increases the expression of AMPK, PGC-1α, and CPT-1b in L6 myotubes. (A) CL treatment for 24 h dose-dependently increased PGC-1α and CPT-1b protein 
expression in L6 myotubes, according to Western blot analysis. The expression of each target protein was normalized to that of GAPDH, then to that of the control 
samples. (B) Effects of the treatment of L6 myotubes with CL (1 µM) for the indicated times on the phosphorylation (p-AMPK) and expression of AMPK, according to 
Western blot analysis. p-AMPK band intensity was normalized to that of total AMPK, then to that of the control samples. (C) Effects of the treatment of L6 myotubes with 
CL (1 μM) for 4 h on AMPK phosphorylation in immunofluorescence-stained L6 myotubes. Anti-p-AMPK conjugated to FITC and DAPI were used. Magnification 400×. (D) 
Effects of treatment with CL (1 μM), acadesine (AICAR, a cell-permeable activator of AMPK, 0.5 mM/L), and/or compound C (CC, an inhibitor of AMPK, 10 μM/L) on the 
expression of PGC-1α. The expression of PGC-1α was normalized to that of GAPDH, then to that of the control samples. *p < 0.01 versus C, #p < 0.01 versus CL. Data are 
mean and SD, n = 4–6. 
Abbreviation: C, control group.
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supports the development of novel anti-obesity therapies 
that involve the activation of β3-ARs in skeletal muscle.
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