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Abstract

Background:A semiparametric approach was used to identify groups of cDNAs and genes with
distinct expression profiles across time and overcome the limitations of clustering to identify
groups. The semiparametric approach allows the generalization of mixtures of distributions while
making no specific parametric assumptions about the distribution of the hidden heterogeneity of
the cDNAs. The semiparametric approach was applied to study gene expression in the brains of
Apis mellifera ligustica honey bees raised in two colonies (A. m. mellifera and ligustica) with consistent
patterns across five maturation ages.

Results:The semiparametric approach provided unambiguous criteria to detect groups of genes,
trajectories and probability of gene membership to groups. The semiparametric results were cross-
validated in both colony data sets. Gene Ontology analysis enhanced by genome annotation helped
to confirm the semiparametric results and revealed that most genes with similar or related
neurobiological function were assigned to the same group or groups with similar trajectories. Ten
groups of genes were identified and nine groups had highly similar trajectories in both data sets.
Differences in the trajectory of the reminder group were consistent with reports of accelerated
maturation in ligustica colonies compared to mellifera colonies.

Conclusion:The combination of microarray technology, genomic information and semiparametric
analysis provided insights into the genomic plasticity and gene networks linked to behavioral
maturation in the honey bee.

Background ever, the number of collections (groups or clusters) of
The identification of collections of genes with unique or  genes with distinctive pattern, expected gene expression
distinctive patterns of expression across time can enhance  trajectory within collection and probability of member-
the understanding of gene pathways and time-dependent  ship of each gene to each collection are unknown. The
functional or biological processes like maturation. How-  approach typically used to learn about all these unknowns
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involves two steps. First, the gene expression is described
(typically using linear models) and point estimates (e.g.
expected value) of the expression at each age are obtained.
Second, these point estimates are used to assign genes to
clusters using one of the many clustering approaches
available (e.g. hierarchical clustering, k-means). Two
major limitations of this approach are the limited infor-
mation used to cluster the genes that may lead to bias in
the final clustering and, the challenging identification of
the optimal number of clusters. There are no completely
satisfactory methods for determining the number of clus-
ters [1]. The difficulties in identifying the cluster number
suitable for each data set stem from the ambiguity and
inconsistency of the indicators of cluster number and
uncertain statistical properties of these indicators in a par-
ticular data set.

Mixture model approaches have been proposed to over-
come some of the limitations of clustering. Finite mixture
models have been applied to microarray data to profile
the gene expression of independent discrete conditions
(for example, tissue samples, tumor samples) or treat-
ments. The clustering of gene expression patterns using
gene expression from limited sample types is particularly
challenging because the number of sample types is typi-
cally much smaller than the number of genes. Ghosh and
Chinnaiyan [2] proposed a mixture model-based
approach to classify genes based on the expression of
independent samples corresponding to melanoma or
prostate cancer diagnoses using a finite mixture of multi-
variate Normal distributions. McLachlan et al. [3] pre-
sented a model-based approach to cluster microarray gene
expression data from independent tissue samples corre-
sponding to colon and leukaemia cancer diagnoses. A
mixture of t-distributions was used as a dimension reduc-
tion tool to reduce the number of genes to be used in clus-
tering and to classify genes into classes. Alexandridis et al.
[4] also applied finite mixture modeling to identify classes
of genes based on gene expression from independent
acute leukemia samples.

Most clustering approaches and the previously reviewed
mixture approaches do not account for the dependencies
of time-course gene expression data. Wu et al. [5] used a
Markov chain model to account for the inherent dynamics
of time-course gene expression patterns within a model-
based clustering approach. However, this approach relies
on converting the continuous gene expression levels into
sequences of three discrete states (induced, repressed and
constant) of expression. Nagin [6,7] described a semipar-
ametric, group-based approach based on finite mixture
modeling for analyzing behavioral development trajecto-
ries. This approach can be used to model directly contin-
uous data, while providing estimates of group number,
trajectories and group membership probability. The sem-
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iparametric group-based approach constitutes an example
of an indirect application of finite mixture modeling
because a finite number of groups is used to approximate
a complex distribution. Direct applications of finite mix-
ture modeling (for example [2,3] and [4]) assume a finite
number of physically distinct groups [8]. The goal of this
study was to evaluate the benefits of Nagin's [6,7] semi-
parametric, group-based approach to analyze gene expres-
sion data, identify distinct expression profiles, and
provide probability of gene membership to each profile.

Honey bee is a well-established model to study the
changes in gene expression associated with age-related
changes in behavior and to identify collections of genes
related to maturation. Worker honey bees work in the
hive for the first 2 to 3 weeks of adult life in a variety of
tasks including brood care (nursing) and then shift to for-
aging for nectar and pollen for the remainder of their 4 to
6 week life [9,10]. Microarray studies have revealed exten-
sive changes in brain gene expression associated with
honey bee behavioral maturation [11,12] These studies
used statistical models with discrete age classes to describe
the changes in gene expression and cluster analysis to
group genes according to their profile [11]. Polynomial
regression models of gene expression trajectories across
age can provide a more parsimonious description for
measurements that are close in time.

We used a semiparametric group-based approach to
describe continuous time-dependent gene expression data
and identify groups of cDNAs (and associated genes) with
distinctive patterns of expression during honey bee behav-
ioral maturation. The adequacy of the approach was
assessed by integrating statistical tools and gene annota-
tions based on the honey bee genome. Three kinds of
analyses were performed. First, a semiparametric group-
based approach was applied to the expression of cDNAs in
honey bee brains across age. Second, the performance of
the semiparametric approach was cross-validated by com-
paring the groups, trajectories and cDNA assignments to
each group in two independent data sets. The results from
the semiparametric approach were also compared to the
corresponding results from a two-step clustering
approach. Third, we used the annotation of the genes
from the honey bee genome and Gene Ontology informa-
tion to further validate the groupings from the semipara-
metric approach. The integration of the gene annotations
supported by the genome and reliable grouping of genes
using a semiparametric approach was used to gain further
understanding of the genes associated with neurobiologi-
cal functions and behavior in honey bees.
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Table I: Summary of Bayesian information criterion (BIC), Akaike information criterion (AIC) and means square error (MSE) by

number of groups for the mellifera and ligustica data sets.

Data set
mellifera ligustica

Groups BIC AIC MSE BIC AIC MSE

5 -3103.31 -3049.92 0.586 -3065.63 -3012.24 0.586
6 -2964.67 -2900.60 0.526 -2961.00 -2896.94 0.526
7 -2894.63 -2819.89 0.493 -2902.09 -2827.35 0.493
8 -2843.36 -2757.94 0.466 -2766.41 -2851.83 0.466
9 -2727.89 -2633.44 0.432 -2737.53 -2641.43 0.443
10 -2637.40 -2530.63 0.409 -2665.38 -2558.61 0416
I -2668.76 -2551.31 0.403 -2679.47 -2562.02 0.406

Results optimal number of clusters. Based on the semiparametric

General considerations

After processing and analyzing the intensities from the
ligustica (L) and mellifera (M) data sets, the P-values corre-
sponding to the linear, quadratic and cubic orthogonal
trends across age were obtained for 6,848 and 7,027
cDNAs in each data set respectively. Of these cDNAs, 252
cDNAs were only present in the M data set and 73 cDNAs
were only present in the L data set. These small differences
in cDNAs present in both data sets were due to the filter-
ing that resulted in different cDNAs being excluded in
both data sets independently. A total of 529 cDNAs were
present in both data sets and had significant (P < 0.00001
or Bonferroni adjusted P < 0.05) linear, quadratic or cubic
orthogonal trends on age. Of these 529 cDNAs, 304 were
assigned to genes identified in the honey bee genome.
Due to redundancies in the assignment of multiple
cDNAs to single genes, the 304 cDNAs corresponded to
268 different genes. Based on genome information [12],
Gene Ontology (GO) information was available for 174
of the 268 identified genes.

Number of groups

Table 1 summarizes the values of indicators of the opti-
mal number of groups (BIC, AIC and MSE) from the sem-
iparametric approach for the L and M data sets. Values for
more extreme group numbers are not presented because
they do not depart from the trend depicted in the range
presented. These indicators show a substantial improve-
ment of the model fit with increasing number of groups of
cDNAs. The optimal number of groups identified by the
minimum BIC and AIC values was ten in both data sets
(Table 1). As expected the MSE criterion favors higher
group numbers, however the reduction in MSE decreased
with an increasing number of groups such that the change
in MSE after 10 groups was minimal. The Pseudo-F crite-
rion in the two-step clustering approach was ambiguous
and showed several local maxima, one of them at ten clus-
ters. The R2 criteria did not provide further insight on the

results, the trajectories from ten clusters are presented
here.

Description of main patterns

In the semiparametric approach, the cDNAs were assigned
to the group with the highest probability of membership.
The assignment of cDNAs to groups was consistent in the
L and M data sets. Only 12 out of the 529 cDNAs were
assigned to different groups between data sets and of
these, 11 were assigned to a neighbor (closest) group with
similar pattern (ascending or descending). Only one
cDNA was assigned to two neighbor groups (2 and 3) that
have different pattern of expression in both data sets.

The expected trajectories of the ten cDNA groups identi-
fied by the semiparametric approach in the L and M data
sets are presented in Figures 1 and 2, respectively, and the
ten clusters identified in the two-step clustering approach
are presented in Figures 3 and 4, respectively. The pattern
of Group 4 is different from all other groups and the
remaining groups form two major trends that are essen-
tially opposite to each other. The first major trend
includes groups 3, 5, 7 and 9 that showed higher expres-
sion at day O than at all other days and a tendency for day
17 foragers to have the lowest expression levels. The sec-
ond major trend includes groups 1, 2, 6, and 8 that
showed the lowest expression at day O than at all other
ages and a tendency for day 17 foragers to have the highest
expression levels. Although some of the expected group
trajectories seem similar, results from principal compo-
nent analysis (including eigenvalues and principal com-
ponent weights of each age) indicated intrinsic differences
between the cDNAs within group, further supporting the
unique nature of the ten groups.

The expected trajectory of group 4 was different from the
other groups and varied between the two data sets. Group
4 exhibited a quadratic expected trend in age across data
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Expected cDNA expression trajectories for each of the 10 groups identified in the ligustica (L) data set. The leg-
end indicates the group number and the estimated number of cDNAs per group.

sets however peak expression was reached at younger ages
in the L data set. The peak of the trajectory would interpo-
late approximately to day 9 in the M data set and to day 5
d in the L data set.

The similarity of the trajectories across data sets was fur-
ther confirmed by the similarity in the regression coeffi-
cients in the semiparametric approach (Table 2). In most
cases the expected value of each coefficient from one data
set was within one standard error unit of the value of the
coefficient in the other data set and in few cases (groups 6,
8, and 10) the difference was slightly higher than one
standard unit. The only group that has substantial differ-
ent estimates between data sets was group 4. This was con-
sistent with the difference in trajectories that group 4
exhibited in Figures 1 and 2. The 95% confidence interval
limits of the expected trajectories for each group and data
set are provided in Additional files 3 and 4

The similarity of groups in the same major trend is also
evident from the coefficients of the model terms in the

semiparametric approach (Table 2). These groups tended
to differ only in the magnitude of the coefficient of the
intercept and a smaller difference in the magnitude of the
coefficient of the linear term. The opposite relationship
between the two major trends is clearly identified by the
difference in sign of the coefficients corresponding to the
linear, quadratic and cubic terms between the trends.

Comparison of group-based and clustering results

The two-stage clustering approach did not offer clear evi-
dence of the number of clusters supported by the data
although 10 was among the likely numbers of clusters.
The results from two-stage clustering using 10 clusters
were used also to facilitate the comparison of results
across approaches. The number of cDNAs and associated
genes in each semiparametric group and two-step cluster
is given in Table 3. Of the 529 cDNAs studied, 88.3% and
85.6% of the cDNAs were consistently assigned to the
same collection by the semiparametric and two-step
approaches in the M and L data sets, respectively. When
the gene membership encompassed the most proximal
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Expected cDNA expression trajectories for each of the 10 groups identified in the mellifera (M) data set. The
legend indicates the group number and the estimated number of cDNAs per group.

(neighbor) groups with similar patterns, then the percent-
age of cDNAs consistently assigned to the same group was
97.3% and 98.3% for the M and L data sets respectively.

Genome-based interpretation of the gene groups

The availability of the honey bee genome allowed the
assignment of genes to groups with distinctive trajectories.
Approximately 50 to 60% of the cDNAs within a group
have been assigned to genes in the honey bee genome.
The exception to this was semiparametric group 4 which
included almost all cDNAs with gene assignments. The
multiple assignment of cDNA to genes resulted in the
presence of some genes in multiple groups. For example,
in the L data set out of the 304 known genes, 88.8% (238)
were assigned to single groups, 10 were assigned twice to
the same group (due to cDNA redundancy on the micro-
array and similar patterns of expression), one was
assigned three times to the same group (due to cDNA
redundancy and similar pattern of expression), 15 were
assigned to two different groups, three were assigned to
two groups (one group receiving one cDNA and the other
two cDNAs) and one was assigned to four different
groups. The genes with multiple cDNAs assigned to mul-

tiple groups were distributed in proximal groups with the
same of trajectory and similar level of expression. In addi-
tion, these cDNAs tended to have moderate and similar
probability of membership to the corresponding groups.

The number of genome annotated genes with Gene
Ontology (GO) information in each semiparametric
group is given in Table 3. Based on the assembly 2 of the
honey bee genome, only 50% to 60% of the genes had
inferred GO information. The exception to this was the
semiparametric group 4 that contain no gene with GO
information.

Considering genes with roles in neurobiological proc-
esses, the assignment of genes to groups was consistent
with their roles. The identification, group membership,
and brief description of associated molecular function or
biological process of the 54 genes associated with neuro-
biological processes for the M and L data set are given in
Additional file 1. Out of 24 genes with a wide range of
synaptic functions, 18 genes were assigned to groups with
decreasing expression from day 0 to day 17. All three
MAPKKK (Mitogen-activated protein Kinase Kinase
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Figure 3

Expected cDNA expression trajectories for each of the 10 clusters identified in the ligustica (L) data set using
a clustering approach. The legend indicates the group number and the estimated number of cDNAs per group.

Kinase signaling) cascade related genes were assigned to
groups with ascending expression profile from day 0 to
day 17. All except one voltage-gated channel gene were
assigned to groups with decrease in expression from day 0
to day 17. Six of the nine genes with neurogenesis func-
tion were assigned to groups with increasing expression
with age. Contrary to this, 12 out of the 14 genes associ-
ated with neurotransmitter functions were in groups with
decreasing expression profile across the ages studied and
four out of six genes associated with the development of
the neural system had lower expression at the end of the
period studied. Of the 14 genes with memory and/or
learning or behavior related function, 10 genes were in
groups exhibiting a descending profile from day 0 to day
17. Of the 5 axonal related function genes assigned to
groups, approximately half were groups with ascending
pattern across time points. Two out of the three genes
associated with mushroom body development had
descending expression from day O to day 17. Other genes
with predicted function grouped by the semiparametric
approach are axonal related and vision related genes.

Whitfield et al. [11] provided a list of 50 cDNAs present in
the 9K microarray that can be used to predict nurse or for-
ager behavior and 36 of these cDNAs were confirmed by
Cash et al. [12]. In this study, out of the 529 cDNAs with
significant linear, quadratic and cubic trends profiled, 25
were among the list of 50 predictive cDNAs and all have
trajectories consistent with the pair-wise differences
reported by Whitfield et al. [11] and Cash et al. [12]. The
identification of the 25 consistent cDNAs, estimated nor-
malized cDNA expression at each of the five ages meas-
ured and the overall forager-to-nurse ratio reported by
Whitfield et al. [11] are provided in Additional file 2

Discussion

The semiparametric group-based approach allowed the
estimation of the number of cDNA (or gene) groups that
are optimally identifiable using an unambiguous statisti-
cal criterion like BIC. This indicator confers a considerable
advantage to the semiparametric approach in comparison
to the approximate statistics available in the clustering
approach that typically show multiple optima across the
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Figure 4

Expected cDNA expression trajectories for each of the 10 clusters identified in the mellifera (M) data set using
a clustering approach. The legend indicates the group number and the estimated number of cDNAs per group.

number of clusters. The consistency of the semiparametric
grouping of cDNAs across data sets demonstrates the
reproducibility of the semiparametric technique. The
assignment of genes with related neural function based on
the honey bee genome to the same group or groups with
similar profile further validated the appropriateness of the
semiparametric results. Although the semiparametric and
two-step clustering approaches provided consistent
number of groups and similar expected trajectories, con-
sideration must be given to the fact that the identification
of ten clusters was based on the number of groups sug-
gested by the semiparametric approach because the clus-
tering approach did not provide a single optimal number
of clusters. In addition, the semiparametric approach pro-
vided the probability of membership of each cDNA to
each group however this information was not available in
clustering. This information was critical to identify cDNAs
with high and low certainty of group assignment. The few
c¢DNAs in the microarray with significant age by colony

and colony effects may explain the differences between
data sets in assignment of some cDNAs to different semi-
parametric groups and age at peak expression in group 4.

An advantage of the semiparametric approach over the
two-step clustering approach implemented in this study is
the objective assignment of cDNA to groups using the
posterior probabilities of membership to each group. A
cDNA is assigned to the group that has the maximum pos-
terior membership probability for that cDNA. Overall the
median assignment probabilities for each group are high
(0.87) and this high certainty in assignment may be due
to the high information content of the data. The strong
signal contained in the data with respect to the cDNA tra-
jectory may be one reason for the similarity between the
semiparametric and two-step clustering approaches in this
study. The advantage of the semiparametric approach may
be more evident in data sets with more cDNAs with inter-
mediate membership probabilities.
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Table 2: Estimates, standard error (SE) and P-value of the intercept, linear, quadratic and cubic terms describing the 10 groups using a

semiparametric approach in the ligustica and mellifera data sets.

Intercept Linear Quadratic Cubic
Group Dataset Estimate SE P-value  Estimate SE P-value  Estimate SE P-value  Estimate SE P-value
I ligustica  -1.4922  0.0774 <0.0001 0.0813 0.0403 0.044 -0.0092  0.0058 0.1144  0.0003 0.0002 0.122
mellifera  -1.4635  0.0704 <0.0001 0.0685 0.0372 0.0654  -0.0078  0.0054 0.154I| 0.0003 0.0002 0.1223
2 ligustica  -1.0266  0.0624 <0.0001 0.1773 0.0351 <0.0001 -0.017 0.0052 0.0011 0.0006 0.0002 0.0025
mellifera  -0.9844  0.0612 <0.0001 0.2214 0.0335 <0.0001 -0.0232 0.005  <0.0001 0.0009 0.0002 <0.0001
3 ligustica  -0.0964  0.0685 0.159 -0.2606  0.0339 <0.0001 0.025 0.0049 <0.0001 -0.0008 0.0002 O
mellifera  -0.0233  0.0599 0.6969  -0.2479  0.0307 <0.0001 0.0231 0.0046 <0.0001 -0.0007 0.0002 <0.0001
4 ligustica  0.2749 0.1579 0.0818  0.9044 0.0956 <0.0001 -0.1 0.0144 <0.0001 0.0025 0.0006 <0.0001
mellifera  -1.1858  0.1465 <0.0001 0.5999 0.0886 <0.0001 -0.023 0.0134 0.0864  -0.0006 0.0005 0.2179
5 ligustica  0.7813 0.0536 <0.0001 -0.2726  0.0289 <0.0001 0.027 0.0043 <0.0001 -0.0009 0.0002 <0.0001
mellifera  0.9021 0.0553 <0.0001 -0.2764  0.0284 <0.0001 0.0272 0.0042 <0.0001 -0.0009  0.0002 <0.0001
6 ligustica  -0.3338  0.0702 <0.0001 0.2797 0.0328 <0.0001 -0.0255 0.0049 <0.0001 0.0008 0.0002 <0.0001
mellifera  -0.1963  0.0593 0.0009  0.2989 0.033  <0.0001 -0.0337 0.0049 <0.0001 0.0013 0.0002 <0.0001
7 ligustica  1.5573 0.0526 <0.0001 -0.2004 0.0281 <0.0001 0.02 0.0042 <0.0001 -0.0007 0.0002 <0.0001
mellifera  1.612 0.0588 <0.0001 -0.1945 0.028] <0.0001 0.0183 0.0042 <0.0001 -0.0006 0.0002 0.0001
8 ligustica  0.8752 0.0685 <0.0001 0.3204 0.0391 <0.0001 -0.0336 0.0058 <0.0001 0.0012 0.0002 <0.0001
mellifera  1.0052 0.0671 <0.0001 0.286 0.0394 <0.0001 -0.0309 0.0059 <0.0001 0.0011 0.0002 <0.0001
9 ligustica ~ 2.5404 0.0607 <0.0001 -0.1607 0.0341 <0.0001 0.0164 0.0051 0.0013  -0.0006 0.0002 0.002
mellifera  2.636 0.0569 <0.0001 -0.2106 0.0328 <0.0001 0.0204 0.0049 <0.0001 -0.0007  0.0002 0.0003
10 ligustica  2.278l 0.1012 <0.0001 0.4776 0.0615 <0.0001 -0.055 0.0092 <0.0001 0.0019 0.0004 <0.0001
mellifera  2.4787 0.1008 <0.0001 0.2641 0.0606 <0.0001 -0.029 0.009 0.0013  0.0011 0.0004 0.0026

The assignment of cDNA to groups based on maximum
probability does not ensure unquestionable membership
to any group. Most of the cDNAs that were assigned to dif-
ferent groups between data sets did not have a clearly high
membership probability to a single group because two or
more dominant probabilities were estimated. This varia-
bility in membership probabilities reflects the semipara-
metric nature of the approach in that there is a continuous
distribution of trajectories approximated by the discrete
number of groups. The mode of the membership proba-
bilities was lower for the trajectories with intermediate
levels and was associated with higher frequency of incon-
sistent cDNA assignment across approaches and data sets.
Examples of this are the cross-classification between
group 7 and the two surrounding groups 5 and 9 and
between group 6 and surrounding groups 8 and 2 (Figures
1 and 2). Higher membership or assignment probabilities
in the extreme (high or low average expression levels) pro-
files were associated with more consistent assignment of
c¢DNAs across approaches in these groups and examples of
this are groups 1 and 10.

In the two-step clustering approach, only the point esti-
mates of the first stage are used in the second stage. Thus,
the values used in the second stage are assumed to be
known without uncertainty [14] and any variability in the
first stage is not accounted for in the second stage. In addi-
tion, measurements of clustering adequacy based on resa-
mpling are computational demanding [15] meanwhile
approximate criteria (e.g. Pseudo-F) are ambiguous. By

providing the probabilities of membership of each cDNA
to each group, the semiparametric approach allows the
consideration of the uncertainty inherent when classifying
cDNAs to groups. The similarity of the results for the
majority of the cDNAs in both approaches suggests that
the uncertainty in the information being clustered has
small impact on the grouping of cDNAs in this study. This
is likely to be due to the requirement for all cDNAs to have
intensity measurements in all age and at least 75% of the
measurements within age. For the minority of the cDNA
that were assigned to different collections in both
approaches, the probability of membership of each cDNA
to each group available in the semiparametric approach
offered unique insights on the likely true grouping.

This study only considered the cDNAs with significant lin-
ear, quadratic or cubic trajectories across a 17-day matura-
tion period because a goal was to further study the genes
exhibiting trends across age. The semiparametric
approach can be used to group any cDNA regardless of
trend or level of expression. A pilot semiparametric group-
ing of all cDNAs indicated that the cDNAs with no clear
trends in age tend to form few and large groups with flat
trajectories across age at different levels. This is because
the cDNAs are expressed at fairly constant levels across
time and can have a significant intercepts. However, the
c¢DNA groups with nonsignificant fluctuation across age
could effectively hide the main trajectories or groups of
interest. It is likely that a proportion of the cDNAs consid-
ered non-significant in this study are really false negatives
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Table 3: Number cDNAs, corresponding genes based on the honey bee genome and genes with Gene Ontology (GO) information for
each expression trajectory group assigned by the semiparametric and regression-clustering approaches in the mellifera and ligustica

data sets.
mellifera ligustica
Semiparametric Clustering Semiparametric Clustering

Group cDNA Genes GO <DNA Genes cDNA Genes GO c<DNA Genes
| 49 26 I 80 25 49 28 12 47 42
2 57 33 22 102 40 57 31 22 39 24
3 69 39 20 47 40 67 36 21 73 31

4 8 7 0 54 8 7 7 0 80 7

5 8l 50 27 79 52 8l 49 27 57 50
6 61 31 12 59 34 62 32 12 83 28
7 84 48 36 15 33 88 52 33 70 60
8 41 24 16 39 22 44 26 14 64 26
9 61 38 24 47 48 57 36 26 7 30
10 18 8 5 7 2 17 7 6 9 6

due to the threshold P-value used however, the detection
of accurate patterns for these cDNAs would require an
experiment with greater statistical power. Likewise a few
cDNAs (approximately five) are likely to be false positives
and would also be incorrectly grouped. Consequently the
expected influence of these errors would increase the
uncertainty of the groupings. The influence of these errors
was greatly minimized in this study by using the confirm-
atory M and L data sets. The majority of the cDNAs that
were significantly differentially expressed were assigned to
the same group in both data sets suggesting a minimal
impact of the false positive and negative errors in this
study. Although the true grouping is unknown, examina-
tion of the posterior probabilities of membership to each
group from the semiparametric approach could also iden-
tify these errors. The cDNAs with high posterior probabil-
ities to belong to a group are less likely to be incorrectly
assigned than cDNAs with similar posterior probabilities
across two or more groups.

The semiparametric group-based approach provided
robust assignment of cDNAs to groups with distinct over-
all trajectories and alleviated some to the limitations of
the two-stage clustering approach. This semiparametric
approach can also model the effect of time dependent and
independent explanatory variables on the trajectories of
the groups. Two major limitations of the semiparametric
group-based approach, commonly found in finite mixture
approaches are that the cDNAs are assumed to be inde-
pendent and the components are all assumed to follow
the same type of distribution (in our study, multivariate
Normal).

Other studies have characterized or predicted behavioral
stages (nurse, forager) in honey bees using gene expres-
sion data from cDNA microarrays. Whitfield et al. [11]

provided a list of 50 cDNAs that can be used to predict
nurse or forager behavior and 36 of these cDNAs were
confirmed by Cash et al. [12]. In this study, out of the 529
cDNAs with significant linear, quadratic and cubic trends
profiled, 25 were among the list of 50 predictive cDNAs
and all have trajectories consistent with the pair-wise dif-
ferences reported by Whitfield et al. [11] and Cash et al.
[12]. More cDNAs in the list of 50 predictive cDNAs were
found when the P-value threshold was relaxed and in all
cases the trends in age were consistent with previous stud-
ies. In addition, the cDNA representing the forager gene
reported by Ben-Shahar et al. [16,17] had a significant lin-
ear trajectory (P < 0.000011) with higher expression levels
in foragers than nurses. Six out of the 25 cDNAs were
assigned to different groups in both data sets although
these groups have similar trajectories. The primary reason
for the different grouping appeared to be colony effects
rather than statistical methodology. The ability to discrim-
inate between nurse and forager behavior depended on
the data set and the ages considered. The detection of sig-
nificant linear, quadratic and cubic trends illustrates the
advantages of repeated measurement studies.

The use of gene annotations from the honey bee genome
and associated GO information is essential to the confir-
mation of the main trends uncovered by the semiparamet-
ric approach. In particular, we studied the grouping of
genes known to be associated with neurobiological proc-
esses, excluding carbohydrate metabolism, based on their
distinctive patterns within group. Many of the genes and
profiles presented in Additional file 1 confirm results
from previous studies. For example, Grozinger et al. [18]
reported that queen pheromone caused a significant
change in expression of the Kruppel homolog 1 (Kr-h1)
gene in the bee brain. This gene has been linked to motor
axon guidance and synaptogenesis in fruit fly larvae. The
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Table 4: Distribution of all 304 known genes and 173 genes with Gene Ontology (GO) information across semiparametric groups and

regression clusters for the mellifera and ligustica data sets.

mellifera ligustica
Semiparametric Clustering Semiparametric Clustering
Group Gene GO Gene Gene GO Gene
| 26 12 25 28 I 42
2 33 22 40 31 22 24
3 39 21 40 36 20 31
4 7 0 8 7 0 7
5 50 27 52 49 27 50
6 31 12 34 32 12 28
7 48 33 33 52 36 60
8 24 14 22 26 16 26
9 38 26 48 36 24 30
10 8 6 2 7 5 6

change in the expression of voltage-gated ion channels
could be related to the changes in the expression of the
malvolio gene, which encodes a manganese transporter
[16], because manganese ions could pass through the cell
membrane via voltage-gated calcium channels. Our
approach to study trajectories of gene expression also
uncovered consistent patterns in multiple genes pertain-
ing to the MAPKKK (Mitogen-activated protein Kinase
Kinase Kinase) cascade. These findings prompt further
studies of the association between honey bee behavioral
maturation and the MAPKKK gene pathways. These path-
ways have been less studied in the honey bee, although
there is evidence in other insects that this pathway regu-
lates synapse architecture [19].

Conclusion

The identification of collections of genes with distinct
expression profiles is an important piece of the puzzle that
is the study of gene networks. We confirmed the ability of
a semiparametric approach to provide unambiguous crite-
ria to detect groups of genes, trajectories and probability
of gene membership to the groups in two data sets.
Genome annotations further confirmed that genes with
known neurobiological function were assigned to the
same group or groups with similar trajectories. The char-
acterization of gene networks associated to behavioral
maturation was enhanced by the integration of semipara-
metric analysis and bioinformatics tools.

Methods

Data sets

Whitfield et al. [20] measured the levels of cDNA expres-
sion during behavioral maturation ages in the brains of
honey bees from two races (Apis mellifera mellifera and
Apis mellifera ligustica) raised in one of two colonies (mel-
lifera and ligustica) representing two environments. Full

sisters were used to create the two host colonies for each
race. Within each combination of race and colony, three
nurse bees were sampled on days 0, 4, 8, 12 and 17 after
adult emergence and three forager bees were sampled on
day 17 after emergence.

The expression of genes from individual brains was
assessed using the double-spotted Apis mellifera brain 9K
version 3.0 ¢DNA microarray using the protocols
described by Whitfield et al. [11], Grozinger et al. [18] and
Cash et al. [12]. The majority of the cDNAs in the micro-
array (5001 out of 8887 reporter cDNAs) have been
mapped to 3610 individual genes in the honey bee
genome assembly version 2. Based on the annotation of
the genome, there is an approximately 38% redundancy
of ¢DNAs to mapped genes and approximately 55%
(1970 genes) of these mapped gene have Gene Ontology
information.

The gene expression from each combination of bee race
and colony in the experiment of Whitfield et al. [20] is
available as separate loop designs consisting of 20 cDNA
microarrays. This loop design maximized the direct com-
parisons between consecutive time points because sam-
ples at consecutive ages and at the first (day 0 nurse) and
last (day 17 forager) ages were hybridized to the same
array. From the full experiment two independent data
sets, ligustica (L) and mellifera (M), were identified and
used for cross-validation purposes in this study. The L
data set included the measurements from ligustica bees
raised in a ligustica colony and the M data set included the
measurements from ligustica nurse bees raised in a mellif-
era colony. Each data set consisting of 20 microarrays was
analyzed separately and considered an independent data
set suitable to validate the results from the reminder data
set because no bee was part of both data sets and a pilot
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analysis indicated that only 0.75% of the cDNAs had a sig-
nificant (P-value < 0.00001) age by colony interaction
and only 0.79% of cDNAs had a significant colony effect.
Thus, we expect that at least 98% of the cDNAs will exhibit
the same pattern in both data set and should be consist-
ently assigned to the same gene collections in both data
sets.

Data processing

The same filtering and analysis procedures were con-
ducted separately for each data set. The background sub-
tracted fluorescence intensities were set to 1 when
background was higher and foreground intensity and
log2-transformed. Spot (or feature) intensities were fil-
tered when a) the spots pertain to controls or other
sequences (e.g. virus, suspected to be contaminated or
present in high levels in hypopharyngeal glands) also
excluded in Cash et al. [12], b) the spots were deemed of
bad quality (and assigned a -100 flag) by the image anal-
ysis software (GenePix Pro 5.0 [21]), ¢) the spots had low
signal (foreground intensities lower the 3 standard devia-
tions of the background intensity within dye and array),
d) the Cook distance of a spot intensity from the other
intensity values from the same brain and dye was > 0.99
thus suggesting an inconsistent or unusual spot, e) and
the median of all the intensities of a cDNA within dye and
array was less than 300 [11]. After filtering the intensities
from the duplicated spots on the same microarray were
combined into one value, the average of the two spots
when available or the value of a single spot remaining
after filtering. Finally the following two gene-wise filtering
criteria were applied: i) the presence of at least 75% of the
spots per cDNA (at least 9 spots per cDNA out of a possi-
ble maximum of 12 spots in the arrays with hybridiza-
tions of consecutive time points or 16 spots in the arrays
including day 0 nurse and forager day 17 samples), and ii)
the availability of measurements at all ages.

The log2 intensity values were normalized using a linear-
logarithmic transformation [22] and a general model was
applied to estimate the trends of gene expression in age
using the two-step approach described by Wolfinger et al.
[23]. First, a linear model including the fixed effect of dye
and the random effect of microarray was fitted across all
cDNAs to adjust all measurements across dye and micro-
array combinations. Second, a linear mixed effects model
including the fixed effect of dye and age and the random
effect of microarray was used for each previously adjusted
cDNA intensities to identify the cDNAs with significant
orthogonal linear, quadratic and cubic trend across day O,
4, 8 and 12 nurse and day 17 forager honey bees. The con-
trasts excluded day 17 nurse bees due to the similarity in
age between the 17 day nurse and forager bees. A set of
cDNAs that had significant (Bonferroni adjusted P-value <
0.05) linear or higher age trends in both data sets were

http://www.biomedcentral.com/1471-2164/7/233

identified. The adjusted age estimates of gene expression
atday 0, 4, 8 and 12 in nurse bees and at day 17 in forager
bees were obtained for each cDNA with significant linear,
quadratic or cubic trends within data set.

The estimates of gene expression at each age were ana-
lyzed in each data set (see Additional files 5 and 6) using
a semiparametric group-based mixture approach [6,7]
that assigns cDNAs to groups with distinct trajectories
based on the probability of belonging to that group. A
two-step clustering approach was also implemented for
comparison purposes.

Semiparametric approach

A group-based regression approach [6,7] was used to
identify groups of cDNAs with distinctive expression tra-
jectories and, model the uncertainty of the trajectories and
of the membership of ¢cDNAs to groups. An infinite
number of groups are assumed and thus the mixing distri-
bution is nonparametric. Nonparametric methods, unlike
parametric methods, do not make (or make very few)
assumptions about the distribution of the observations.
This property is desirable in the identification of groups of
gene expression trajectories because the distribution is
unknown. The limitation of a full nonparametric
approach is the typically low power of results. The semi-
parametric approach offers a compromise because it relies
on mildly strong assumptions, thus reducing the risk of
misspecification while maintaining the precision [24].
The derivation of the semiparametric approach assumes a
continuous distribution of the groups or cDNA trajecto-
ries that is approximated by a discrete function. The finite-
group approximation results in a semiparametric maxi-
mum-likelihood approach [25,26].

This semiparametric model allows for the generalization
of mixtures of distributions while making no specific par-
ametric assumptions about the distribution of the hidden
heterogeneity over the cDNAs. The semiparametric maxi-
mum likelihood estimators are described in detail by
Land et al. [25] and Nagin and Tremblay [27] in the con-
text of psychometric data. Briefly, let y; denote the gene
expression level of cDNAi (i=1, ..., n)atagej(j=1, ..., ))
and y; = (y;, ... y;) denote the vector of gene expression
across age.

The probability density function corresponding to cDNA
iis:
K
)= Pr(Ci =k) fi(y; | Bo?)
k=1
where f, (v,|B, 02) is the k component densities of the

mixture, C; is an indicator variable that denotes the com-
ponent that cDNA i belongs to, and Pr(C, = k) is the prob-
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ability of cDNA i to belong to the k group. Thus f(y;) is a
mixture distribution with K components. In this study, f,
(v:|B 0?) follows a multivariate Normal distribution:

fie 7ilBr ?)SMVN(XB;, 1152)

where X; is the design matrix relating the observations of
cDNA i to the parameter vector f. To describe the cDNA

expression trajectories, linear, quadratic and cubic trends
on age were considered and the design vector correspond-

ing to ¢DNA i and age j, is X; :(Lagenjr“gei%:age?j)-

Although the availability of information on five ages
allows the evaluation of up to quartic trends, the estimates
of this trend would be based on limited information and
would be unreliably estimated. The estimates of B, = (5,

B Bow Psip) are group-specific and provide K ¢cDNA
expression trajectories across age.

The unobservable discrete variable C; indicates the group
membership or group that the cDNA i pertains. This vari-
able can take any of K distinct values, each corresponding
to a distinct cDNA expression trajectory and Pr(C; = k) is
the mixing proportion or weight. In addition

K
S Pr(C; =k) =1,
k=1

K
0< ZPr(Cl- =k)<1

k=1
and Pr(C; = k) follows a polychotomous multinomial (K
degree) logistic distribution:

exp(6y)
K

Z exp(6y )
k=1

To address the estimability problem, one group level (e.g.
1) is considered the baseline level. Thus, € = (6,,..., 6,...,
6¢) and the estimated parameters are the log odds of
membership in level k versus the baseline group.

Pr(C; =k) =

Based on the regression coefficient estimates, the proba-
bility of observing each expression pattern is computed
conditional on its belonging to each group. The cDNA is
then assigned to the group with the highest probability of
having generated the group pattern.

The likelihood is:

http://www.biomedcentral.com/1471-2164/7/233

Pr(Gi =k)Pr(y, | B,.0% )

=
=

L(B]’...,BK,O'Z,Ql,"'/BK |Yi) = |

Il
—
S

Il

1

The Bayesian information criterion (BIC) was used to
identify the optimal number of groups supported by the
data [27,28].

The expression for BIC is:
BIC = -2 [log,(likelihood)] + plog(N)

where log, denotes the natural logarithmic transforma-
tion, p is the number of parameters in the model and N is
the number of observations.

The BIC can consistently identify the optimal number of
components in the mixture model [14] even when the
models are not nested [29]. The BIC approach favors par-
simonious models and Kass and Raftery [31] indicated
that BIC can be used to approximate the Bayes factor for
comparisons of models. The model with the smallest BIC
value is preferred over the alternative specifications. The
BIC offers a good compromise between model adequacy
and simplicity when compared to the Akaike information
criterion (AIC) and the mean square error (MSE) that tend
to favor more and less parsimonious models than BIC
respectively [30]. The parameters were estimated by direct
maximization of the full likelihood using a SAS macro
[32]. All models with 2 to 15 groups following a polyno-
mial trajectory of up to order three were evaluated. The
maximum number of groups considered was 15 because
higher group numbers resulted in groups with less than
1% of the cDNAs studied within group and the trajectory
would not be reliably estimated.

Two-step clustering approach

In the two-step clustering approach, a cubic polynomial
was fitted to the cDNA estimates across age and the pre-
dicted intensities at each age were clustered. Complemen-
tary clustering techniques were used to collect the cDNAs
into clusters. Within hierarchical clustering, a maximum-
likelihood hierarchical clustering (or EML) method was
implemented. In EML, the distance between clusters A
and B is:

G
Dy = Nvloge(1+[(Y % ~%a [* + ¥ [ =% =3 [xi =% )3 % =% )
i i i J=1
=2(Ng In(Nc) =N In(N,) =Np In(Ng))
where

D, = distance between clusters A and B,

N = number of observations (cDNAs),
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v = number of variables (5 ages),
C = cluster resulting from grouping clusters A and B,
log, = natural logarithmic transformation,

N; = number of observations in cluster J (forJ =1, ..., A, ...,
B, ... C)

Xj = sample mean vector pertaining to cluster J

The EML clustering method clusters observations or clus-
ters that maximizes the likelihood at each level of the den-
drogram and assumes multivariate Normal mixture
distribution, equal spherical covariance matrices and une-
qual sampling probabilities [33]. The EML approach does
not have the bias towards clusters of equal number of
cDNAs that the Ward's method has and may not be appro-
priate for this data set. This method was implemented
using SAS [33].

The k-means clustering approach was also implemented
and results were compared to hierarchical clustering to
minimize the potential impact of the clustering method
on the resulting groups. This approach requires the speci-
fication of the number of clusters and uses the minimum
least squares criterion. Euclidean distances were used, and
three sets of seeds were tested to minimize the impact of
the starting values on the resulting clustering imple-
mented using SAS [33]. The clustering approaches are
suitable to group the cDNA expression trajectories
because there was no evident outlier intensity estimates
across age. Evidence of this was the lack of singleton clus-
ters with one cDNA in the k-means clustering. The opti-
mal number of clusters supported by the data was
identified based on consensus on three criteria computed,
the R2 (proportion of the total variance accounted by the
clusters), R2 ratio [R%/(1-R2)], and the pseudo-F statistic:

Pseudo F = R2/(G - 1)/(1 - R?)/(N - G).
where

G = number of clusters and,

N = number of cDNAs.

The criteria used to identify the optimal number of clus-
ters were local pseudo-F maxima and slight reductions of
the R? indicators across cluster numbers. There was no sin-
gle optimal number of clusters (multiple local pseudo-F
maxima were detected) and the number closest to the
number of groups identified with the semiparametric
approach was used for comparison purposes. The outputs
from both clustering approaches were highly consistent
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and therefore only the results of the hierarchical EML
method applied to the M and L data sets are presented.

Model performance

The performance of this approach was evaluated in three-
ways. The results from both data sets were compared first
to each other, second to the results from a less obvious
two-step clustering analysis and third further validated
using the gene annotations supported by the assembly
version 2 of the honey bee genome [13] and associated
gene ontology. The cDNA collections are termed "groups”
and "clusters" to distinguish the results from the semipar-
ametric and two-step clustering approaches, respectively.
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Additional material

Additional File 1

Apis mellifera (honey bee) gene identification (GB prefix), Drosophila
(fruit fly) homologous (CG prefix), semiparametric group membership
and Gene Ontology (GO) information of 54 genes with neurobiological
function in the mellifera (M) data set and in the ligustica (L) data set if
different from M. This table provides the functional classification, honey-
bee gene identification, corresponding fruit fly gene identification, Gene
Ontology description and, semiparametric group assignment in the mellif-
era (M) and ligustica (L) data sets of 54 genes with neurobiological func-
tion studied.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-233-S1.doc]|

Additional File 2

List of 25 cDNAs with significant (P < 0.00001) linear or quadratic or
cubic profiles from day 0 (nurse) to day 17 (forager), estimate of expres-
sion at each day in the ligustica (L) and mellifera (M) data sets, gene
group, and the relative expression between forager and nurse (FvsN) bees
reported by Whitfield et al. (2003). This table provides a list with the
identification of 25 cDNAs with significant linear, quadratic or cubic
trends across days, the estimated gene expression at each day, semipara-
metric group, and the relative expression between forager and nurse bees
reported in Whitfield et al. (2003) for the L and M data sets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-233-82.doc]
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Additional File 3

Confidence interval limits (95%) of the expected cDNA expression trajec-
tories for each of the 10 groups identified in the ligustica (L) data set. The
legend indicates the group number and lower (Ic) or upper (uc) confi-
dence interval limits per group. The figure presents the 95% confidence
interval limits of the expected cDNA expression trajectories for each of the
10 groups identified in the L data set.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-233-3.doc]

Additional File 4

Confidence interval limits (95%) of the expected cDNA expression trajec-
tories for each of the 10 groups identified in the mellifera (M) data set.
The legend indicates the group number and lower (Ic) or upper (uc) con-
fidence interval limits per group. The figure presents the 95% confidence
interval limits of the expected cDNA expression trajectories for each of the
10 groups identified in the M data set.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-233-S4.doc]

Additional File 5

L data set. L data set estimates per cDNA and age.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-233-S5.xls]

Additional File 6

M data set. M data set estimates per cONA and age.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-233-S6.xls]
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