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Abstract

Macrophages detect pathogens via pattern recognition receptors (PRRs), which trigger several intracellular signaling
cascades including the MAPK and NFkB pathways. These in turn mediate the up-regulation of pro-inflammatory cytokines
that are essential to combat the pathogen. However as the over-production of pro-inflammatory cytokines results in tissue
damage or septic shock, precise control of these signaling pathways is essential and achieved via the induction of multiple
negative feedback mechanisms. miRNAs are small regulatory RNAs that are able to affect protein expression, via the
regulation of either mRNA stability or translation. Up-regulation of specific miRNAs could have the potential to modulate
PRR signaling, as has been shown for both miR-146 and miR-155. Here we have analysed which miRNAs are up-regulated in
mouse macrophages in response to the fungal pathogen heat killed Candida albicans and compared the profile to that
obtained with the TLR4 ligand LPS. We found that in addition to miR-146 and miR-155, both Candida albicans and LPS were
also able to up-regulate miR-455 and miR-125a. Analysis of the signaling pathways required showed that NFkB was
necessary for the transcription of all 4 pri-miRNAs, while the ERK1/2 and p38 MAPK pathways were also required for pri-miR-
125a transcription. In addition the anti-inflammatory cytokine IL-10 was found to be able to induce miR-146a and b, but
inhibited miR-155 induction. These results suggest that miR-455, miR-125, miR-146 and miR-155 may play important roles in
regulating macrophage function following PRR stimulation.
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Introduction

The innate immune system is able to detect infection via the

recognition of various pathogen specific molecules, referred to as

pathogen derived molecular patterns or PAMPs. Recognition of

PAMPs occurs via specific groups of ‘pathogen recognition

receptors’ or PRRs, including Toll-like receptors (TLRs), Nod-

like receptors, CARD domain helicases such as RIG-I and C-type

lectins such as dectin-1. Each of these receptors is specific for

certain PAMPs, and therefore different pathogens will be sensed

by different combinations of PRRs (reviewed in [1,2,3]). These

differences allow for the fine-tuning of the immune response to the

type of invading pathogen. An important consequence of the

activation of cells in the innate immune system is the production of

pro-inflammatory cytokines, which help co-ordinate the immune

response and promote inflammation at the site of infection. While

pro-inflammatory cytokines are critical to combat pathogens,

excess or inappropriate production of pro-inflammatory cytokines

has serious consequences including tissue damage and septic

shock. In addition, excess production of inflammatory cytokines

contributes to a number of pathologies including auto-inflamma-

tory and autoimmune disorders. Precise control of innate immune

cells and their production of pro-inflammatory cytokines is

therefore critical. In addition to the positive signals provided by

the pathogens and pro-inflammatory cytokines themselves,

multiple inhibitory feedback mechanisms also act on inflammatory

cytokine production, including direct negative feedback mecha-

nisms in PRR activated signaling cascades and the production of

anti-inflammatory cytokines such as IL-10.

Recently, it has been suggested that an additional control

mechanism in activated macrophages is the induction of specific

miRNAs. miRNAs are small regulatory RNAs of 21 to 24 bp in

length that have been shown to modulate several processes

including development, immunity and neuronal function. In

mammalian cells, miRNAs predominantly regulate protein

expression at a post-transcriptional level by repressing the

translation of their target mRNAs (reviewed in [4,5]). In the

genome, miRNAs can be located in the introns of protein coding

and non-coding genes, the exons of non-coding genes and in

intragenic regions. miRNAs are initially transcribed and processed

to give rise to a primary miRNA (pri-miRNA). The majority of

pri-miRNAs are then further processed in the nucleus by the

Microprocessor complex to release a hairpin structured pre-

miRNA. The pre-miRNAs are next exported into the cytoplasm

where they are further processed by Dicer into a small double

stranded intermediate. One strand of a miRNA is then loaded into

RISC (RNA Induced Silencing Complex) of which a key

component is an Argonaute protein.
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Previous studies have shown that the transcription of some

miRNA genes can be modulated by the activation of TLRs in the

innate immune system. In THP-1 cells, the transcription of miR-

146a/b, miR-132, and miR-155 was found to be up-regulated by

LPS stimulation [6]. Interestingly, in this study it was found that

miR-146 was more strongly induced by TLRs located in the

plasma membranes compared to endosomal TLRs. As endosomal

TLRs are important to sense viral nucleic acid, this could suggest

that miRNAs may help tailor the immune response to the type of

invading pathogen [6]. More recent reports have however shown

that miR-146 can be induced by viral stimuli [7,8,9]. Murine

macrophages have also been shown to induce miR-155 in

response to the TLR4 agonist LPS or the TLR3 agonist polyI:C

[10,11]. LPS has been shown to down-regulate the expression of

miR-125b in the Raw macrophage cell line [10], however it was

found to be up-regulated in a cholangiocyte cell line in response to

LPS or Cryptossporidium parvum infection [12].

The most likely function of TLR induced miRNAs is to act as a

negative feedback mechanism to inhibit TLR mediated signaling.

For instance, miR-146 can target IRAK1 and Traf6, key

components in linking TLRs to their downstream signaling

cascades [6,8], as well as STAT1 and IRF5, transcription factors

implicated in pro-inflammatory cytokine production [9]. miR-155

has been shown to target SHIP1, which can affect macrophage

function by modulating PI-3K dependent signaling, C/EBPb (an

important transcription factor in the inflammatory response), and

the TLR adaptor protein Myd88 [13,14,15].

While considerable effort has been made to understand how

bacteria and viruses activate the innate immune system, the

response to fungal ligands is less well understood. While in healthy

individuals fungal infections are usually mild, in immuno-compro-

mised patients these infections are much more serious and can be a

significant cause of mortality in this group. Because of the increasing

number of immuno-compromised patients due to diseases such as

HIV or immunosuppressive therapies for conditions such as cancer

or autoimmunity this is an increasing clinical problem. Given the

potential importance of miRNAs in the innate immune response,

we carried out a comparison of the ability of a fungal PAMP, heat

killed Candida albicans, and LPS, a component of Gram –ve bacterial

cell walls, to induce miRNA genes and examined the signaling

pathways that regulate their transcription.

Results

To determine if fungal ligands were able to up-regulate miRNAs,

murine bone marrow derived macrophages (BMDMs) were

stimulated with heat killed C. albicans for 16 hours. RNA was

isolated from both un-stimulated and stimulated cells and miRNA

expression profiled on arrays (LC Biosciences). The experiment was

performed in triplicate using independent cultures from three

different mice. Of the 617 miRNAs on the chip, 366 were detected

on at least 2 of the 6 arrays performed. Analysis of the relative

expression of these miRNAs before and after stimulation with heat

killed C. albicans showed that the expression of most of these was

unaffected by treatment. Only 2 miRNAs, miR-155 and miR-455,

were more than 2-fold up-regulated with a p-value of less than 0.05

(Table 1). A parallel experiment using LPS as a stimulus also gave

relatively small numbers of significantly up-regulated miRNAs.

With LPS only 4 miRNAs, miR-155, miR-125-5p and 3p and miR-

146a, showed greater than 2-fold up-regulation on the two arrays

with a p value of less than 0.05 (Table 2). Both miR-146b, which has

previously been shown to be up-regulated in macrophages and

miR-455 were also up-regulated in this experiment, however their p

values were 0.16 and 0.10 respectively.

To extend the results from the array experiment, the transcrip-

tional regulation of miR-125-5p and 3p, miR-155, miR-146a, miR-

146b and miR-455 by either heat killed C. albicans or LPS was

examined using Taqman qPCR based methods, in samples from

BMDMs generated independently from those used for the array

studies. Stimulation of BMDMs with LPS resulted in a gradual

increase over 24 h in the levels of mature miR-125a-3p and 5p,

miR,-146a, mir-146b and miR-155 following LPS stimulation

(Fig. 1A). Consistent with this, up-regulation of the primary

transcripts was also seen for these miRNAs in response to LPS,

although this was more rapid for the pri-miRNA transcripts than for

the mature miRNA (Fig. 1B). Both pri- and mature miR-455 were

also up-regulated by LPS, however in contrast to the other miRNAs

tested the up-regulation of the mature miR-455 was faster and more

transient than for the other pri-miRNAs tested (Fig. 1A & B).

In response to heat killed C. albicans miR-155 and miR-455 were

the most highly up-regulated of the miRNAs tested. However,

while the fold up-regulation of miR-455 was similar between LPS

and heat killed C. albicans, LPS gave a much higher fold

stimulation of miR-155 than heat killed C. albicans (150 compared

to 7 fold). Heat killed C. albicans also caused a modest up-

regulation of miR-125a, mirR-146a and miR-146b (Fig. 2A). The

Table 1. miRNAs up-regulated by heat killed Candida
albicans treatment of BMDMs.

miRNA ID Fold induction p value

mmu-miR-155 157.59 0.005

mmu-miR-455 3.01 0.009

mmu-miR-148b 1.71 0.019

mmu-miR-135a* 1.68 0.049

mmu-miR-125a-5p 1.60 0.063

mmu-miR-146a 1.56 0.097

mmu-miR-125a-3p 1.54 0.092

mmu-miR-192 1.52 0.061

mmu-miR-192 1.52 0.061

mmu-miR-139-5p 1.5 0.042

Microarray analysis was carried out by LC Sciences on BMDMs either treated
with heat killed C. albicans for 16 h or left untreated. Average fold induction
and p values were obtained from analysis of triplicate experiments. The miRNAs
that showed a fold change greater than 1.5 and p value of ,0.01 are
represented.
doi:10.1371/journal.pone.0013669.t001

Table 2. miRNAs up-regulated by LPS treatment of BMDMs.

miRNA ID Fold induction p value

mmu-miR-155 229.13 0.047

mmu-miR-125a-3p 7.89 0.095

mmu-miR-125a-5p 2.58 0.066

mmu-miR-146a 2.25 0.042

mmu-miR-99b 1.61 0.043

Microarray analysis was carried out by LC Sciences on BMDMs either treated
with heat killed C. albicans for 16 h or left untreated. Average fold induction
and p values were obtained from analysis of duplicate experiments. The miRNAs
that showed a fold change greater than 1.5 and p value of ,0.01 are
represented.
doi:10.1371/journal.pone.0013669.t002

Macrophage miRNA Transcription
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levels of pri-miR-146a and pri-miR-125a were also increased by

heat killed C. albicans treatment. While there was a trend for a

small increase in pri-miR-146b, this did not reach statistical

significance (p.0.05, 2 tailed students t-test).

Of the miRNAs examined, miR-146a is located in an intragenic

region, while the others are encoded within or adjacent to annotated

genes (Fig. 3A). miR-455 is encoded in intron 10 of the Col27a1

gene. Similar to miR-455, Col27a1 mRNA transcription was

induced by both LPS and heat killed C. albicans (Fig. 3B). miR-146b

is potentially located within the Tmem180 gene in mice. Two

alternate transcriptional start sites, resulting in two alternate 1st

exons, have been annotated for this gene. miR-146b is located in the

1st intron downstream of the distal 1st exon (Fig. 3A). Analysis of

Tmem180 mRNA levels with primers located in exon 4 indicated

that this gene was transiently repressed in response to LPS but not

affected by heat killed C. albicans, suggesting that miR-146b is

transcribed independently to Tmem180 in macrophages (Fig. 3C).

miR-125a is located in the 59 region of a putative protein-encoding

gene, Ncrna00085 (Fig. 3A). While several potential 59 exons are

predicted for Ncrna00085, miR-125a was found to span the 39

splice site of the 1st annotated exon. In addition two further

miRNAs, miR-99b and let-7e are located within a 1kb region

upstream of miR-125a (Fig. 4A). In contrast to miR-125a, LPS did

not up-regulate the levels of either miR-99b or let-7e (Fig. 4B),

suggesting that they were regulated independently of miR-125a.

RT-PCR with primers in the potential 1st exon and 2nd exon of

Ncrna00085 was able to amplify a product, which on sequencing

was found to correspond to the expected mRNA sequence for

Figure 1. LPS stimulates the transcription of miR-155, miR-455, miR-146 and miR-125a. BMDMs were isolated from C57/Bl6 mice. Cells
were stimulated with 100 ng/ml of LPS for the indicated times. Cells were then lysed and total RNA isolated as described in the methods. (A) The
levels of miR-155, miR-455, miR-146a, miR-146b, miR-125a-5p (grey bars) and miR-125a-3p (black bars) were determined by a Taqman based Q-PCR
(Applied Biosystems). 18S levels was used to normalise the amount of RNA in the reaction. (B) The levels of pri-miR-155, pri-miR-455, pri-miR-146a, pri-
miR-146b and pri-miR-125a were determined by Q-PCR. 18S was used as a loading control. Error bars represent the standard deviation of
independent stimulations cultures from 4 mice.
doi:10.1371/journal.pone.0013669.g001

Macrophage miRNA Transcription
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splicing of these exons (data not shown). Q-PCR with these primers,

or with primers internal to either the 1st intron or exon 9 of

Ncrna00085 showed that Ncrna00085 was induced in response to

either LPS or heat killed C. albicans (Fig. 4C, data not shown).

MAPK signaling contributes to miRNA up-regulation in
macrophages

In macrophages, both the MAPK and NFkB signaling pathways

are known to be important for the transcriptional regulation of

many genes that are induced in response to PAMPs. LPS is well

established to activate the p38, ERK and JNK MAPK signaling

cascades as well as the canonical NFkB pathway. In BMDMs, heat

killed C. albicans was also able to activate the ERK1/2 and p38

MAPK pathways, as shown by immunoblotting for phosphoryla-

tion of the TXY motif in the MAP kinase activation loop (Fig. 5A–

B). Little or no activation of JNK was observed following

treatment with heat killed C. albicans. NFkB signaling was also

activated by heat killed C. albicans as indicated by the loss of the

inhibitory IkB protein and phosphorylation of the p105 NFkB

subunit (Fig. 5A). Additionally, Q-PCR also showed that

transcription of the NFkB dependent gene IkBa was stimulated

by heat killed C. albicans (Fig. 5C). The induction of IkBa mRNA

Figure 2. Heat killed Candida albicans stimulates the transcription of miR-155, miR-455, miR-146 and miR-125a. BMDMs were isolated
from C57/Bl6 mice. Cells were stimulated with 106 cells/ml of heat killed C. albicans for the indicated times. Cells were then lysed and total RNA
isolated as described in the methods. (A) The levels of miR-155, miR-455, miR-146a, miR-146b, miR-125a-5p (grey bars) and miR-125a-3p (black bars)
were determined by a Taqman based Q-PCR (Applied Biosystems). 18S levels were used to normalise the amount of RNA in the reaction. (B) The levels
of pri-miR-155, pri-miR-455, pri-miR-146a, pri-miR-146b and pri-miR-125a were determined by Q-PCR. 18S was used as a loading control. Error bars
represent the standard deviation of independent stimulations cultures from 4 mice.
doi:10.1371/journal.pone.0013669.g002

Macrophage miRNA Transcription
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was blocked by the IKKb inhibitors BMS-345541 [16] or BAY65-

1942 [17] (Fig. 5D).

To examine the involvement of MAPK signaling in the

transcription of the selected miRNAs, BMDMs were pretreated

with PD184352, an inhibitor of MEK1/2 that blocks ERK1/2

activation or SB203580, a p38a/b inhibitor [18]. PD184352 has

been previously shown to block LPS induced ERK1/2 activation

[34] and is also able to block ERK1/2 phosphorylation in

response to heat killed C. albicans (Fig. 5B). Similarly SB203580

was able to inhibit the phosphorylation of the p38a substrate MK2

following heat killed C. albicans stimulation (Fig. 5B). BMDMs were

also pre-treated with SP600125, a compound that inhibits JNK.

SP600125 is however not completely specific for JNK and can

inhibit several other protein kinases [18]. It is therefore difficult to

use SP600125 to demonstrate a role for JNK, however the lack of

an effect of SP600125 can be used to exclude a role for JNK. As

SP600125 did not significantly affect any of the miRNAs tested,

this would suggest that their transcription is independent of the

JNK pathway. The induction of pri-miR-155, pri-miR-455 and

pri-miR-146a was not reduced by pre-treatment with PD184352,

SB203580 or a combination of both PD 184352 and SB203580

indicating that the initial induction of these miRNAs in response to

LPS was independent of MAPK signaling (Fig. 6A). Unexpectedly

SB203580 did result in a small increase in pri-miR-155, and to a

lesser extent, pri-miR-455 levels. Similar trends were found after

24 h of LPS stimulation (data not shown) or following 4 h of

stimulation with heat killed C. albicans, although the increases in

pri-miR-155 and pri-miR-455 levels caused by SB203580

treatment were more pronounced following C. albicans treatment

compared to LPS (Fig. 6B). A second difference between LPS and

C. albicans was that pri-miR-146a induction was reduced by a

combination of PD184352 and SB203580 following heat killed C.

albicans but not LPS stimulation. LPS induced pri-miR-146b

expression was however slightly reduced by SB203580 and greatly

reduced by PD184352 (Fig. 6A). pri-miR-125a induction by LPS

was also slightly decreased by pretreatment with either SB203580

or PD184352, but was greatly reduced by a combination of both

PD184352 and SB203580. A similar trend on pri-miR-125a

Figure 3. miR-146b, mir-155, miR-455 and miR-125a are located in annotated genes. (A) The locations of the miRNA are shown relative to
the genes in which they are contained. The structure of the genomic loci are shown, with coding exons shown by filled boxes and non-coding exons
by open boxes. miR-155 is located in the exon of the non-protein coding BIC gene, while miR-146b and miR-455 are encoded in the introns of
Tmem180 and Col27a1 respectively. miR-125a is located 59 to the Ncrna00085 transcript. ESTs suggest that a further exon (hatched box), containing
miR-125a, exists upstream of Ncrna00085. (B) BMDMs were stimulated with 100 ng/ml of LPS (upper panel) or 106 cells/ml heat killed C. albicans (CA,
lower panel) for the indicated times. Cells were then lysed and total RNA isolated as described in the methods. The levels of mRNA for Col27a1 were
determined by Q-PCR. Error bars represent the standard deviation of stimulations from 4 independent cultures. (C) As (B) except that the levels of
Tmem180 using primers spanning exons 3 to 4 were measured.
doi:10.1371/journal.pone.0013669.g003
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transcription was obtained following heat killed C. albicans

stimulation (Fig. 6B), although the degree of inhibition by either

PD184352 or SB203580 was greater following heat killed C.

albicans than LPS stimulation.

NFkB is required for LPS and Candida albicans induced
miRNA induction

Both LPS and heat killed C. albicans activate the NFkB pathway

in macrophages. NFkB has been implicated in the induction of the

transcripts encoding miR-155 and miR-146a [6,19]. To determine

the importance of NFkB in the induction of the selected primary

miRNAs, BMDMs were pretreated with the IKKb inhibitors

BMS345541 or BAY65-1942. Both the LPS and heat killed C.

albicans stimulated transcription of pri-miR-155, pri-miR-455, pri-

miR-146a and pri-miR-125a as well as the LPS induced

transcription of pri-miR-146b were reduced by pretreatment with

the IKKb inhibitors, suggesting that IKKb plays a critical role in

the induction of these miRNAs (Fig. 7A and B). Consistent with

pri-miR-125 and pri-miR-455 being co-transcribed with

Ncrna00085 and Col27a1 respectively, the induction of both

these mRNAs was also blocked by IKKb inhibitors (data not

shown). For pri-miR-155, pri-miR-455 and pri-miR-146a this

would suggest that NFkB plays a direct role in the transcription of

these miRNAs. However, for pri-miR-125a and pri-miR-146b the

situation is less clear, as IKKb is involved in the activation of

ERK1/2 in response to LPS, and induction of these miRNAs is

reduced by inhibitors of the ERK1/2 pathway (Fig. 6). In response

to TLRs, the ERK1/2 – MKK1/2 cascade is activated by the

upstream kinase Tpl2. Tpl2 is normally held in an inactive

complex with p105, a member of the NFkB family. Activation of

Figure 4. Regulation of the miR-125a locus. (A) A schematic diagram of the genomic locus encoding miR-125a is shown. Pri-mir-125a is located
upstream of the 1st exon of Ncrna00085 (black box), overlapping with an EST (CA465266, grey box). Two further miRNAs, miR-99b and let-7e. The
position of the primer sets used to amplify regions of this locus are indicated. (B) BMDMs were stimulated with 100 ng/ml LPS for 16 h. Total RNA was
isolated and the levels of mirR-99b, let-7e and miR-125a-3p determined by Q-PCR. Error bars represent the standard deviation from 4 independent
cultures. (C) BMDMs were stimulated with 100 ng/ml LPS for the indicated times. Total RNA was isolated and the levels Ncrna00085 intron 1 and exon
9 determined by Q-PCR. Error bars represent the standard deviation from 4 independent cultures.
doi:10.1371/journal.pone.0013669.g004
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Tpl2 requires the phosphorylation of p105 by IKKb, which allows

dissociation of the complex [20,21]. Thus IKK inhibitors can

block LPS or heat killed C. albicans stimulated ERK1/2 activation

in macrophages (Fig. 7C). Neither inhibitor affected the activity of

p38, as judged by phosphorylation of the p38 substrate MK2. As

PD184352 reduced, but did not block, the induction of pri-miR-

125a we were able to test the ability of IKKb inhibitors to inhibit

pri-miR-125a transcription when ERK1/2 activation was blocked

by PD184352. This demonstrated that any residual pri-miR-125a

induction in the presence of PD184352 was still blocked by the

IKK inhibitors, indicating that IKKb plays a role in miR-125a

transcription independent of its ability to regulate ERK1/2

activation (Fig. 7D).

IL-10 modulates miRNA production in macrophages
For both miR-155 and miR-146, their most likely role in

macrophages is to act as a negative feedback mechanism to limit

inflammatory signaling. IL-10 is an anti-inflammatory cytokine,

which can limit inflammatory signaling in macrophages by

inducing the STAT3 dependent transcription of anti-inflammato-

ry genes [22]. Previous studies have shown that for several protein

encoding genes, IL-10 can synergistically induce their transcrip-

tion in combination with LPS [23]. We therefore tested the effect

of IL-10, either alone or with LPS, on pri-miRNA transcription in

BMDMs. Both pri-miR-146a and pri-miR-146b could be induced

by IL-10 alone, however there was no major synergistic effect with

LPS (Fig. 8A). IL-10 was a weak activator of pri-miR-125a

transcription and there was no synergistic effect with LPS (Fig. 8A).

In contrast, while IL-10 alone was a relatively weak stimulus for

pri-miR-455 transcription, a combination of both IL-10 and LPS

resulted in a much greater stimulation of pri-miR-455 than either

LPS or IL-10 alone at 1 h, although this synergistic effect of LPS

and IL-10 was not seen at 6 h (Fig. 8A). IL-10 alone had little

effect of pri-miR-155 transcription, and did not affect LPS induced

pri-miR-155 levels at 1 h, although at 6 h exogenous IL-10 was

able to repress LPS induced pri-miR-155 levels (Fig. 8A). LPS

stimulates IL-10 production from macrophages, and the released

IL-10 can act on the macrophages in an autocrine manner. The

Figure 5. Heat killed Candida albicans stimulates ERK1/2, p38 and NFkB. (A) BMDMs were stimulated for the indicated times with 106 cells/ml
heat killed C. albicans. Cells were lsyed in SDS sample buffer and the levels of phospho ERK1/2, total ERK1/2, phospho p38, total p38, phospho JNK,
phospho p105 and total IkB were determined by immunoblotting. (B) BMDMs were incubated with 2 mM PD184352 or 5 mM SB203580 as indicated
for 60 min prior to stimulation with 106 cells/ml heat killed C. albicans for 60 min. Cells were lsyed in SDS sample buffer and the levels of phospho
ERK1/2, total ERK1/2, phospho p38, total p38 and phospho MK2 were determined by immunoblotting. (C) BMDMs were stimulated with 106 cells/ml
heat killed C. albicans. Total RNA was isolated and the levels of IkBa mRNA determined by Q-PCR. Error bars represent the standard deviation from 4
independent cultures. (D) Where indicated BMDMs were treated with 15 mM BMS 345541 or 10 mM BAY 65-1942 for 1 h. Cells were then stimulated
with 106 cells/ml heat killed C. albicans for 4 h, and IkB levels determined by Q-PCR. Error bars represent the standard deviation from 4 independent
cultures.
doi:10.1371/journal.pone.0013669.g005
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LPS induced transcription of the pri-miR-155 was therefore

measured in BMDMs from IL-10 knockout mice. At early time

points following LPS stimulation, miR-155 levels were similar in

wild type and IL-10 knockout cells, however at 16 and 24 h of LPS

stimulation, IL-10 knockout cells expressed higher levels of pri-

miR-155 (Fig. 8B).

Discussion

We show here that miR-155, miR-146a, miR-146b, miR-125a

and miR-455 can be up-regulated by the TLR4 agonist LPS as

well as by heat killed C. albicans which most likely signals via a

combination of TLRs and the C-type lectin dectin-1 [24,25]. The

heat killed yeast from of C. albicans was used in this study. In vivo it

is normally the hyphal form of the fungus which is invasive. This

coupled with the fact that the heat treatment may modify the cell

wall structure, means that the ligands exposed on the surface of the

heat killed C. albicans will not be completely identical to those seen

in an in vivo infection. The induction of miR-155, miR-146a and

miR-146b has been shown previously in response to viral and

bacterial mimics that stimulate via a variety of TLRs [6,7,8,10,11],

however this is the first study to look at their induction by fungal

ligands. The regulation of miR-125a and miR-455 in response to

either of these stimuli has not previously been examined.

Of the tested miRNAs, only miR-146a was located in an

intragenic region. It has been shown that some intronic miRNAs

are co-transcribed with the gene that contains them. miR-455 is

encoded within an intron of the Col27a1 gene, which encodes type

XXVII collagen. Similar to pri-miR-455, Col27a1 transcription

was induced by LPS or heat killed C. albicans. This would be

consistent with the processing of miR-455 from the intron of the

Col27a1 transcript. miR-125a is located adjacent to Ncrna00085,

and the regulation of pri-miR-125a and Ncrna00085 by LPS or

heat killed C. albicans was similar suggesting they are co-

transcribed. The function of Ncrna00085 is unknown; while it

contains a potential open reading frame it is not clear if it is

translated in vivo. An unusual feature of this locus is that pri-miR-

125 actually overlaps an intron exon boundary, suggesting that

processing of the miRNA would occur in competition with splicing

of the mRNA. miR-125a is located in the genome within 1 kb of

miR-99b and let-7e. In BMDMs no significant up-regulation of

either miR-99b or let-7e in response to LPS or heat killed C.

albicans was observed in this study. In contrast, a recent report

showed that LPS could up-regulate let-7e in peritoneal macro-

phages and that this was dependent on Akt1 activity [26]. The

reason for that difference is not clear, but could relate to the source

of macrophages. In this respect it should be noted that LPS is only

a weak activator of the Akt pathway in BMDMs (data not shown),

Figure 6. Effect of MAPK inhibitors on the transcription of miR-155, miR-455, miR-146 and miR-125a. (A) BMDMs were treated for 1 h
where indicated with 2 mM PD 184352, 5 mM SB203580 or 10 mM SP 600125. Cells were then stimulated with 100 ng/ml LPS for 1 h and total RNA
isolated. The levels of pri-miR-155, pri-miR-455, pri-miR-146a, pri-miR-146b and pri-miR-125a were determined by Q-PCR. 18S levels were used as a
loading control. Error bars represent the standard deviation of independent stimulations on cultures from 4 mice. (B) As (A) except that cells were
pretreated for 1 h with 2 mM PD 184352 or 5 mM SB203580 were indicated and then stimulated with 106 cells/ml heat killed C. albicans for 4 h. For
comparison of LPS or C. albicans alone relative to inhibitor treated conditions, p values of less than 0.05 are indicated by * and less than 0.01 by
** (students t-test).
doi:10.1371/journal.pone.0013669.g006
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and that cell type specific differences in response to LPS have been

described for another miRNA, miR-132 [27].

All 5 of the tested pri-miRNAs were found to require NFkB for

their induction in response to LPS or heat killed C. albicans. The

transcription of miR-455 and miR-125a has not previously been

studied in immune cells, while miR-146 has been reported to be an

NFkB target gene. In humans, pri-miR-155 is encoded in the non-

coding BIC gene [11], and potential AP-1 and NFkB elements

have been identified in the promoter of this gene which are

conserved in mice [11,19,28]. In B cells, transcription of BIC

following stimulation of the B cell receptor has been shown to

require the AP-1 elements in it’s promoter [28]. AP-1 is a dimeric

complex that can be formed from Jun or fos family members

(reviewed in [29,30]). AP-1 activity can be regulated by MAPK

signaling – either via the transcriptional induction of immediate

early genes such as c-fos and junB or via the direct phosphory-

lation of the AP-1 complex downstream of MAPK signaling. We

find that in response to LPS, MAPK signaling does not directly

regulate pri-miR-155 transcription, suggesting that regulation of

AP-1 activity by LPS is not the major mechanism for inducing

miR-155 production in macrophages. Our data does not rule out a

requirement for AP-1 for basal miR-155 transcription in

Figure 7. Effect of IKKb inhibitors on the transcription of miR-155, miR-455, miR-146 and miR-125a. (A) BMDMs were treated for 1 h
where indicated with 15 mM BMS 345541 or 10 mM BAY 65-1942. Cells were then stimulated with 100 ng/ml LPS for 1 h and total RNA isolated. The
levels of pri-miR-155, pri-miR-455, pri-miR-146a, pri-miR-146b and pri-miR-125a were determined by Q-PCR. 18S was used as a loading control. Error
bars represent the standard deviation of independent stimulations cultures from 4 mice. (B) As (A) except that cells were stimulated with 106 cells/ml
heat killed C. albicans for 4 h. (C) Where indicated BMDMs were pretreated with 2 mM PD 184352, 10 mM BAY 65-1942 or 15 mM BMS 345541 as
indicated. Cells were stimulated with 100 ng/ml LPS or 106 cells/ml heat killed C. albicans for 30 min and the levels of phospho ERK1/2, total ERK1/2,
phospho MK2 and phospho p105 were determined by immunoblotting. (D) As (C) except that total RNA was isolated and the levels of pri-miR-125a
determined by Q-PCR. Error bars represent the standard deviation of independent stimulations cultures from 4 mice.
doi:10.1371/journal.pone.0013669.g007
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macrophages. We found however that inhibitors of IKKb, which

block NFkB activation, abolished pri-miR-155 induction by LPS

or heat killed C. albicans suggesting that NKkB may be the main

signaling input downstream of TLRs and dectin-1 that regulate

pri-miR-155 transcription in macrophages.

IL-10 is known to modulate the transcription of many genes that

are induced in response to the activation of PRRs, and to repress

the inflammatory action of macrophages. Of the miRNAs tested,

IL-10 alone was able to induce pri-miR-125a, pri-miR-146a and

pri-miR-146b, however there was no synergy with LPS. IL-10 did

however have a synergistic effect with LPS on pri-miR-455

induction, however this appeared to be restricted to early time

points. In contrast, LPS induced pri-miR-155 transcription at later

time points was inhibited by IL-10. In line with this, pri-miR-155

levels were higher at later time points after LPS stimulation in IL-

10 knockouts relative to wild type cells. A similar finding has been

published recently [31]. IL-10 represses pro-inflammatory cyto-

kine production by macrophages. While it is possible that IL-10

may have a direct repressive effect on pri-miR-155 transcription, a

2nd explanation could be that prolonged pri-miR-155 expression

may require re-stimulation of the macrophages by pro-inflamma-

tory cytokines in an autocrine manner. This autocrine feedback

would be reduced by IL-10. miR-155 induction by TLR4 has

recently been shown to be required in Akt1 knockouts [26]. Akt

inhibition reduces IL-10 [32] and so a reduction in the IL-10

autocrine repression of miR-155 may explain the increased miR-

155 levels in the Akt1 knockout.

miR-146 and miR-155 are reported to target proteins that are

involved in inflammatory signaling, including IRAK1, Traf6 and

Myd88, which would suggest that these miRNAs serve to limit the

inflammatory capacity of the macrophages. The effects of these

miRNAs on the activity of macrophages following fungal or

bacterial stimuli would be expected to be similar, and thus the

induction of specific miRNAs may provide a negative feedback

loop to block excessive inflammation following fungal infection.

Interestingly miR-155 has been shown to down-regulate DC-

SIGN, a C-type lectin that recognizes mannose containing

glycoproteins expressed by variety of pathogens including fungi

[33]. It could be speculated that the significantly lower expression

of miR-155 following heat killed C. albicans stimulation rather than

LPS could help play a role in tailoring the macrophage response to

the appropriate pathogen. The targets for miR-125a and miR-455

are not well established. In silico predictions by Target scan (http:/

www.targetscan.org) for miR-125a and miR-455 however suggest

Figure 8. Regulation of miRNA by IL-10. A) BMDMs were stimulated with either 100 ng/ml IL-10, 100 ng/ml LPS or a combination of both IL-10
and LPS for 1 or 6 h. Total RNA was isolated, and the levels of pri-miR-155, pri-miR-455, pri-miR-146a, pri-miR-146b, pri-miR-125a were determined by
Q-PCR. Error bars represent the standard deviation of independent cultures from 4 mice. B) BMDMs were cultured from either wild type (black bars) or
IL-10 knockout (white bars) mice and stimulated with 100 ng/ml LPS for the indicated times. RNA was isolated and pri-miR-155 levels determined by
Q-PCR. Error bars represent the standard deviation of independent cultures from 4 mice per genotype.
doi:10.1371/journal.pone.0013669.g008
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they may target some proteins involved in inflammatory signaling,

including IRF4, MLK2, IL-1 receptor protein 1, OTBU2 and c-

maf, suggesting that these miRNAs may also play a role in limiting

inflammation. Further studies will however be required to

delineate the role of these miRNA is the innate immune system

and their importance in the response to fungal infection.

Methods

Cell culture
Bone marrow derived macrophages (BMDMs) were isolated

from C57Bl/6 mice as described [34]. IL-10 knockout mice have

been described previously [35]. Mice were maintained in

accordance with UK and EU regulations, and work was covered

by an appropriate home office license (60/3923) which was subject

to review by the University of Dundee Ethical Review Committee.

Cells were maintained on bacterial grade plates for 1 week in

DMEM supplemented with 10 % heat inactivated FBS (Sigma),

2 mM L-glutamine, 100 units/ml penicillin G, 100 mg/ml strep-

tomycin 0.25 mg/ml amphotericin (Invitrogen) and 5 ng/ml

rCSF. Adherent cells were then replated on tissue culture plastic

in fresh media and used 24 hours after replating.

Where indicated, cells were incubated in 5 mM SB 203580, 2 mM

PD 184352, 25 mM SP 600125, 15 mM BMS 345541 or 10 mM

BAY 65-1942 for 1 hour before use. Cells were stimulated with

100 ng/ml LPS (Sigma, L6529), 106 cells/ml heat killed C. albicans

(Invivogen) or 100 ng/ml IL-10 (R&D Systems) for the indicated

times. Specificity profiles for these inhibitors have been published,

and the compounds were used at minimum concentration that

completely blocked activity of the target kinase in cells [18].

Microarray
For microarray experiments RNA from BMDMs was isolated

using the microRNeasy mini kits (Qiagen) in line with the

manufacturer’s protocol. Array profiling was carried out by LC

Biosciences. Briefly, control and stimulated samples were labeled

with either Cy3 or Cy5 and hybridised to arrays designed against

murine miRNA in miRBase release 12. Data was analysed using

ArrayPro software. Array data is deposited in GEO under the

accession number GSE21970.

Quantitative RT PCR
RNA was isolated using the microRNeasy mini kits (Qiagen) in

line with the manufacturer’s protocol. For analysis of mRNA or

primary miRNA transcripts, total RNA was reverse transcribed

using iScript (Biorad), and real time PCR carried out using

Sybrgreen based detection methods. Primers for these PCRs are

shown in table 3. For expression analysis 18S was used as a loading

control and fold induction was determined from Ct values using

the equation:

relative mRNA level~
Eu

ctuc{ctusð Þ

Er
ctrc{ctrsð Þ

where E is the efficiency of the PCR, ct is the threshold cycle, u is

the mRNA of interest, r is the reference gene (18S RNA), s is the

sample and c is the unstimulated control sample.

Q-PCR for mature miRNA was carried out using TaqMan

MiRNA assays from Applied Biosystems according to the manufac-

turer’s protocols. 18S levels were used to correct for total RNA levels.

Immunoblotting
Cells were lysed in 1% (w/v) SDS, 10% (v/v) glycerol, 50 mM

Tris–HCl pH 7.5, 1 mM EGTA, 1 mM EDTA, 1 mM sodium

orthovanadate, 50 mM sodium fluoride, 1 mM sodium pyrophos-

phate, 0.27 M sucrose, 1% (v/v) Triton X-100, 0.1% (v/v) 2-

mercaptoethanol. Samples were run on 10 % polyacrylamide gels,

and immunoblotted using standard techniques. Antibodies against

phospho ERK1/2, total ERK1/2, phospho p38, total p38,

phospho JNK, phospho p105, phoshpho MK2 and total IkB

were from Cell Signalling Technology. HP-conjugated secondary

antibodies were from Pierce, and detection was performed using

the enhanced chemiluminescence reagent from Amersham.
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