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Purpose of review

Gitelman syndrome is a recessive salt-wasting disorder characterized by hypomagnesemia, hypokalemia,
metabolic alkalosis and hypocalciuria. The majority of patients are explained by mutations and deletions in
the SLC12A3 gene, encoding the Naþ-Cl�-co-transporter (NCC). Recently, additional genetic causes of
Gitelman-like syndromes have been identified that should be considered in genetic screening. This review
aims to provide a comprehensive overview of the clinical, genetic and mechanistic aspects of Gitelman
(-like) syndromes.

Recent findings

Disturbed Naþ reabsorption in the distal convoluted tubule (DCT) is associated with hypomagnesemia and
hypokalemic alkalosis. In Gitelman syndrome, loss-of-function mutations in SLC12A3 cause impaired NCC-
mediated Naþ reabsorption. In addition, patients with mutations in CLCKNB, KCNJ10, FXYD2 or HNF1B
may present with a similar phenotype, as these mutations indirectly reduce NCC activity. Furthermore,
genetic investigations of patients with Naþ-wasting tubulopathy have resulted in the identification of
pathogenic variants in MT-TI, MT-TF, KCNJ16 and ATP1A1. These novel findings highlight the importance
of cell metabolism and basolateral membrane potential for Naþ reabsorption in the DCT.

Summary

Altogether, these findings extend the genetic spectrum of Gitelman-like electrolyte alterations. Genetic
testing of patients with hypomagnesemia and hypokalemia should cover a panel of genes involved in
Gitelman-like syndromes, including the mitochondrial genome.
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Gitelman syndrome is a recessive salt-wasting disor-
der characterizedbyhypomagnesemia,hypokalemia,
metabolic alkalosis, hypocalciuria and activation of
the renin-angiotensin-aldosterone system (RAAS)
[1,2]. Patients often present in late childhood or early
adulthood with nonspecific symptoms, including
muscle weakness, tetany, hypotension and fatigue
[3,4].Typicalcomplaintsmayalso includesaltcraving
and thirst as a reflection of salt-wasting. Gitelman
syndrome is not a benign condition and may cause
chondrocalcinosis due to hypomagnesemia, pro-
longed QTc interval and arrhythmias due to hypoka-
lemia, glucose intolerance and immunodeficiencies
[5–8]. The diseasewas first described in 1966 byHillel
Gitelman as a subtype of Bartter syndrome [2]. How-
ever, typical Bartter symptoms such as polyhydram-
nios, hypercalciuria, nephrocalcinosis, failure to
thrive and an antenatal presentation are rare inGitel-
man syndrome. Indeed, genetic investigations in the
1990 s revealed that Bartter and Gitelman syndrome
are separate clinical entities [9–13].

Classic Gitelman syndrome is caused by biallelic
mutations in solute carrier 12 subtype 3 (SLC12A3)
is exclusively expressed in the distal convoluted
tubule (DCT) [13]. The NCC facilitates apical Naþ

and Cl� transport in the DCT and is the therapeutic
target of thiazide diuretics. As a consequence of
impaired NCC-mediated Naþ reabsorption in the
DCT, the Naþ delivery to the collecting duct is
increased. Accompanied by RAAS activation, the
high Naþ delivery results in increased Kþ secretion
in the collecting duct explaining the hypokalemia in
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KEY POINTS

� Gitelman syndrome is a Naþ-wasting tubulopathy
explained by reduced activity of the Naþ-Cl� co-
transporter (NCC) in the distal convoluted tubule.

� Patients with pathogenic variants in SLC12A3, MT-TI, MT-
TF, CLCKNB, KCNJ10, KCNJ16, ATP1A1, FXYD2 and
HNF1B may present with a Gitelman-like phenotype.

� Genetic testing of patients with suspected Gitelman-
syndrome should extend beyond SLC12A3 and should
also include the mitochondrial genome.
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Gitelman patients. The metabolic alkalosis develops
secondary to hypokalemia. The hypomagnesemia
is less well understood (extensively reviewed in [14]),
but it is generally thought that a reduced DCT
mass is a major contributor to this defect [15]. How-
ever, human data supporting this hypothesis are
scarce.

In recent years, several seminal discoveries have
been made to resolve the missing heritability in
Gitelman syndrome [16

&

,17
&&

]. This review, there-
fore, provides an overview of all known genetic
causes of Gitelman-like syndromes. The differences
in clinical presentation, genetic inheritance and
molecular disease mechanism will be discussed.
SLC12A3 – CLASSIC GITELMAN

In 1996, Simon et al. [2] described homozygous and
compound heterozygous loss-of-function mutations
in SLC12A3 as cause of Gitelman syndrome. Since
then, 133 pathogenic variants have been described
(ClinVar, February 2022), including deletions, splice
site variants and intronic variants. In most recent
screenings, approximately 75% of patients with a
Gitelman syndrome presentation are diagnosed
with a biallelic mutation in SLC12A3 [18,19]. Of
them, 20–25% have a homozygous pathogenic
variant, 60–70% are compound heterozygous and
�10% have genomic rearrangements (deletion/
duplication), which can be picked up by multiplex
ligation-dependent probe amplification (MLPA) [18].
Homozygousmutationshavebeenassociatedwithan
earlier ageofonset andmore severehypocalciuria ina
Chinese cohort [19]. In contrast, no phenotypic dif-
ferences were reported for genomic rearrangements.

In-depth phenotyping of Gitelman patients
with SLC12A3 mutations has resulted in the iden-
tification of subclinical phenotypes [5,20

&

]. In a
large European cohort, 20% of patients with Gitel-
man syndrome had hypoparathyroidism [20

&

]. As
the parathyroid harmone (PTH) and magnesium
1062-4821 Copyright © 2022 The Author(s). Published by Wolters Kluwe
concentrations were correlated in this cohort, it
has been hypothesized that the hypoparathyroid-
ism is explained by Mg2þ-dependent regulation of
the calcium-sensing receptor [21]. Alternatively, a
positive Ca2þ balance may contribute to hypopar-
athyroidism in Gitelman syndrome. Several studies
reported increased fasting glucose levels and insulin
resistance in Gitelman patients [5,22,23]. In a large
cohort of 77 patients, the insulin response was
almost doubled upon glucose loading, which was
associated with a significant increase of the insulin
resistance index [5]. Indeed, diabetes mellitus has
been reported in one-third of the patients in a
Chinese cohort study [24]. Again, hypomagnesemia
may (partially) explain the insulin resistance in
Gitelman syndrome, as Mg2þ is essential for the
insulin signalling pathway [25,26].

Interestingly, only one pathogenic variant is dis-
coveredin10–15%ofallGitelmanpatients,evenafter
screening for genomic rearrangements [18]. In these
cases,mutationsmay be present in regulatory regions
such as promoters and introns. Moreover, two
patients were reported with a digenic inheritance
pattern consisting of a heterozygous SLC12A3 variant
and a heterozygous CLCKNB variant [27,28]. How-
ever, it should be noted that it has not been conclu-
sively demonstrated that digenic inheritance can
cause Gitelman syndrome. Given that 2–8% of the
population are carriers of one pathogenic SLC12A3
variant and the percentage of carriers of one patho-
genicCLCKNB variantmay be similar, many patients
shouldbeaffectedbysuchaninheritancepattern [29].

Carriers of a single heterozygous pathogenic
variant in SLC12A3 were longtime considered
healthy. However, recent studies have demon-
strated the presence of a subclinical phenotype in
heterozygous carriers [5,30

&&

]. Plasma aldosterone
was slightly increased in carriers of heterozygous
pathogenic SLC12A3 variants [5]. Moreover, heter-
ozygous carriers exhibited a slightly higher plasma
Ca2þ concentration and lower plasma PTH concen-
tration compared with controls. A recent study in
the Old Order Amish population demonstrated that
heterozygous carriers of the pathogenic p.R642G
variant had significantly lower serum potassium
levels than noncarriers [30

&&

]. These clinical findings
are in line with mechanistic studies demonstrating
the close connection of NCC and Kþ regulation,
termed the ‘potassium switch’ [31]. In short, the
potassium switch turns on NCC in response to
low dietary Kþ intake and off in response to high
Kþ intake (Fig. 1) [32,33]. As such, Kþ is currently
considered as the main regulator of NCC activity,
acting as a natural thiazide diuretic [34].

Altogether, these studies demonstrate that com-
mon genetic variants and heterozygous pathogenic
r Health, Inc. www.co-nephrolhypertens.com 509



FIGURE 1. Naþ reabsorption in the distal convoluted tubule. Schematic overview of a distal convoluted tubule cell indicating
all genes and proteins that have been associated with Gitelman syndrome. Naþ enters the cell at the luminal membrane via
the Naþ-Cl� co-transporter (NCC). At the basolateral membrane, Naþ is extruded from the cell by the Naþ-Kþ ATPase. The
ATP production required for Naþ-Kþ ATPase activity is dependent on mitochondrial function. Basolateral recycling of Kþ via
Kir4.1/Kir5.1 channels is essential to drive the Naþ-Kþ ATPase and Cl-extrusion via ClC-Kb Cl� channels. Low intracellular
Cl� concentrations activate an intracellular signalling cascade of WNK and SPAK kinases, which results in phosphorylation of
NCC.
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variants in SLC12A3 may contribute to subclinical
phenotypes in the general population.
MT-TI / MT-TF – MITOCHONDRIAL
GITELMAN

In 2004, Lifton et al. [35] first describedmutations in
the mitochondrial transfer RNA (tRNA) for isoleu-
cine, encoded by the MT-TI gene, in a large family
with renal hypomagnesemia, hypokalemia and
hypocalciuria. Only recently, these findings were
confirmed in 10 additional families with a maternal
inheritance pattern [17

&&

]. A large European collab-
oration demonstrated that mitochondrial DNA
variants in MT-TI and MT-TF are causative for a
Gitelman-like syndrome [17

&&

]. Interestingly, the
MT-TF mutations were also associated with chronic
kidney disease, whereas patients with MT-TI muta-
tions showed a preserved kidney function [17

&&

].
Hypertension and dyslipidemia that were originally
described to be part of the phenotype were not
reported in these additional families, questioning
whether this initial association was correct.

The identification of mitochondrial DNA muta-
tions demonstrated the essential role of mitochon-
dria for renal Naþ reabsorption. The DCT cell is the
most mitochondria-rich cell type within the kidney
in order to meet the high energy demand required
for electrolyte transport [36]. In patient fibroblasts,
510 www.co-nephrolhypertens.com
the identified MT-TI and MT-TF mutations were
demonstrated to reduce mitochondrial function
[17

&&

]. Although the exact mechanisms remain
unclear, pharmacological inhibition of complex
IV, mimicking the effect of the mtDNA variants,
inhibited NCC phosphorylation and NCC-mediated
Naþ uptake [17

&&

]. However, it should be noted that
only specific MT-TI and MT-TF mutations are asso-
ciated with a Gitelman-like phenotype. Particularly,
them.591C>T andm.4291T>C variants are hotspot
mutations. Other MT-TI and MT-TF mutations
also resulting in reduced mitochondrial function
have been associated with other syndromes such
as mitochondrial encephalomyopathy, lactic acido-
sis and stroke-like episodes (MELAS) and myoclonic
epilepsy with ragged-red fibres (MERRF) [37]. Con-
sequently, one may consider additional pathophy-
siological mechanisms such as disturbances in tRNA
modifications or effects of mitochondrial DNA frag-
ments [38,39].
CLCNKB – BARTTER TYPE 3

Although recessive CLCKNB mutations have origi-
nally been described to cause classic Bartter syn-
drome (type 3), a systematic analysis of a large
cohort of patients demonstrates that 25% of all
patients present with a Gitelman syndrome pheno-
type [10,40,41]. In fact, some patients may initially
Volume 31 � Number 5 � September 2022
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show symptoms of Bartter syndrome and develop a
typical Gitelman phenotype in later childhood or
adolescence [42]. Consequently, genetic screening
of patients with a clinical diagnosis of Gitelman
syndrome quite regularly turn out to have CLCKNB
mutations upon genetic screening [43,44]. As large
deletions account for up to 40% of all cases of
Bartter syndrome type 3, testing for structural
variations by MLPA or other means is advised
[41]. Compared with classic Gitelman syndrome,
patients with CLCKNBmutations have generally an
earlier age of initial presentations and slightly
higher serum Mg2þ and urinary Ca2þ concentra-
tions [45,46]. Patients with CLCKNB mutations
may additionally develop chronic kidney disease
(up to 25%), nephrocalcinosis (10–20%) or growth
retardation [41,46].

CLCKNB encodes the ClCKb Cl� channel that is
expressed in the TAL, DCT and collecting duct. Loss-
of-function mutations in ClCKb result in an
increased intracellular Cl� concentration. As Cl�

inhibits WNK kinases, an increased Cl� concentra-
tion causes reduced NCC activity by inhibition of
the WNK-SPAK/OSR1 pathway (Fig. 1) [34,47,48]. A
similar regulatory mechanism of NKCC2 exists in
the TAL, which explains why ClCKb mutations may
result in both Bartter-like and Gitelman-like syn-
dromes [49]. In general, hypochloremia and
increased fractional excretions of Naþ and Cl� are
more severe in Bartter syndrome type 3 than in
Gitelman syndrome, which may reflect that both
TAL and DCT are affected by CLCKNB mutations
[45].
KCNJ10/ KCNJ16 – EAST / SESAME

The acronym EAST/SeSAME syndrome describes a
disease entity with autosomal recessive inheritance
combining epilepsy, ataxia, sensorineural deafness
and renal tubulopathy with/without mental retar-
dation [50,51]. Patients usually present early in
infancy with seizures, developmental delay and
ataxia. The renal phenotype closely resembles Gitel-
man syndrome comprising hypokalemic alkalosis,
hypomagnesemia and hypocalciuria. EAST/SeSAME
syndrome is caused by loss-of-functionmutations in
the KCNJ10 gene encoding the inwardly rectifying
Kþ-channel Kir4.1 [50,51]. In the kidney, Kir4.1 is
predominantly expressed at the basolateral mem-
brane of cTAL, DCT and CNT cells. Here, it forms
heteromers with its close homologue Kir5.1
(KCNJ16). Kir4.1/Kir5.1 potassium channels serve
as a Kþ sensor of DCT cells [14,34] that allow for a
recycling of Kþ to drive Naþ-Kþ-ATPase activity
[32,52]. Uncoupling of this ‘pump-leak mecha-
nisms’ will result in depolarization of the basolateral
1062-4821 Copyright © 2022 The Author(s). Published by Wolters Kluwe
membrane and increased intracellular Cl� concen-
trations, similar to mutations in ClCKb (Fig. 1) [10].
Consequently, the WNK-SPAK/OSR1 signalling cas-
cade is inhibited resulting in reduced NCC activity.

Recently, recessive loss-of-function mutations
have also been described in KCNJ16 leading to a
tubulopathy with deafness [16

&

,53]. Apart from
renal salt wasting and hypokalemia, patients may
present with opposite changes in acid-base metab-
olism that are thought to result from a broader
expression pattern and more diverse tasks of
Kir5.1: In addition to its role in the DCT outlined
above, Kir5.1 also forms heteromers with Kir4.2
(KCNJ15) in the proximal tubule that are critical
for bicarbonate reabsorption and ammonia excre-
tion [54]. However, if distal tubular salt wasting
predominates, patients with KCNJ16 mutations
may present with hypokalemic alkalosis and a Gitel-
man syndrome-like phenotype [16

&

].
ATP1A1/ FXYD2 – NAR-KR-ATPASE
DYSFUNCTION

More than two decades ago, a missense mutation in
FXYD2 encoding the g-subunit of NaþKþ-ATPase
was described in two related families. The index
patients presented with seizures during childhood
and profound hypomagnesemia [55,56]. Laboratory
investigations revealed low serum Mg2þ levels also
in numerous, apparently healthy family members.
In addition, urinary Ca2þ excretion rates were found
to be low, a finding reminiscent of patients present-
ing with Gitelman Syndrome. Later, a careful bio-
chemical workup in members of two additional
families with the identical mutation also revealed
a tendency towards hypokalemia and metabolic
alkalosis. Additional clinical findings in affected
members of these families comprised muscle
cramps, seizures and chondrocalcinosis [55–57].

Members of the FXYD protein family constitute
a third, tissue-specific g-subunit of Naþ-Kþ-ATPase.
FXYD2 is expressed in the distal nephron, especially
in the DCT and connecting tubule [58]. Here, the
FXYD2 g-subunit increases the apparent affinity of
Naþ-Kþ-ATPase for ATP while decreasing its Naþ

affinity providing a mechanism for balancing
energy utilization and maintaining appropriate salt
gradients [59]. Expression studies ofmutant p.G41R-
FXYD2 revealed a dominant-negative effect leading
to a retention of the g-subunit in the Golgi complex
[60].

Recently, also heterozygous de-novo mutations
in the a1-subunit of NaþKþ-ATPase (ATP1A1) have
been described leading to severe hypomagnesemia
due to renal magnesium wasting [61]. Affected chil-
dren presented in infancy with seizures that were
r Health, Inc. www.co-nephrolhypertens.com 511



Table 1. Overview of Gitelman(-like) sydromes

Gene Protein Disease OMIM Inh. Onset Mg2þ Kþ HCO3
� FECa2þ RAAS Other symptoms Ref

SLC12A3 NCC Classic Gitelman
syndrome

263800 R Childhood
Adolescence

# # " # " Chondrocalcinosis [1,2,13,46]

MT-TI Mitochondrial
tRNA-Ile

Mitochondrial
Gitelman
syndrome

M Adult # # ¼/" # ¼/" [17
&&

,35]

MT-TF Mitochondrial
tRNA-Phe

Mitochondrial
Gitelman
syndrome

M Childhood
Adult

# # ¼/" # ¼/" CKD [17
&&

]

CLCNKB ClCKb Bartter
syndrome
type III

607364 R Neonatal
Childhood

#/¼ # " #/¼/" " CKD [10,45,46]

KCNJ10 Kir4.1 SESAME / EAST
syndrome

612780 R Neonatal # # " # " Epilepsy, ataxia,
sensorineural
deafness

[50,51]

KCNJ16 Kir5.1 619406 R #/¼ # #/" # " Deafness [16
&
,53]

FXYD2 g-subunit of the
Naþ-Kþ-ATPase

154020 D Childhood
Adult

# </¼ ¼/" # Chondrocalcinosis [56,57]

ATP1A1 a-subunit of the
Naþ-Kþ-ATPase

618314 D Neonatal # #/¼ ¼ #/¼/" ¼ Intellectual
disability

[61]

HNF1B HNF1b ADTKD-HNF1B 137920 D Neonatal
Childhood

#/¼ ¼ ¼ # ¼/" CAKUT
MODY5

[66,68]

Molecular cell biology and physiology of solute transport
not responsive to antiepileptic medication and did
not respond to magnesium supplementation.
Unfortunately, all three children developed a sig-
nificant degree of mental retardation and global
developmental delay. In addition, episodes of hypo-
kalemia and elevated bicarbonate levels potentially
indicated renal salt wasting [61].

The a1-subunit ATP1A1 represents the exclusive
a-subunit of NaþKþ-ATPase in kidney. Here, the
DCT represents the tubular segment with the high-
est energy consumption and density of NaþKþ-
ATPase that generates a favourable electrochemical
gradient for transcellular salt and magnesium reab-
sorption. Moreover, the a1-subunit is ubiquitiously
expressed and thought to maintain neuronal house-
keeping functions in the central nervous system
[62]. The ATP1A1 mutations discovered in hypo-
magnesemic children were shown to not only lead
to a loss of ATPase function, but also to result in
abnormal ion permeabilities and leak currents [61].

Whereas in children with ATP1A1 mutations,
the severe neurological phenotype is clearly distinct
from GS; both entities, FXYD2 and ATP1A1, share a
renal GS-like phenotype even though a profound
renal magnesium loss prevails.
HNF1B – ADTKD-HNF1B

Hypomagnesemia and hypocalciuria are common
in patients with heterozygous HNF1b mutations
512 www.co-nephrolhypertens.com
and deletions [63–66]. In a minor group of patients,
these electrolyte disturbances are accompanied by
hypokalemia and metabolic alkalosis [67,68]
(Table 1). In addition, patients with HNF1b nephr-
opathy often present with symptoms beyond a
Gitelman-like phenotype including, but not limited
to, tubule interstitial kidney disease (ADTKD), renal
cysts, renal hypoplasia, hyperuricemia, hyperpara-
thyroidism, maturity-onset diabetes of the young
(MODY5), neurodevelopmental disorders, or genital
and urinary tract malformations [64,69–72].
Approximately 50% of ADTKD-HNF1b patients
develop chronic kidney disease [67,71,73]. HNF1b
defects are therefore among themost commoncauses
of childhood kidney transplantation [74,75]. Inter-
estingly, in some cases, the electrolyte disturbances
might represent the first symptomof the disease [63].
Consequently, the initial diagnosis of HNF1b nephr-
opathy has sometimes been Gitelman syndrome,
until genetic investigations revealed mutations
in the HNF1b gene [43]. Of note, renin-angioten-
sin-aldosterone system (RAAS) activation is scarce
in patients with HNF1b defects, whereas it is one of
the main symptoms of Gitelman syndrome. More-
over, hypertension is present in 22% of children
with HNF1b nephropathy [76]. Gitelman patients
are generally hypotensive compared with healthy
family members, though cases with hypertension
in later life have beendescribed [6,77]. Several reports
noted that young children with HNF1b defects have
Volume 31 � Number 5 � September 2022
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generally higher serum Mg2þ levels than older
patients [63,68,72]. It has, therefore, been proposed
that hypomagnesemia developed later in childhood.
However, Kolbuc et al. [65] recently showed that
serumMg2þ levels are also higher in early childhood
of healthy controls. Consequently, the reference
range of 0.7–1.1mmol/l may not be suitable for
young children, resulting in an underestimation of
hypomagnesemia in early childhood of ADTKD-
HNF1b patients.

In theDCT,HNF1bacts a transcription factor that
regulates the expression of several proteins in the
regulatory pathway towards NCC, including FXYD2
and KCNJ16 [69,78,79]. Potassium channel Kir4.1/
Kir5.1 and theNaþ-Kþ-ATPase activity arebothessen-
tial components of the ‘pump-leak mechanism’ reg-
ulating the membrane potential and basolateral Cl�

transport. Disturbed transcription of FXYD2 and
KCNJ16 thereby results in reduced NCC activity by
the same mechanisms as described above. Clinical
studies confirmed that ADTKD-HNF1b patients have
reduced NCC activity, as indicated by a diminished
response to thiazide [80]. In line with these findings,
NCC expression is decreased in kidney-specific
HNF1b knock-out mice [79].
OTHER GENES

Several other non-Bartter, non-Gitelman syndromes
are associated with salt-wasting, hypomagnesemia
and hypokalemic alkalosis. Although these syn-
dromes are independent of NCC dysfunction and
therefore do not present as classical Gitelman syn-
drome, the presentation of individual patient may
sometimes be, at least partially, similar.

Hypomagnesemia, hypokalemia and metabolic
alkalosis are the cardinal symptoms of patients with
mTOR-activating mutations in RRAGD, encoding a
small Rag GTPase [81]. These patients often present
with nephrocalcinosis and/or cardiomyopathy. As
this disorder is often associated with renal Ca2þ

wasting, it is hypothesized that RRAGD mutations
primarily cause a defect in the TAL [81]. However,
DCT defects cannot be excluded as RRAGD is also
expressed in this segment of the nephron [81].

Impaired transcellular transport in the TAL is
also the cause of salt-wasting in patientwithCLDN10
mutations. Patients suffer from hypokalemic
hypochloremic alkalosis and RAAS activation, but
generally present with hypermagnesemia [82,83].
Additional symptoms of CLDN10 patients include
dysfunctionalsalivary, sweatand lacrimalglands [83].

Hypomagnesemia is frequently associated with
hypokalemia. This effect is generally explained
by the inhibitory effect of Mg2þ on ROMK-mediated
Kþ secretion in the distal nephron [84]. In case of
1062-4821 Copyright © 2022 The Author(s). Published by Wolters Kluwe
Mg2þ deficiency, more Kþ is wasted in the urine
resulting in hypokalemia. Genetic syndromes of iso-
lated hypomagnesemia, for example bymutations in
TRPM6, KCNA1, EGF, CNNM2 or PCBD1 may there-
fore present with transient episodes of hypokalemia
[85–91]. However, these patients are generally with-
out metabolic alkalosis or RAAS activation.
NONGENETIC CAUSES OF GITELMAN-LIKE
ELECTROLYTE ABNORMALITIES

Although it goes beyond the scope of this review to
discuss all noninherited conditions that can mimic
the presentation of Gitelman syndrome, it is impor-
tant to consider alternative causes of Gitelman syn-
drome in clinical practice. In particular, abuse of
diuretics (most notably thiazides) may result in an
identical presentation [92,93]. In addition, chronic
use of proton-pump inhibitors, aminoglycosides or
laxatives is accompanied by hypokalemia and hypo-
magnesemia, although metabolic alkalosis is gener-
ally absent [92]. Other causes of hypokalemia may
include chronic vomiting and primary hyperaldos-
teronism, but the latter condition is associated with
hypertension and a suppressed RAAS [94]. Further
guidance on the clinical workup and treatment of
Gitelman syndrome is provided by KDIGO [1].
CONCLUSION AND PERSPECTIVES

The discovery of SLC12A3 mutations in the 1990 s
established a defective salt reabsorption in the DCT
as the underlying pathophysiology of Gitelman syn-
drome.GeneticheterogeneityofGitelmansyndrome
was first demonstrated by the discovery of CLCNKB
mutations in patients with a typical Gitelman syn-
drome-likephenotype.Sincethen,advances ingenet-
ics have led to the discovery of a growing number of
hereditary disorders that present with the pathogno-
monic Gitelman syndrome signature comprising
hypokalemic alkalosis, hypomagnesemia and hypo-
calciuria. Beyond representing important differential
diagnoses for the molecular screening of affected
patients, these entities not only underline the com-
plex integrative role, but also vulnerability of theNaþ

reabsorption machinery in the DCT. Here, transport
processes are particularly dependent on cellular elec-
trolytehomeostasis, energylevel, respiratorycapacity
and regulatory pathways. This hereditary andpheno-
typiccomplexitywillhavetobetakenintoaccountby
NGS-based analytic techniques as well as genetic
counselling of the affected families. It appears rea-
sonable to assume that future genetic studies will
further expand the spectrum of disorders leading to
defective DCT-mediated salt reabsorption or exhibit-
ing the Gitelman syndrome-triad of hypokalemic
r Health, Inc. www.co-nephrolhypertens.com 513
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alkalosis, hypomagnesemia andhypocalciuria as part
of a more complex phenotype.
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