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Fully analogue photonic reservoir 
computer
François Duport1, Anteo Smerieri1, Akram Akrout2, Marc Haelterman1 & Serge Massar2

Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of 
the art capabilities have already been demonstrated with both computer simulations and physical 
implementations. If photonic reservoir computing appears to be promising a solution for ultrafast 
nontrivial computing, all the implementations presented up to now require digital pre or post 
processing, which prevents them from exploiting their full potential, in particular in terms of processing 
speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. 
The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous 
experiments and only exhibits rather limited degradation of performances. Our experiment constitutes 
a proof of concept for standalone physical reservoir computers.

Reservoir computing is a bio-inspired approach for processing time dependent information1–5. A reservoir com-
puter can be decomposed into three parts, see Fig. 1. The “input layer” couples the input signal into a non-linear 
dynamical system that constitutes the “reservoir layer”. The internal variables of the dynamical system, also 
called “reservoir states”, provide a nonlinear mapping of the input into a high dimensional space. Finally the 
time-dependent output of the reservoir is computed in the “output layer” as a linear combination of the internal 
variables. The readout weights used to compute this linear combination are optimized so as to minimize the mean 
square error between the target and the output signal, leading to a simple and easy training process. On the other 
hand, the values of the internal coupling weights within the input layer and within the reservoir layer are not 
critical, and can be chosen at random up to some global parameters that are tuned to get the best performance.

One of the key advantages of reservoir computers is that, because only the output layer is trained, training 
algorithms are efficient and rapidly converge to the global optimum. This simplicity enables reservoir computers 
to solve a large range of complex tasks on time dependent signals, such as speech recognition6, nonlinear channel 
equalization3,7,8, detection of epileptic seizures9, robot control10, time series prediction1,3, financial forecasting, 
handwriting recognition, etc… , often with state of the art performance. We refer to11–13 for recent reviews.

This simplicity and flexibility has also allowed for a breakthrough in analogue information processing, and 
in particular in optical information processing. The experimental implementations14–30 of reservoir computing 
(most of them optical) often report error rates comparable to the best digital algorithms. Most of these experi-
ments, and in particular those that have been able to tackle the most complex tasks, are based on an architecture, 
introduced experimentally in15 (see also the earlier report31 and the theoretical proposal32,33), consisting of a 
single nonlinear node and a delay line in which the reservoir states are time multiplexed. These experimental 
demonstrations are further complemented by extensive studies in simulation of alternative or improved optical 
implementations34–41.

Despite this intensive research, the potential of reservoir computing in terms of processing easiness and speed 
has not yet been fully considered. In particular, all previous experiments required either digital pre-processing of 
the inputs, or digital post-processing of the outputs, or both (i.e. at least either the input layer or the output layer 
were digitally implemented). This is indeed a major limitation if one intends to use physical reservoir computers 
as versatile and efficient standalone solutions. Moreover, besides the advantages of speed and versatility, a fully 
analogue device would allow for the feedback of the output of the reservoir into the reservoir itself, enabling new 
training techniques42 as well as the exploitation of reservoir computers to new kinds of tasks, such as pattern 
generation3,43.

Note that some steps towards a fully analogue reservoir have already been taken. In our unpublished manu-
script44 we showed how to implement an analogue input layer. In fact an analogue input layer is comparatively 
simpler to implement, as it consists of multiplying the input signal with random weights. The exact values of these 
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weights are not very important, as they can be chosen at random up to some global scaling. Optimisation of the 
input weights has been considered in22,28,40.

The first report of a reservoir computer with an analogue output layer was given in20. This solution was tested 
on a single task, and the results obtained were not as good as those obtained using a digital output. The difficulty 
of constructing an analogue output layer is due to the nature of the computation that needs to be carried out. 
Indeed the output of the reservoir computer is a linear combination, with positive and negative weights, of many 
internal states, which requires a very high computation accuracy. While this accuracy is obtained naturally with a 
digital computer, it is rather challenging to reach it with an analogue integrating device.

In the present work we report the first fully analogue reservoir computer. Our implementation takes as input 
an analogue optical signal, and produces as output an analogue electrical signal proportional to the output 
requested by the task. We thereby prove that the concept of reservoir computing can be entirely implemented by 
means of analogue signals handled by analogue components. This opens up the route to new promising develop-
ments based on high-bandwidth standalone reservoirs as well as feedback loop reservoirs.

In what follows we first introduce the concept of reservoir computer, and then review the optoelectronic 
reservoir exploited in the present work. This reservoir, based on a single nonlinear node and a fibre delay loop, 
was introduced in17,18. In Sec. 4 we describe the analogue input layer that we implemented in the present work on 
the basis of our previous study44. The input mask (i.e. the weights that determine the coupling between the input 
and the reservoir states) is given by the sum of two sine functions which could be easily generated by oscillators 
and should be therefore more suitable for future integration. The analogue output layer discussed in Sec. 5 is an 
improved version of the solution developed in20. In Sec. 6 we study the performance of the fully autonomous res-
ervoir computer on three tasks that are traditionally considered in the reservoir computing community, namely 
NARMA10, nonlinear channel equalization and radar signal forecasting. Finally we discuss the implications of 
our work for the future development of photonic reservoir computing.

Reservoir Computing Basics
A reservoir computer, see11–13 for general presentations, is composed of three layers: an input layer, the reservoir 
itself and an output layer. The input signal is a time series u(n) where n∈  is the discrete time. The internal vari-
ables of the reservoir, also called reservoir states, are denoted xi(n), i = 1,…,N with N the number of internal 
variables. The reservoir is a nonlinear dynamical system that recurrently couples the internal states to each other. 
The input layer distributes the input u(n) to the reservoir states with coupling coefficients that vary for each inter-
nal state. These coefficients, also called the input mask, are often drawn from a random distribution. The fact that 
the input mask coefficients vary enriches the dynamics of the reservoir by breaking the symmetry that would 
occur if the same image of the input would be distributed to all the internal variables. The output layer linearly 
combines the internal variables xi(n) to construct the output y(n) of the system. Whereas in traditional recurrent 
neural networks, all the layers are optimised, the reservoir computing technique proposes to only optimise the 
output layer while the input layer and interconnections within the reservoir are fixed. The optimization of the 
output layer consists in a linear regression, which greatly simplifies the training of reservoir computers. It is thus 
possible to use large reservoirs and obtain processing capabilities as good as with other machine learning 
techniques.

The dynamics (in discrete time) of the internal variables are described by the evolution equation

∑α β=
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Figure 1. Schematic of a reservoir computer. The input u(n) is sent to the reservoir layer by the input layer. 
The reservoir layer is a nonlinear recurrent dynamical system whose internal variables are denoted xi(n). The 
output y(n), produced in the output layer, is a linear combination of the internal variables. Only the linear 
output layer is adjusted during the training phase.
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where the matrix Aij represents the interconnections between the internal variables xi. This matrix is normalized 
so that its largest eigenvalue is equal to one. The vector mi represents the input mask. The two parameters α and β 
are used to adjust the strength of the feedback signals inside the reservoir and the strength of signals injected into 
the reservoir. In digital implementations, the nonlinear function FNL is often taken to be a hyperbolic tangent, but 
many other nonlinear functions are satisfactory (below we use a sine function). The reservoir output y(n) consists 
in a linear combination of the internal variables xi with weights given by the vector Wi, that is,

∑= .y n Wx n( ) ( )
(2)i

i i

The output weights Wi are chosen as follows. For a given choice of parameters α and β, a “training” input 
series u(n) is injected in the reservoir and the internal variables are recorded. One then computes the Wi that 
minimize the Normalized Mean Square Error (NMSE) between the output of the reservoir y(n) and the targeted 
output ŷ(n)
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Finally, the quality of the optimized output is evaluated by means of a “test” input series u(n) injected into the 
reservoir while the coefficients Wi are kept fixed to their computed optimum values.

Optoelectronic Reservoir Layer
The experimental setup is depicted in Fig. 2. In the present section we describe the reservoir layer, and the next 
two sections are devoted to the input and readout layers. Further details on the experimental setup can be found 
in the Supplementary Methods and Supplementary Figure.

The reservoir layer consists of a delay line and a single nonlinear node. Similar systems have been studied 
previously in the general context of nonlinear dynamics, see e.g.45–47. This reservoir layer is essentially identical 
to the optoelectronic reservoir used in17, as well as in18,20,22,26,28,44. For a general overview of reservoir computing 
with delay dynamical systems see48. Such nonlinear dynamical systems with delayed feedback have intrinsically 
continuous time dynamics, while the fundamental equation of reservoir computing equation (1) is expressed in 
discrete time. Here below we will go back and forth between the continuous and the discrete time descriptions 
depending on the context. The correspondence between the two time scales is clearly stated when necessary.

The delay line consists of a spool of optical fibre (~1.7 km of SMF28e). The internal variables xi are time multi-
plexed along the delay line. They are represented by the light intensity that travels along the delay line within fixed 
temporal windows. At the end of the fibre the optical feedback signal is added to the optical input signal injected 
into the cavity by the use of a 50% fibre coupler and converted to a voltage by the feedback photodiode (TTI 
TIA525 with a cut-off frequency of 125 MHz). The resulting signal is then amplified (ZHL-32A amplifier with a 
bandwidth of 50 kHz–130 MHz and a gain of 27 dB) to drive a Mach-Zehnder (M-Z) light intensity modulator 

Figure 2. Schematic of the experimental reservoir computer. The optical input produces the signal that 
must be processed. The input layer multiplies the input signal by the input mask. The reservoir layer is a delay 
dynamical system in which a M-Z modulator acts as non-linearity. The output layer produces an analogue 
electric signal proportional to the desired output. Electric components are in green, optical components in 
red and purple, with purple used for polarization maintaining fibre components (used to avoid the use of 
polarisation controllers) and red for non polarisation maintaining fibre components. AWG denotes Arbitrary 
Waveform Generator; RF amplifier denotes Radio Frequency amplifier; R, L, C denote resistor, inductor and 
capacitor, respectively.
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(Photline MXAN-LN-10 with a bandwidth of 10 GHz). It modulates the light of a DFB laser (Covega DFB laser 
-SFL-1550p-NI- with a wavelength around 1550 nm). The sine response of this M-Z modulator is used as the 
non-linearity of the reservoir (nonlinear function FNL in eq. (1)). During the experiments, the bias point of the 
M-Z modulator is regularly tuned to ensure a proper sine response. In other words, if no signal is applied to the 
RF port of the M-Z modulator, its transparency is at 50%. (Note that in some works18 the bias point of the M-Z is 
considered as a tuneable parameter which allows one to modify the nonlinear function FNL. Here the bias point, 
and hence FNL is kept fixed). At the output of the M-Z modulator, 50% of the light intensity is picked up for the 
readout layer, the remaining 50% is attenuated by a tuneable optical attenuator (Agilent 81571A) before going 
into the optical delay line. This optical attenuator allows adjusting the feedback gain of the cavity (α coefficient in 
eq. (1)). The round-trip time of the cavity is T ≈  8.4 μs. If we omit the constant part of the signal (that is in any case 
filtered out by the amplifier), the dynamics of the system without input can be approximated by

α= − .x t x t T( ) sin( ( )) (4)

In order to carry out computation we drive the cavity with a desynchronised signal as in17. (Note that an alter-
native way to couple the internal variables to each other proposed in15,18 exploits a low-pass filter in the cavity). To 
this end, consider a reservoir of N internal variables. We define the duration θ of each internal variable by the 
relation T =  (N +  k)θ where we recall that T is the round-trip time, and k denotes the degree of desynchronisa-
tion. We convert the discrete time input u(n) into a continuous signal u(t) by a sample and hold procedure for 
duration T’ =  Nθ. Thus in continuous time, the input of the reservoir computer is represented by a step signal 
given by u(t) =  u(n) for ∈ − ′ ′t n T nT]( 1) , ].

The value of the internal variable xi(n) is given by the average value of x(t) in the interval](i - 1)θ +  (n - 1)T’, 
iθ +  (n - 1)T’]. The internal variable xi(n) is set to the input u(n) multiplied by the input mask value mi. In contin-
uous time the input mask is represented by a periodic function m(t) of period T’.

The continuous time dynamics of the driven system can thus be described by

α β= − + .x t x t T m t u t( ) sin( ( ) ( ) ( )) (5)

In discrete time, the variable xi(n) is connected to xi-k(n-1) if i >  k or to xN + i-k(n - 2) if i ≤  k. The correspond-
ing dynamics in discrete time is thus given by
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which is a particular case of equation (1).

Analogue Input Layer
In a reservoir computer based on a delay dynamical system with a single nonlinear node, the input mask mi plays 
a crucial role as it breaks the symmetry of the system, giving each internal variable xi(n) a different dependence 
on the inputs u(n). For this reason the optimisation of the input mask has been the subject of several studies22,28,40. 
In the present implementation the input mask m(t) is introduced independently of the input and is intrinsically 
continuous, which greatly simplifies its hardware implementation.

The optical input signal is generated as follows. A broadband source (superluminescent light emitting diode, 
SLED Denselight DL-CS5254A) is modulated using a Mach Zehnder (M-Z) modulator (Photline MXAN-LN-10) 
to generate an optical signal proportional to the input u(t) of the reservoir computer (see methods for the pre-
compensation). This precompensated input signal is generated by an Arbitrary Waveform Generator (AWG) with 
a sample rate close to 200 MS/s and a resolution of 16 bits (NI PXI-5422). The intensity profile of the optical signal 
sent to the reservoir computer is thus given by

=I t I u t( ) ( ), (7)in 0

where the input has been scaled to belong to the interval u(t)∈ [0,1].
The multiplication by the input mask is achieved with the same sample rate and resolution (200 MS/s and 16 

bits) by another AWG (Tabor WW2074) that drives an additional M-Z modulator (Photline MXAN-LN-10). The 
optical signal after multiplication by the input mask has intensity

= =I t m t I t m t u t I( ) ( ) ( ) ( ) ( ) , (8)in 0

where the mask is scaled to belong to the interval m(t)∈ [0,1], and for simplicity we have not written the insertion 
losses of the M-Z modulator.

A tuneable optical attenuator (Agilent 81571A) is used to adjust the strength of the input signal (β coefficient 
in eqs (1), (5) and (6)). The use of an incoherent light source (the SLED) avoids interferences between the signal 
injected into the cavity and the signal already present in the cavity (which is coherent since it comes from a laser). 
Therefore, at the output of the 50% fibre coupler, the feedback photodiode produces an electrical signal propor-
tional to αx(t −  T) +  βm(t)u(t) (compare with eq. (5)).

Concerning the choice of input mask m(t), we use sinusoidal signals (as in our earlier work44). The simplest 
mask signal of this type would be a single sine at frequency p/T’ with p integer. In this case the AWG produces 
the voltage
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where Vπ is the half-wave voltage of the M-Z modulator. We do not use any precompensation (as it would be 
incompatible with the use of a simple oscillator), which does not affect the system performance44. The operating 
point of the M-Z modulator is adjusted so that the mask is
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Note that the phase of the cosine in equation (9) is chosen in order to ensure that the mask vanishes at times 
t = nT’ when the input u(t) has discontinuities. The signal sent into the cavity is thus a smooth function without 
any discontinuity and the synchronisation between the input signal and the mask is drastically simplified.

With the simple input mask equation (10), the obtained performances depend strongly on the value of p. For 
a good choice of p, the results are close to those we can obtain with a random input mask. However, this is true 
only when the output is postprocessed digitally. When the results are obtained with the experimental analogue 
readout layer they are significantly less good than those resulting from a random mask (we do not have a good 
explanation for this).

The performance is significantly improved when we use an input mask mpq containing two frequencies p/T’ 
and q/T’
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The resulting optical signal fed into the cavity is again null for t = nT’, ensuring continuity. The mask equa-
tion (11) is the one that is used in the experiments reported here below. A trace of the masked input signal is given 
in Fig. 3. Note that it was necessary to scan the values of p and q to get good results.

Analogue Output Layer
General principle of the output layer. The readout layer is in charge of producing the output y(n) of the 
reservoir. It consists of two parts, the first measures the internal states x(t) of the reservoir. The second produces 
the output itself.

As shown in Fig. 2, 30% of the light intensity sent to the reservoir layer is detected by the readout photodiode 
(TTI TIA525). The resulting signal is recorded by a digitizer (NI PXI-5124) at 200 MS/s with a resolution of 12 
bits and a bandwidth of 150 MHz. This signal is used during the training phase to compute the values of the 
internal variables xi(n) and of the readout coefficients Wi (following the method described below). The remaining 
70% of light intensity is modulated by a dual output M-Z modulator (Photline MXDO-LN-10 with 10 GHz of 
bandwidth) using a signal produced by an AWG (Tabor WW2074). The two outputs of this modulator are com-
plementary and detected by a balanced photodiode (TTI TIA527 with a cut-off frequency of 125 MHz and output 
impedance 50 Ω). The bias point of this modulator is regularly tuned to have a sine response. In other words, if no 
signal is applied on the RF port of the M-Z modulator, both outputs have a transparency of 50% and the signal at 
the output of the balanced photodiode is null. If a positive (negative) voltage drives the M-Z modulator, the signal 
at the output of the balance photodiode is positive (negative). The reason for constructing the readout layer in 
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Figure 3. Signals injected into the reservoir layer. The blue curve is the optical input Iin(t) =  I0u(t). The green 
curve is a record of the masked input signal mpq(t)Iin(t) with p =  7 and q =  9, as measured by a photodiode and 
digitizer. The vertical axis is scaled so that its maximum range is [0,1], i.e. I0 =  1.
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this way is that the internal variables are given by the optical intensity inside the reservoir, hence their values are 
positive. But for processing information with the reservoir computer, positive and negative readout coefficients 
Wi are required. Using a dual output M-Z modulator coupled to a balanced photodiode enables us to modulate 
the internal variables by coefficients that are either positive or negative. The signal from the balanced photodiode 
is filtered by a low-pass RLC filter whose role is to carry out an analogue summation of the weighted internal 
variables. The output of the low-pass filter is then amplified before being recorded by the second channel of the 
digitizer (NI PXI-5124). The value of the resulting signal at every instant t =  nT’ is the output of the reservoir y(n).

Computation of the readout coefficients. The balanced M-Z modulator in the output layer is driven 
by a signal produced by an AWG. Using the method described below, one computes a continuous time weight 
function w(t). The signal produced by the AWG is precompensated so that the signal at the output of the balanced 
photodiode is proportional to w(t)x(t).

Denoting by h(t) the impulse response of the RLC filter followed by the amplifier, the signal yc(t) detected by 
the second channel of the digitizer can be expressed as:

∫ τ τ τ τ= ∗ = − .y t w t x t h t w x h t d( ) ( ( ) ( )) ( ) ( ) ( ) ( ) (12)c

Since we use a real (causal) filter, the integration in equation (12) is done over the interval τ∈ ]− ∞ ,t]. The 
continuous time weight function w(t) is a stepwise function of period T’ defined by:

θ θ= ′ + − ≤ < ′ + ≤ ≤ ∈w t W nT i t nT i i N n( ) for ( 1) with 1 and , (13)i

where we recall that θ is the duration of each internal variable. The output of the reservoir computer y(n) is a 
function of discrete time. It is equal to the continuous output yc(t) at time nT’: y(n) = yc(nT’). It can be expressed as

∫∑ ∑ τ τ τ= ′ = ′ − .
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In order to calculate the readout coefficients for the analogue readout layer, new internal variables xi(n) are 
defined by
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In practice, the impulse response of the readout layer has a finite length. Let l be an integer such that the 
impulse response is shorter than lT’ (i.e. h(t) ≈  0 for t >  lT’), the sum over r in equations (14) and (15) can be 
limited to values of r from n-1-l to n-1. Note that since the impulse response lasts longer than T’, the current 
output y(n) contains contributions from the light intensity x(t) up to l input periods in the past, which is a small 
difference with respect to the traditional reservoir computer, see equation (2). In our experiment, for the channel 
equalization task we use l =  10, and for NARMA10 and the radar signal forecasting, l =  15.

At the beginning of the experiment, we record the step response (response to the Heaviside function) of 
the analogue readout layer by applying a voltage step on the dual output M-Z modulator. The derivative of the 
recorded signal is the impulse response h(t) of the analogue readout layer.

Note that a key point to obtain good results is to optimize the extinction of the signal when a readout weight 
equal to zero is applied. Because the two arms of the balanced M-Z have different insertion losses and different 
extinction ratios, the extinction of the signal is not obtained with a null voltage. That is why, after tuning the work-
ing point of the M-Z, we measure the voltage that corresponds to zero readout weight, and take this into account 
when we precompensate the readout mask.

During the training phase, we record the output x(t) of the reservoir using the readout photodiode (first chan-
nel of the digitizer). This record is then combined with the impulse response h(t) of the analogue readout layer 
to compute the new internal variables xi(n) (see eq. (15)). From these internal variables we compute the readout 
weights Wi using Tikhonov (Ridge) regularisation. The corresponding stepwise periodic signal w(t) is normalized 
with the highest absolute value of Wi, so as to fit the maximum modulation capabilities of the analogue readout 
layer. The corresponding gain (the highest absolute value of Wi) is applied on the recorded signal after acquisition 
of yc(t) and finally an offset correction is applied.

Note that the AWG that produces the output signal w(t) has a finite resolution, and therefore exhibits quantifi-
cation noise which degrades the quality of the output yc(t). This effect is minimised if the amplitudes of the Wi are 
all comparable. This can be enforced by increasing the Ridge regularisation parameter. In the present experiments 
we found it useful to take a Ridge regularisation parameter 10 times larger than when we use a digital output layer. 
(Note that the Ridge parameter is generally used to avoid overfitting on a limited training data set. If the data set 
is large enough, and in the absence of the quantification noise, the Ridge parameter should be taken as small as 
possible in order to increase the precision of the output).

The performance of the analogue output layer is obviously dependent on the impulse response h(t), and dif-
ferent tasks work better with different impulse responses. In practice we first tested numerically different choices 
of R, L, and C, and then implemented experimentally those that provide good results. Typical values used are R in 
the range 1.6 kΩ–10 kΩ, C in the range 760 pF to 1.2 nF, with L =  1.8 mH.
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Results
We tested the fully analogue reservoir computer on three tasks commonly considered in the reservoir computing 
community, namely equalization of a nonlinear communication channel, NARMA10, and the forecast of a radar 
signal. We compare the results with those obtained in17 in which a practically identical optoelectronic reservoir 
computer was used, and in the case of the radar task with the all optical reservoir19. Both17 and19 used a similar 
number of internal variables, but without analogue input and output layers.

In all cases we used 47 internal variables, so N =  47 and k =  5. The two frequencies of the input mask p/T’ and 
q/T’, are 7/T’ and 9/T’. Either numerically before the experiment or during the experiment itself, the feedback 
gain (α) and the input gain (β) are scanned in order to find their optimal values. For each set of parameters, 
several datasets are used in the experiment in order to have sufficient statistics. In our experiment, a feedback 
gain α equal to 1 is obtained when the optical attenuator inside the loop is set to 9.5 dB. At this attenuation, when 
no input signal is applied small oscillations appear in the cavity. This corresponds to a maximum optical power 
received by the feedback photodiode (i.e. at maximum transparency of the M-Z modulator inside the loop) of 
264.4 μW. For comparison, the optical signal received by the feedback photodiode when the input is on, and the 
optical attenuator in the input layer is set to 0 dB, is 1.46 mW. When the input of the reservoir belongs to the inter-
val [0,1], the input optical attenuation to obtain a β coefficient of 1 is around 7.4 dB.

It is important to note that we do not carry out any time averaging on the acquired signal yc(t). For this reason 
the output suffers from quantification noise (see discussion below). Moreover, note that because each data set is 
sent to the experiment twice (once to measure x(t) and compute w(t), once to measure yc(t)), the stability of the 
experiment is more important than in experiments with digital postprocessing. To ensure stability, we regularly 
adjust the working points of all M-Z modulators.

Nonlinear channel equalization. The aim of this task is to compensate for the distortion of a wireless 
communication link affected by a small nonlinearity and a memory effect. It was used previously in the reservoir 
computing literature, see e.g.3,33. A sequence of symbols d(n), randomly drawn from the set of values {−3, −1, 1, 
3}, passes through a channel model with inter-symbols interferences (due to multi-path travels and/or band-pass 
filters at the channel ends) followed by a nonlinear transformation:

= . + − . + + + . − − . −
+ . − − . − + . − + . − + . −

= + . − . + .

q n d n d n d n d n d n
d n d n d n d n d n

u n q n q n q n noise

( ) 0 08 ( 2) 0 12 ( 1) ( ) 0 18 ( 1) 0 1 ( 2)
0 091 ( 3) 0 05 ( 4) 0 04 ( 5) 0 03 ( 6) 0 01 ( 7)

( ) ( ) 0 036 ( ) 0 011 ( ) (16)2 3

The signal to noise ratio (SNR) is scanned from 12–32 dB using a step of 4 dB. The input of the reservoir 
computer is the noisy and distorted sequence u(n), while the target output is the original sequence of symbols 
d(n). For each SNR, the quality of the equalization is given by the symbol error rate (SER). We use 5 different 
datasets. For each dataset, the reservoir is trained over 3000 time steps, and then a second sequence of 6000 time 
steps is used to test its performances (evaluate the SER). Results are presented with their corresponding standard 
deviation in Fig. 4. A slight degradation is observed compared to the results obtained in17. The presented results 
are significantly better than those presented in20 (for instance at SNR of 32 dB, a SER of 10−4 compared to 10−2). 
This is due in part to the larger number of internal variables that are used (47 instead of 28), but also to a better 
characterisation of the output layer, and a better choice of the output filter impulse response.

For this task, the feedback optical attenuator is set to 11.25 dB, the input optical attenuator is set to 5 dB, and 
the analogue output layer had parameters R =  1.6 kΩ, C =  1.2 nF, L =  1.8 mH. The measured impulse and step 

Figure 4. Results obtained for the equalization of the nonlinear channel for signal to noise ratios (SNR) 
ranging from 12–32 dB. For each SNR, the symbol error rate (SER) is given with its corresponding error bar 
over 5 datasets. The blue circles are the results obtained with the full analogue reservoir, and the red diamonds 
are the results presented in17 (similar optoelectronic reservoir computer, but without the analogue input and 
output layers).
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responses of the analogue readout layer are given in Fig. 5. A sample of the readout signal y(t) is given in Fig. 6. A 
plot of the readout weights Wi is given in the supplementary material.

NARMA10. The aim of this task is to train a reservoir computer to behave like a 10th order Nonlinear Auto 
Regressive Moving Average system (NARMA10) in which an input u(n), randomly drawn from a uniform distri-
bution over the interval [0,0.5], is injected. The following equation defines the targeted output:

∑+ = . + .





−





+ . − + . .
=

ˆ ˆ ˆ ˆy n y n y n y n i u n u n( 1) 0 3 ( ) 0 5 ( ) ( ) 1 5 ( 9) ( ) 0 1
(17)i 0

9

For this task, the reservoir is trained over a sequence of 1000 time steps and tested over another sequence of 
1000 time steps, this process is repeated 10 times to obtain the statistics. The performance on this task is measured 
using the NMSE. This task is commonly studied in the reservoir computing community, see e.g.33,49.

For this task, the feedback optical attenuator is set to 9.2 dB (i.e. slightly above the threshold for oscillations), 
the input optical attenuator is set to 9.5 dB, and the analogue output layer had parameters R =  10 kΩ, C =  760 pF, 
L =  1.8 mH. The impulse response of the analogue readout layer is given in Fig. 7.

The test NMSE for the all-analogue system is 0.230 ±  0.023. For the sake of comparison note that a reservoir 
that carries out no computation (i.e. produces a time independent output y(n) =  const) has a NMSE =  1, the sys-
tem reported in17 provides a NMSE of 0.168 ±  0.015, an ideal linear shift register (no nonlinearity in the reservoir) 
can reach a NMSE of 0.16, and using a different experimental architecture based on a coherently driven passive 

Figure 5. Impulse and step responses of the analogue readout layer used for the equalization of a nonlinear 
channel. The step response is recorded at the beginning of the experiment. Its derivative gives the impulse 
response of the analogue readout layer. The red cross gives the signal value at T’ =  7.598 μs.

Figure 6. Signal at the output of the analogue readout layer for the nonlinear channel equalization task. 
The time is in number of samples (at 200 MS/s). The black curve is the acquired signal yc(t) with a final gain 
correction (multiplication by the maximum absolute value of the readout weights Wi). The stars are the output 
values yc(nT’) =  y(n). The different colours correspond to the different symbol values.
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cavity a NMSE as low as 0.107 ±  0.012 was reported in30. Note that the all-analogue performance is slightly worse 
than that of the linear shift register but significantly better than a system that carries out no computation.

Radar signal forecasting. This task consists in predicting a radar signal one to ten time steps in the future 
from a radar signal backscattered from the ocean surface (data collected by the McMaster University IPIX radar). 
The quality of the forecasting is evaluated by computing the NMSE between the predicted signal and the actual 
data one to ten time steps in the future. The experiment uses a single recorded radar signal under low sea state 
conditions, corresponding to an average wave height of 0.8 meters (max 1.3 m). The recorded signal has two 
dimensions, corresponding to the in-phase and in-quadrature outputs (respectively, I and Q) of the radar demod-
ulator. Therefore for each dataset, the in-phase and in-quadrature signals are successively processed (predicted) 
by the experiment. The training and test sequences contain 1000 inputs each. This task has been previously used 
to evaluate the performance of reservoir computers, see e.g.33,50. The results are presented in Fig. 8.

For this task, the feedback optical attenuator is set to 9.9 dB, the input optical attenuator varied between 7 and 
10 dB, and the analogue output layer had parameters R =  10 kΩ, C =  810 pF, L =  1.8 mH. The impulse response of 
the analogue readout layer is given in Fig. 9.

Figure 7. Impulse response of the analogue readout layer for NARMA10. The red cross gives the signal value 
at T’ =  7.598 μs.

Figure 8. Radar signal forecasting error (NMSE) with respect to the number of time steps of the prediction 
(one to ten time steps in the future). The blue circles are the results obtained with the fully analogue reservoir, 
the red diamonds are the results published in19 obtained with an all optical reservoir computer with similar 
number of internal variables, but without the analogue input and output layers. The green squares are the 
numerical results of33.

Figure 9. Impulse response of the analogue readout layer used for the radar signal forecasting. The red 
cross gives the signal value at T’ =  7.598 μs.
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Discussion
The novel feature of the experimental reservoir computer presented here is the simultaneous inclusion of ana-
logue input and output layers. The interest of this configuration is that it represents the necessary step towards 
develop standalone reservoir computers for future complex and high-bandwidth applications. The only role of the 
external computer in our experiment is to compute the output weight function w(t).

Concerning the analogue input layer, we proposed the use of sinusoidal functions as input mask, as these will 
be simple to generate in future hardware implementations. Upon using the sum of two sines as input mask, we 
did not observe significant degradation of performance compared to using the standard random step function.

The present analogue input layer is well suited to scalar input signals. However there are many problems in 
which reservoir computers are used to process a vector input signal ui(n). This is for instance the case in the radar 
task of Sec. 6.3 in which both the I and Q channels may be used as input (we used here either I or Q), and in many 
speech recognition tasks where the input consists of several auditory channels. We shall address this issue in 
forthcoming works.

Concerning the analogue output layer whose aim is to produce a linear combination of the internal states that 
yields the desired output, the key difficulty is the accuracy needed in the summation that involves a large number 
of adjustable factors (the output weights).

The results presented here are obtained without any temporal averaging of the recorded signal, which makes 
them sensitive to quantification noise. This is important in our case since the total range of the output signal 
yc(t) is much larger than the range of the outputs yc(nT’) =  y(n), see Fig. 6. In the case of the channel equalisation 
task, which essentially constitutes a classification task, quantification noise is not such a problem since a signal 
that is correctly classified will in general continue to be so if a small amount of noise is added. But in the case of 
NARMA10 and the radar task, we measure the performance by how close the output is to the desired output using 
the NMSE. Quantification noise then directly affects the performances. (Note that the effects of quantification 
noise and methods to counteract it have been studied previously in the context of reservoir computing in22,26).

Quantification noise also affects the readout mask w(t). For this reason the Ridge regularisation parameter was 
optimised in order to minimise the range of w(t), as discussed in section 5.2.

We emphasize that for different tasks, different output filters were used (values of the constants R, L and C). 
We do not have a complete explanation of why the optimal filters are different for each task. In our previous 
experiment20, we used a simpler RC filter. This filter typically has a long impulse response, but on the other hand 
the resulting signal is much smaller, which leads to an increase of the output quantification noise. In the present 
work, we used a second order RLC filter that also exhibits a long impulse response, but keeps a larger signal range.

In summary, we proposed in this work the first study of a fully analogue reservoir computer. At stake is the 
development of future analogue computers dedicated to complex and high-bandwidth signal-processing tasks. 
Due to the added complexity of our experiment, some degradation of performance is naturally observed com-
pared to previous experiments in which the input and output layers were implemented digitally through digital 
pre and post processing. However, the present experiment can be considered as a proof of principle that suggests 
the feasibility of fully standalone reservoir computers. In this sense our work can also be seen as an important step 
towards the development of novel applications in which reservoir computers are cascaded or looped on them-
selves. As emphasized in the above discussion, many technical problems remain to be solved. For instance, to 
circumvent some of the difficulties related to the use of fast-electronics we are currently addressing the possibility 
of implementing an all-optical output layer.
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