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Abstract

The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We
determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous
and nonsynonymous) in the hisA gene, encoding an essential enzyme in the L-histidine biosynthesis pathway of
Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations
and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high
expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the
magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic
conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that
mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the
protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to
which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined
effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness
effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting
in 80% of the mutations predicted within 12% of their observed selection coefficients.
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Introduction
The distribution of fitness effects (DFE) of mutations is of
fundamental importance in understanding major evolution-
ary questions regarding, for example, disease development
(Yue et al. 2005; Eyre-Walker et al. 2006), the maintenance
of healthy population sizes of endangered species (Silander
et al. 2007), and adaptive evolution (Jacquier et al. 2013;
Firnberg et al. 2014; Knight et al. 2015). Fitness landscapes
are vast and have as many dimensions as there are possible
mutations in a system (de Visser and Krug 2014). The effect of
mutations can be classified into three major categories: ben-
eficial, neutral, or deleterious. Beneficial mutations are rare
and tend to be exponentially distributed, whereas deleterious
mutations tend to show a bimodal U-shaped distribution
with most mutations being lethal or close to neutral
(Eyre-Walker and Keightley 2007).

Previous studies have used many different estimates of
fitness. For example, fitness in the presence of antibiotics
(minimum inhibitory concentrations, MIC) have been
assessed, but with limited resolution in the assay as the
reported MIC values have fixed discrete levels (Walkiewicz
et al. 2012; Jacquier et al. 2013). Fitness effects of mutations

in green fluorescent protein (GFP) were measured by over-
expression in a nonnative organism (Escherichia coli), with a
measure of fitness (fluorescence of GFP) not selected for by
evolution in E. coli (Sarkisyan et al. 2016). DNA sequence data
have been used either on only a small region of a single gene
(Hietpas et al. 2011) or a whole genome (Keightley and Eyre-
Walker 2010). The DFE of mutations in a whole genome has
been studied in yeast (Wloch et al. 2001), bacteria (Elena et al.
1998), and viruses with great accuracy (Sanjuan et al. 2004;
Sanjuan 2010), but without explaining the underlying cause(s)
of the observed pattern.

When measuring the DFE of mutations in a protein, it is
important to distinguish between the fitness of the individual
protein and organism fitness (Soskine and Tawfik 2010; Jiang
et al. 2013; Boucher et al. 2016). Thus, organism fitness could
either be correlated or uncorrelated to protein fitness
depending on the experimental set-up and the extent to
which the studied protein is rate-limiting for growth under
the particular study condition. Consequently, it is expected
that the shapes of the DFEs may vary extensively depending
on the sensitivity of the experimental set-up and how rate-
limiting the studied protein is for growth.
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We determined the DFE of a total of 510 unique mutants
in the hisA gene of Salmonella enterica. The DFE was analyzed
in relation to several key determinants of protein function
and the in silico predictability of fitness was assessed by 40
different methods. We also addressed the impact of accumu-
lating mutations on the fitness and studied how epistatic
effect between mutations will affect the fitness as mutations
accumulate. The significance of protein level was studied to
investigate how protein and organismal fitness are related.

Results and Discussion

Experimental System
HisA is an isomerase that catalyzes the fourth step in the
L-histidine biosynthesis pathway, catalyzing N0-[(50-phosphor-
ibosyl)formimino]-5-aminoimidazole-4-carboxamide ribonu-
cleotide (ProFAR) to N0-((50-phosphoribulosyl) formimino)-
5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR)
(fig. 1A). S. enterica HisA was chosen for this study because
of its conditional essentiality and because HisA function can
be experimentally set to limit organism fitness (measured by
growth rate) in a selective environment, that is, growth in
minimal media lacking histidine. Furthermore, the (ba)8 bar-
rel structure is common in enzymes, with �10% of all
enzymes having this structure (Höcker et al. 2001), making
the findings for HisA potentially applicable to many enzymes.
Mutations were introduced by error-prone PCR, resulting in a
small bias toward transversions (48.7%) over transitions
(46.8%), and a small amount of deletions (4.1%) and inser-
tions (0.4%) (supplementary table S1, Supplementary
Material online). The mutagenized gene variants were intro-
duced through k red recombineering at the neutral (i.e., the
insertions had no effect on growth under the tested condi-
tions, data not shown) cobA locus and placed under the
control of a strong constitutive promoter. A total of 510
mutants with 1 to 10 mutations per hisA gene were isolated
and used for further analysis (fig. 1B). Eighty-one of the mu-
tant clones had single amino acid substitutions in HisA and
were chosen for a more detailed analysis under low expression
conditions. This was achieved by placing them under the
control of the inducible L-arabinose promoter (ParaBAD)
and then organism fitness was measured by determining ex-
ponential growth rates in minimal media lacking histidine
(fig. 1C). Selection coefficients were calculated as s¼ relative
growth ratemutant�1 (relative growth ratewild-type). Mutants
with a fitness cost smaller than the growth rate assay resolu-
tion (selection coefficient jsj< 0.05) could not be distin-
guished from wild-type fitness and were further examined
by competition experiments which increased the assay sen-
sitivity by 10-fold (jsj< 0.005).

DFEs for All 510 Mutants
The most common method of presenting DFE data is to bin
the data for plotting in a histogram. Several previous studies
have presented DFE data in this way (Elena et al. 1998;
Sanjuan et al. 2004; Eyre-Walker and Keightley 2007; Peris
et al. 2010; Hietpas et al. 2011; Jacquier et al. 2013; Firnberg
et al. 2014; Knight et al. 2015). However, this requires a

subjective selection of bin width and a starting point that
can affect the appearance of the data (Silverman 1986). To
minimize bias in describing the observed DFE we used a ker-
nel density estimation, a less arbitrary representation of data
(Silverman 1986; Fix and Hodges 1989; Silverman and Jones
1989) (fig. 2A, C, and E).

The DFE of all 510 mutants (containing between 1 and 10
mutations) was bimodal at high expression levels (fig. 2A and
B). Similar distributions have been reported for mutations in
an RNA virus (Sanjuan et al. 2004), TEM-1 b-lactamase
(Jacquier et al. 2013), whole genome mutations in yeast
(Wloch et al. 2001), Hsp90 in yeast (Jiang et al. 2013; Bank
et al. 2014), and the araC, D, and E genes in S. enterica (Lind
et al. 2016). In HisA, the fitness effects of many of the

FIG. 1. Outline of the experiment. (A) HisA catalyzes the fourth step in
the L-histidine biosynthesis pathway, the conversion of ProFAR to
PRFAR. In minimal medium, deletion of hisA is lethal and mutations
in hisA affect the growth rate. (B) Experimental system of this study.
Error-prone PCR (EP-PCR) was used to introduce random mutations
into the hisA gene of Salmonella enterica. The gene was introduced
into the chromosome with k red recombineering by counter selecting
sacB. The fitness of each mutant was measured by relative exponen-
tial growth rate in M9 minimal medium. The relative fitness (s) per
generation was calculated (0 for neutral, positive for beneficial, and
negative for deleterious mutations). (C) Mutated genes with only one
mutation were placed under control of the L-arabinose inducible
promoter ParaBAD and exponential growth rate was measured under
growth limiting concentrations of L-arabinose.
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mutations (44%), were indistinguishable from neutral
(jsj< 0.05), 26% were moderately deleterious and 30% were
lethal. The average fitness costs per each nonsynonymous
mutation calculated from the complete data set (510
mutants) was 20.5% and 10.5%, respectively when including
and excluding lethal mutations (table 1). No beneficial muta-
tions (s> 0.05) could be detected.

DFEs for a Subset of 81 Mutants with Single Amino
Acid Substitution Mutations at High and Low
Expression
When analyzing only the 81 single amino acid substitution
mutations (fig. 2C and D) at high expression levels, the distri-
bution was unimodal with a majority of the neutral muta-
tions, a tail toward highly deleterious mutations and an
average fitness cost of amino acid substitutions of 9.5% and
4.8%, respectively, when including and excluding 4.9% (4/81)
mutations that are lethal (table 1). We hypothesized that the
observed apparent robustness of HisA at high expression (i.e.,
66 out of the 81 [81%] mutants appeared neutral, fig. 2C
and D), was because any reduction in protein activity caused
by the mutation was masked by a high concentration of the
enzyme. Thus, it is expected that a reduction in enzyme
specific activity would not be detectable until the total activ-
ity (specific activity� enzyme concentration) falls below a
certain threshold and only then a change in organism fitness
(growth rate) would be observed. In other words, high ex-
pression can buffer a reduction in protein fitness, leaving the
organismal fitness unaffected (fig. 3).

At high expression levels in our constructed strains, wild-
type HisA total activity is not limiting for growth as compared
with a S. enterica wild-type strain. To assess how protein
fitness correlates with organism fitness, we made the activity
of HisA strongly rate-limiting for growth. To achieve this, a
wild-type copy of hisA was first placed under control of the
L-arabinose inducible promoter ParaBAD and then the growth
rate of cells expressing wild-type hisA at different levels (con-
ferred by varying the amount of the inducer compound
L-arabinose) was measured. The relationship between organ-
ism growth and L-arabinose concentration was sigmoidal
(supplementary fig. S1, Supplementary Material online), and
at expression levels limiting for growth (approximate-
ly� 0.1 mg/ml L-arabinose), changes in protein activity would
directly affect growth rate whereas at high expression levels
(approximately> 0.3 mg/ml L-arabinose), changes in protein
activity would give smaller changes in the growth rate. We
then placed all genes carrying a single nonsynonymous mu-
tation under the control of the same L-arabinose inducible
promoter and measured the growth rate at a concentration
of L-arabinose (0.1 mg/ml, see supplementary fig. S1,
Supplementary Material online) that is limiting for growth
with a wild-type copy of hisA. At this expression level, growth
rate is reduced to 72% compared with the rate at high
expression conditions, and any reduction in specific activity
or concentration of the enzyme would result in a decreased
growth rate. The resulting distribution with limiting expression
(fig. 2E and F) was bimodal with most mutations resulting in
reduced fitness (lethal 9%, deleterious 88.5%) and only a small
fraction being indistinguishable from neutral (2.5%). Under

FIG. 2. Distribution of fitness effects (DFE) of mutations in HisA. (A, C, and E) Data are shown as black dots and their distribution as kernel density
estimation (blue line). The gray shaded areas mark the neutral fitness effects (i.e., fitness effects smaller than the assay resolution) and the red bars
mark s¼ 0. (B, D, and F) Data are represented by histograms with one bar per strain in the order of increasing fitness. Error bars represent the SD of
eight replicates. (A and B) At high expression levels, the distribution of fitness effects for 510 mutants (containing between 1 and 10 mutations) is
bimodal with one mode centered around neutral (s¼ 0) and one at lethal (s¼�1). (C and D) At high expression levels, for mutants with only one
mutation (n¼ 81), the distribution of fitness effects is unimodal centered around neutral. (E and F) At low expression levels, the fitness distribution
of mutants with only one mutation (n¼ 81) is bimodal with one mode shifted toward deleterious effects (s< 0) and one mode at lethal effect.
Mutants with exponential growth rate indistinguishable from wildtype levels (gray-shaded area around s¼ 0) were measured in a direct com-
petition experiment for higher accuracy (yellow shaded area).
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these low-expression conditions the average fitness cost of
amino acid substitutions was 27.2% and 20.4%, respectively,
when including and excluding lethal mutations (table 1).

Comparison of HisA DFE with Other Systems
Below we summarize and compare the mutational effects
in HisA with studies of other experimental systems (see
supplementary table S2, Supplementary Material online).
Since the experimental set-ups differ quite extensively
with regard to, for example, assay sensitivity and the extent
to which the studied function is rate-limiting for growth,
any observed differences could potentially result from

differences in assay conditions (discussed further in the
section Why do DFEs differ in shape and magnitude be-
tween different proteins? below).

Beneficial Mutations
We found no fitness-increasing amino acid substitutions in
HisA. This lack of beneficial mutations has previously been
reported for other proteins, including the enzymes TEM-1
b-lactamase (Jacquier et al. 2013) and AraD (Lind et al.
2016), the fluorescent protein avGFP (Sarkisyan et al. 2016)
and ribosomal proteins S20 and L1 (Lind et al. 2010).

Table 1. Average Fitness Cost per Mutation.

Including Lethal
Mutations (%)

Excluding Lethal
Mutations (%)

Based on all 510 mutants at high
expression level

Both nonsynonymous and synonymous mutations 20.0 6.9
Only nonsynonymous mutationsa 20.5 10.5

Based on 81 single amino acid
substitution mutants

High expression level 9.5 4.8
Low expression level 27.2 20.4

aGiven fitness values assume epistatic effects between mutations and are calculated accordingly.

FIG. 3. Cartoon of the proposed relationship between protein and organism fitness. Blue dots represent the fitness of different mutants of the
same enzyme, measured as protein fitness (left Y-axis) or organism fitness (right Y-axis). The total enzymatic activity (i.e., specific activi-
ty� enzyme concentration) of the wild-type protein (marked with an asterisk) is high enough such that it is not rate-limiting for growth,
that is, there are no effects on organismal fitness (green area). When the total enzymatic activity of the protein falls below a threshold value (line
between green and yellow area), the protein becomes rate-limiting for growth and organism fitness decreases (yellow area). At a protein fitness
level, some mutations have no effect on fitness (neutral; within the gray area), many mutations are deleterious (below the gray area) and
beneficial mutations (above the gray area) are expected to be rare. At an organism fitness level, various intrinsic buffering mechanisms
(illustrated by the blue gradient area extending upward from protein fitness) can mask the effects of mutations. Expression of a surplus of
the protein or regulatory feedback mechanisms can buffer against deleterious mutations, such that mutations that are deleterious for protein
fitness can appear neutral for organism fitness (green area). Mutations with a large effect on the protein fitness, having a deleterious effect on
organism fitness (yellow area), can for small effects on organismal fitness be buffered by the same mechanisms (dots in yellow area with a blue
gradient extending into the green area) resulting in a neutral effect on original fitness (green area). The same applies to mutations lethal to
organismal fitness (red area) that in some cases can be rescued by buffering mechanisms and be measured as strongly deleterious but not lethal
(dots in red area with a blue gradient extending into the yellow area). Similarly, if enough of the protein is already expressed, mutations that are
beneficial on protein fitness are unlikely to be beneficial on organism fitness. In addition, chaperonins that assist in folding of misfolded proteins
can mask the effects of deleterious mutations.
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However, in a study by Firnberg et al. (2014), 7% of the
mutations in the TEM-1 b-lactamase were found to be ben-
eficial. In two other Ara proteins, AraC and AraE, up to 8% of
the mutations were found to be beneficial (Lind et al. 2016).
Beneficial mutations have also been reported in both RNA
and DNA viruses (Sanjuan et al. 2004; Peris et al. 2010), in
Pseudomonas fluorescens (Kassen and Bataillon 2006;
McDonald et al. 2011) and in yeast Hsp90 (Jiang et al. 2013;
Bank et al. 2014), but they are thought to be very rare in
humans (Zhang and Li 2005). Hence, beneficial mutations
have been seen at various challenging conditions, both at
the whole genome and protein levels.

Lethal Mutations
The fraction of lethal mutations in HisA was 9%, similar to
that reported in other bacterial proteins, 4–13% (Soskine and
Tawfik 2010; Jacquier et al. 2013; Firnberg et al. 2014; Lind et al.
2016; Sarkisyan et al. 2016). However, the fraction of lethal
mutations varies extensively between systems as exemplified
by the absence of lethal mutations in ribosomal proteins S20
and L1 in S. enterica (Lind et al. 2010). While in viruses, lethal
mutations can account for up to 40% of the mutations
(Sanjuan et al. 2004).

Neutral Mutations
Regarding neutral mutations, HisA showed a very low fraction
with only 2.5% appearing indistinguishable from wild-type.
This is similar to ribosomal proteins S20 and L1 in S. enterica,
where 5% of the mutations were neutral (Lind et al. 2010).
In other systems, the estimated fraction of neutral muta-
tions for microorganisms is 26–56% (Sanjuan et al. 2004;
Peris et al. 2010; Firnberg et al. 2014; Lind et al. 2016), apart
from ribosomal proteins S20 and L1 from S. enterica, where
only 5% neutral mutations were found (Lind et al. 2010).
The fraction of neutral mutations at the whole genome
level were 4% in enteric bacteria (Charlesworth and Eyre-
Walker 2006), 16% in Drosophila (Eyre-Walker 2002), and
44–57% in humans (Charlesworth 2009; Bataillon and
Bailey 2014).

Why Do DFEs Differ in Shape and Magnitude between
Different Proteins?
Combined these above studies show that the shape and mag-
nitude of the DFE can differ extensively between experimental
systems and species, raising the question of what the under-
lying reasons for these differences are. One important expla-
nation is that the sensitivity of the assay systems used can
vary at least 100-fold between studies (detection of
jsj ¼ 0.005–0.5 depending on study), which obviously can
have a considerable impact on the apparent DFE. For exam-
ple, with a less sensitive assay, the fraction of apparently neu-
tral mutations and the robustness of the system would be
overestimated (i.e., many of the mutations that are classified
as neutral are in fact weakly deleterious or beneficial). Thus, it
is likely that in many studies with limited assay sensitivity, the
fraction of apparently neutral mutations is overestimated.
Furthermore, if the readout of protein fitness is growth

rate, the expression level of the protein studied and the extent
to which it is rate-limiting for growth will have a strong effect
on the shape and magnitude of the DFE. The fitness cost of
varying protein concentration is different between different
proteins (Keren et al. 2016) and as a result the same change in
protein specific activity might have different effects on organ-
ismal fitness for different proteins and organisms. That is, as
shown in the present study under high-level expression of
HisA, 86% (70/81) of the amino acid substitutions
appeared neutral whereas at low expression level only
2.5% (2/81) of the mutations appeared neutral. Hence,
an important conclusion from this work is that when mea-
suring the distribution of effects of mutations on the func-
tion of a single protein (i.e., distribution of protein fitness
effects), the concentration of the protein needs to be re-
duced such that it is rate-limiting for growth (fig. 3 and
supplementary fig. S1, Supplementary Material online). In
contrast, when assessing the distribution of effects of
mutations on the fitness of an organism, the protein needs
to be expressed at native levels, at the native locus and
with native buffering mechanisms (fig. 3).

Weak Negative Epistasis between Mutations
We analyzed the complete set of 510 mutants carrying 1 to 10
mutations and this analysis was done both including and
excluding lethal and synonymous mutations. Without epi-
static effects, an exponential decline in fitness should be
expected when increasing the number of mutations.
However, if there are epistatic interactions between the muta-
tions, the data will fit to the equation s ¼ e�ðamþbm2Þ, where
m is the number of mutations, a reflects the fraction of mul-
tiplicative deleterious mutations and b is the epistasis param-
eter (Charlesworth 1990; Bershtein et al. 2006). For b=a � 0,
the epistatic potential of the mutations is minimal whereas
for b=a� 0 the mutations exhibit large negative epistatic
effects (Bershtein et al. 2006). We tested exponential and
epistatic curve fits, and observed that when including synon-
ymous mutations, the b=a � 0 (0.04 and 0.02 when including
and excluding synonymous mutations, respectively) and
when excluding synonymous mutations, the ratio is
b=a> 0 (0.40 and 0.14 when including and excluding synon-
ymous mutations, respectively) (fig. 4; supplementary fig. S2
and table S3, Supplementary Material online). The epistasis
parameter b was positive for all studied cases (supplementary
table S3, Supplementary Material online) suggesting that
when assessing only nonsynonymous mutations, on an aver-
age there are negative epistatic effects between the mutations
(Charlesworth 1990; Bershtein et al. 2006). This negative epis-
tasis (on an average) has also been reported for other systems
(Bershtein and Tawfik 2008; Perfeito et al. 2011; Jiang et al.
2013; Chou et al. 2014; Bank et al. 2016; Li et al. 2016; Sarkisyan
et al. 2016).

Fitness Cost per Mutation
The average fitness cost varied between 6.9% and 20.5%
depending on which mutation types were included (table 1,
fig. 4A–D; supplementary fig. S2 and table S3, Supplementary
Material online). Regarding effects at the protein level, the
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average fitness costs for each random nonsynonymous mu-
tation was 20.5% and already after accumulating approxi-
mately three nonsynonymous changes, fitness is on an
average reduced to 34%, while at ten mutations, the fitness
effect is expected to be lethal on an average. In proteins, the
majority of mutations are assumed to reduce the protein
stability, leading to decreased levels of functional protein
(Green et al. 1992; Holder et al. 2001; DePristo et al. 2005;
Tokuriki and Tawfik 2009a) and a lower fitness. However,
since the (ba)8 barrel fold is considered to be a very stable
scaffold (Höcker et al. 2001) the low mutational robustness of
HisA is unexpected.

No Restoration of Fitness by Chaperonin
Overproduction
The GroEL/ES chaperonins have previously been reported to
enable rescue of mutants (Gordon et al. 1994; Goyal and
Chaudhuri 2015) and buffer the effect of deleterious muta-
tions (Fares et al. 2002; Tokuriki and Tawfik 2009b). GroEL/ES is
also known to be involved in the folding of many proteins with
the (ba)8 barrel fold (Kerner et al. 2005; Fujiwara et al. 2010).
Thus, we tested the rescuing capability of chaperonin over-
expression on a subset of 26 HisA deleterious mutant strains.
However, no rescue was observed for any of the mutant strains
(supplementary fig. S3, Supplementary Material online, only

FIG. 4. Exponential (blue lines) and epistatic curve fits (red lines) of the average selection coefficient (s) with increasing number of mutations. Error
bars represent the SD of all measured selection coefficients at each defined condition (A) Lethal mutations and synonymous mutations included in
analysis. (B) Lethal mutations included in analysis and synonymous mutations excluded. (C) Lethal mutations excluded from analysis and
synonymous mutations included. (D) Lethal mutations and synonymous mutations excluded from analysis. When synonymous mutations are
included (A and C) the ratio b=a � 0 as compared with when synonymous mutations are excluded (B and D) where b=a > 0 suggesting negative
epistatic interactions between nonsynonymous mutations leading to a higher combined cost compared with the cost mutations are expected to
confer without epistasis effects.
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8 mutants out of 26 are shown). Whether the lack of an effect
is due to HisA protein not being a client for the GroEL/ES
system or if there are other reasons remains unclear.

Predicting Fitness Effects of Single Mutations
Accurate prediction of the effect of single mutations in an
enzyme on organismal fitness is needed for understanding
evolution and forecasting evolutionary pathways. The most
direct way to assess the fitness of proteins would be to de-
termine the specific activity (i.e., the kinetic properties of the
mutant enzymes, kcat and Km) as well as the in vivo level of
enzyme and substrate, and then subsequently correlate these
properties to organism fitness (Soskine and Tawfik 2010; Jiang
et al. 2013; Boucher et al. 2016). However, such measurements
are generally very labor intensive. Hence, researchers have tried
to use various proxy measurements to estimate the effects of
mutations (e.g., biophysical or phylogenetic characteristics of
the studied protein). However, it is still unclear which factors
and methods are most useful for predicting the effects of
mutations on protein fitness. We applied 40 different predic-
tion tools or measures to assess how well they predicted the
effect of single mutations on protein fitness (summarized in
fig. 5 and supplementary fig. S4, Supplementary Material on-
line). The tools and measures span a wide range of properties
such as changes in biochemical properties, evolutionary

distance, structural constraints, folding energy of the mRNA
and machine learning tools for phenotypic prediction. Since
we wanted to determine how well these methods predict
effects on protein fitness, we used only fitness data obtained
for the 81 single nonsynonymous mutants under low-level
expression conditions where any mutational effect is directly
detected as a change in organism fitness.

Substitution Matrices Showed Varying Results
The Grantham, PAM, and BLOSUM amino acid substitution
matrices (Grantham 1974; Dayhoff et al. 1978; Henikoff and
Henikoff 1992) have previously been reported to correlate
with fitness for some proteins, but not for others.
Furthermore, though the correlations have been shown to
be significant, they have been weak (r¼ 0.05–0.5) (Jacquier
et al. 2013; Lind et al. 2016) and for HisA, only the Grantham
matrix and the BLOSUM62 showed a significant but weak
correlation when excluding the lethal mutations from the
analyzed data set (r¼ 0.21–0.28, P¼ 0.014–0.035) (fig. 5A;
supplementary fig. S4 and table S4, Supplementary Material
online).

Conservation Scoring
Phylogenetic conservation can be used as a measure of im-
portance of each amino acid in a protein and the diversity

FIG. 5. Pearson correlation coefficients (r) for 38 different methods predicting the fitness effect of single amino acid mutations correlated to
experimentally determined fitness at two different conditions all showed r< 0.4. Correlation coefficients were obtained from correlation
predicted fitness from (A) amino acid (aa) substitution matrices, (B) evolutionary conservation scoring, (C) structural predictors: distance to
substrate (Dist to substr), relative accessible surface area (rASA), change in folding free energy difference (DDG) and change in melting temper-
ature (DTm), (D) change in RNA folding free energy difference (RNA DDG), and (E) hybrid/machine learning predictors.
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and conservation of amino acids in a certain position should
reflect evolutionary constrains in that position (Mirny and
Shakhnovich 1999; Franzosa and Xia 2009; Worth et al. 2009;
Daudé et al. 2013; Gerek et al. 2013; Shahmoradi et al. 2014;
Sikosek and Chan 2014; Yeh et al. 2014; Echave et al. 2016).
The best prediction of fitness for HisA was accomplished with
a conservation scoring method by ConSurf (r¼ 0.33) (fig. 5B;
supplementary fig. S4 and table S4, Supplementary Material
online), which was worse than the correlation reported pre-
viously for the enzyme AraD (r¼ 0.49), the AraCE proteins
(rAraC¼ 0.58, rAraE¼ 0.47) (Lind et al. 2016), as well as the
avGFP (r¼ 0.40) (Sarkisyan et al. 2016). However, the corre-
lation was better than ribosomal proteins, in which no signif-
icant correlation was found (Lind et al. 2010).

Structure-Based Methods
Biophysical properties (such as solvent accessibility, melting
temperature, and thermodynamic stability) are predicted to
have a big impact on protein evolution and fitness (Green
et al. 1992; DePristo et al. 2005; Ramsey et al. 2011; Wylie and
Shakhnovich 2011; Sikosek and Chan 2014; Boucher et al.
2016; Echave et al. 2016). Previous studies have found exten-
sive support for the effect of mutations on thermodynamic
stability (DDG) and rate of protein evolution (DePristo et al.
2005; Tokuriki et al. 2008; Tokuriki and Tawfik 2009c; Wylie
and Shakhnovich 2011). However, it does not fully explain the
variance observed in several studies, nor in HisA, with corre-
lations varying between nonsignificant and r¼ 0.4 (Green
et al. 1992; Holder et al. 2001; Lind et al. 2010, 2016;
Jacquier et al. 2013) (fig. 5C; supplementary fig. S4 and table
S4, Supplementary Material online). Neither did the difference
in melting temperature (DTm), correlate with HisA fitness.
The lack of linear correlation between fitness and DDG values
could be due to a stability threshold, where only mutations
affecting the stability enough to reach a certain threshold
value will have a negative effect on fitness (Jiang et al. 2013;
Keren et al. 2016; Li et al. 2016; Sarkisyan et al. 2016). Even
though the relative accessible surface area (rASA) have been
reported to be a major determinant of evolutionary rate at
single amino acid positions in proteins (Franzosa and Xia
2009), we observed only weak correlation with fitness in
HisA (r¼ 0.22, P< 0.05; fig. 5C; supplementary fig. S4 and
table S4, Supplementary Material online), similar to what
has been reported for TEM-1 b-lactamase (Jacquier et al.
2013), AraCDE (Lind et al. 2016), and ribosomal proteins
(Lind et al. 2010). One of the best (and simplest) predictors
of mutational effects on organismal fitness when lethal muta-
tions were included was the distance between the mutated
amino acid and the HisA substrate in the crystallographic
structure (r¼ 0.38, P< 0.001).

RNA Stability Predictors
The stability of RNA can also affect the protein fitness.
Mutations can interfere with the RNA structure and stability
or disturb the translation of the protein, causing lower ex-
pression (Kudla et al. 2009; Lind et al. 2010; Goodman et al.
2013; Lind and Andersson 2013; Brandis et al. 2016). None of

the tested methods for determination of RNA folding DDG
correlated to fitness regardless of the data set considered
(r¼ 0.04–0.09, P> 0.4) (fig. 5D; supplementary fig. S4 and
table S4, Supplementary Material online).

Machine Learning Methods and Disease Prediction Tools
To test the combination of conservation information and
structural features as well as to include more advanced evo-
lutionary deleteriousness scoring and take support from
models built on previously known disease-causing mutations
in proteins, we deployed a set of tools developed to predict
protein fitness effects by machine learning (Thomas et al.
2003; Capriotti et al. 2006, 2013; Li et al. 2009; Yates et al.
2014; Hecht et al. 2015). However, none of the methods
showed a strong correlation to observed organismal fitness,
with Meta-SNP as the best performing predictor (fig. 5E; sup-
plementary fig. S4 and table S4, Supplementary Material on-
line), with a correlation of r¼ 0.31 (P¼ 0.005) and r¼ 0.32
(P¼ 0.005) when including and excluding lethal mutant
strains, respectively. A correlation method based on the
SNPs&GO 3D tool previously obtained a high correlation
coefficient of r¼ 0.71 (Lind et al. 2016). For HisA however,
we observed significant but weak correlation to organismal
fitness when lethal mutations were included (r¼ 0.25,
P¼ 0.02), but not when excluded (r¼ 0.10, P¼ 0.38)
(fig. 5E; supplementary fig. S4 and table S4, Supplementary
Material online). Combined, this suggested that the best
methods to predict the effects of mutations are highly de-
pendent on the specific protein analyzed.

Effect of Mutations and Localization on the Structure
To further disentangle the effect of the mutations, we plotted
the fitness effect of each mutation onto the crystal structure
of the closed and substrate-bound structure of HisA (fig. 6).
Many of the lethal mutations (purple) were in the catalytic
face of the enzyme (6/7), suggesting that these mutations
directly affect the binding of the substrate or the actual
catalytic reaction. The average fitness for mutations in the
catalytic face is s ¼ �0:37 compared with average effect of
s ¼ �0:18 in the stability face (significant difference,
Student’s t-test P< 0.01) (fig. 6 and supplementary fig. S5,
Supplementary Material online). In summary, several of the
tested predictors gave weak but significant correlation where
only six single predictors were significant for both data sets
(with or without lethal mutations included). The best predic-
tion methods were ConSurf, Mutationassessor, SIFT, Meta-
SNP prediction, SNAP2, and the shortest distance from the
mutated amino acid to the substrate.

Multiple Linear Regression Models Explain More Variance
Clearly, no single method can predict the organismal fitness
with high accuracy given a single protein mutation: none of
the predictors used in this analysis could explain>11% of the
observed variation (corresponds to simple linear regression
R2¼ 0.11, Pearson correlation coefficient r¼ 0.33; ConSurf,
supplementary table S5, Supplementary Material online).
To test if the predictions can be improved by combining
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different methods, we fitted a multiple linear regression
model with the selection coefficient as response variable
and different subsets of the 40 predictors described above
as dependent variables. The models with the lowest
Mallow’s Cp value (Mallows 1973; Gilmour 1996) and high-
est adjusted R2 (supplementary fig. S6, Supplementary
Material online) were chosen for further testing. We found
that a model combining 9 unique predictors (Grantham
matrix, Mutationassessor, PROVEAN, EASE-MM rASA,
PoPMuSiC DDG, HoTMuSiC DTm, SNPs&GO, S3Ds&GO,
and face location [catalytic or stability face]; supplementary
fig. S6A and B, Supplementary Material online) could explain
47% of the observed variation when lethal mutations
were excluded (henceforth referred to as the nonlethal
model). A model built by including the lethal mutations

with 8 different predictors (EASE-MM DDG, I-Mutant
DDG, NeEMO DDG, PoPMuSiC DDG, ENCoM DDG,
SDM DDG, Secondary structure and face location [cata-
lytic or stability face]; supplementary fig. S6C and D,
Supplementary Material online; henceforth referred to as
the lethal model) explained 50% of the observed variance.
Thus, by combining different methods, a more powerful
prediction of the fitness effects of a single mutation can
be made.

Multiple Linear Regression Models Are Able to Predict

Selection Coefficients
The resulting linear combination of predictors was then val-
idated against the measured data. To build and assess our

FIG. 6. Structure of HisA with ProFAR substrate in green. Amino acid residues are colored by the measured selection coefficient (s), ranging from
pale yellow (neutral; s¼ 0) to dark red (strongly deleterious; s¼�0.5), and purple (lethal; s¼�1). The most deleterious amino acid changes are
clustered close to the substrate and are mainly found in the catalytic face of the enzyme. HisA is shown from different viewing angles with views (A)
facing the catalytic face, (B) side view with the catalytic site pointing rightward, (C) side view with the catalytic site pointing upward, and (D) side
view with the catalytic site pointing leftward.
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models with independent data, we used a jack-knifing ap-
proach: the data set was randomly divided in half, a multiple
linear regression model with the suggested predictors was
fitted against one half of the data and used to predict the
other half. The difference between the predicted and mea-
sured fitness was calculated (supplementary fig. S7,
Supplementary Material online). The procedure was repeated
1000 times. The error of the prediction (calculated as the
absolute difference between the value predicted on half the
data and the experimentally measured value) when excluding
lethal mutations has an average of Ds¼ 0.09 (supplementary
fig. S7A, Supplementary Material online) and a SD of
r2¼ 0.04. When including lethal mutations, the error of
the prediction deviates more frequently from zero and the
variance of the selection coefficients is increased compared
with when lethal mutations are excluded when fitting the
model (supplementary fig. S7B, Supplementary Material on-
line). The average error is Ds¼ 0.17 and the SD is r2¼ 0.07.
Further, in the nonlethal model, 50%, 80%, and 95% of the
predictions have an average difference with the observed se-
lection coefficient smaller or equal to 0.09, 0.12, and 0.16,
respectively. In other words, 50% of the predictions were
0.09 or less from the observed selection coefficient and 80%
were 0.12 or less from the observed value. In the lethal model,
the predictions are not as accurate: 50%, 80%, and 95% of the
predictions have an average difference smaller or equal to
0.17, 0.23, and 0.30, respectively.

Conclusions
To forecast evolutionary trajectories, we need to understand
how mutations influence the function of proteins, RNAs, and
regulatory regions and how these changes in turn affect or-
ganism fitness. The present analysis of the fitness effects of
mutations in the HisA biosynthetic enzyme contribute sev-
eral new insights and illustrate the inadequacy of the available
prediction tools.

First, our analysis shows that the average effect on fitness of
single amino acid substitutions varies with expression levels. A
reduction in organismal fitness will not be seen until the total
protein activity (specific protein activity� protein concentra-
tion) drops below a threshold. As summarized in table 1, the
average fitness costs for nonsynonymous mutations varied
between 4.8% and 27.2% depending on the specific assay
condition and method of calculation. These costs per amino
acid substitution in HisA are similar to what has been ob-
served previously for the AraC, D, and E proteins where the
average cost was 12.3% (Lind et al. 2016). However, these
costs are 10- to 100-fold higher than those observed for ran-
dom genomic mutations where each mutation confers an
average cost of �0.15–1.5% (Kibota and Lynch 1996;
Maisnier-Patin et al. 2005; Lind and Andersson 2008). This
difference can be explained by the fact that in these genome-
wide studies many of the random mutations occur in genes
and chromosomal regions that are not rate-limiting for
growth under the specific growth conditions used to measure
organism fitness. In addition to this, any lethal or strongly
deleterious mutations would not be detected as the analysis

requires growth. Interestingly, for the HisA protein, very few
of the mutations (2/81¼ 2.5%) appeared neutral with regard
to protein fitness (even though they might appear neutral
with regard to organism fitness if the protein is expressed at
high level). This result is similar to what was observed for
ribosomal proteins S20 and L1 (Lind et al. 2010) when using
highly sensitive assays (6/126¼ 4.8% neutral) but differs from
the results obtained for the AraC, D, and E proteins where
33–56% of all amino acid substitution mutations appeared
neutral (Lind et al. 2016). The fraction of neutral mutations is
low in HisA (2.5%), which is essential under our assay con-
ditions, and low in ribosomal proteins (4.8%), which can be
deleted without lethal effect (Lind et al. 2010). Conversely, a
large fraction of mutations are neutral in AraD, which is es-
sential for growth with L-arabinose as carbon source (56%)
and in AraC (33%), which is not essential (Lind et al. 2016).
Since the studies of HisA, ribosomal proteins and AraCDE
have been studied using similar assays with high sensitivity
and under conditions where growth rate was limited by the
functionality of these proteins, this suggests that the fraction
of neutral mutations does not seem to be correlated to the
relative importance of the protein in the conditions studied. It
is also likely that this variation in the fraction of neutral
mutations (from 2.5% to 56%) reflects actual biological differ-
ences in organismal robustness to mutations in these proteins
rather than differences in the assay conditions and sensitivity.
Why the robustness would differ up to 22-fold is unclear but,
as proposed previously, one potential explanation might be
differences in the strength of selection to reduce the costs of
translational and transcriptional errors (Lind et al. 2016).
Another potential explanation could be that different types
of protein folds have intrinsic differences in their stability
against amino acid substitutions. Furthermore, it is possible
that the expression levels of these proteins differ, creating a
difference in buffering capacity in organismal fitness for muta-
tions that are deleterious to protein function (i.e., protein
fitness) (Jiang et al. 2013; Keren et al. 2016; Li et al. 2016;
Sarkisyan et al. 2016) (fig. 3).

Second, the shape of the fitness distribution is strongly
dependent on the extent to which the studied protein is
rate-limiting for growth. The overall activity of a protein is
determined by its kinetic efficiency (kcat/Km) and the concen-
tration of enzyme and substrate. If this activity is more than
what is needed to sustain maximal growth, mutations that
reduce either specific activity and/or concentration of the
active enzyme will only influence organism fitness if the total
activity is reduced below a certain threshold level. In line with
this notion, with high expression levels, many of the muta-
tions appeared neutral, whereas at low expression levels al-
most all mutations were deleterious. In other words,
mutations deleterious to protein function can appear neutral
for organism fitness if protein expression is sufficiently high.
The buffering effect of the expression level also implies that
mutations deleterious to the protein but not to the organism
aid in protein evolution (fig. 3). Thus, a wider mutational
landscape can be explored without the organism losing in
fitness.
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Third, the results show that as nonsynonymous mutations
accumulated, fitness costs increased at an increasing rate,
implying that random mutations interact such that their
combined effect on fitness is amplified. Although weak, this
negative epistasis is in line with what has been observed in
other proteins (Bershtein and Tawfik 2008; Perfeito et al. 2011;
Jiang et al. 2013; Chou et al. 2014; Bank et al. 2016; Li et al.
2016; Sarkisyan et al. 2016) but opposite to observations done
at the genomic level in mutation accumulation experiments
(Maisnier-Patin et al. 2005), even though the underlying
mechanisms might be different when comparing HisA and
other cases where negative epistasis was observed. For exam-
ple, the results from Maisnier-Patin et al. (2005) suggest that
random, genome-wide mutations interact such that their
combined effect on fitness is strongly mitigated and that
the genome is buffered against the fitness reduction caused
by accumulated mutations. In this particular case, the pro-
posed explanation for the buffering at the genome level is
that in lineages that had accumulated many genome-wide
mutations an upregulation of the heat shock chaperones
DnaK and GroEL/ES occurs and buffer the deleterious effects
(Maisnier-Patin et al. 2005). Similar stabilization effects of
chaperones were also suggested to buffer the effects of highly
deleterious mutations in different proteins (Bershtein et al.
2006; Tokuriki and Tawfik 2009c). Such a regulatory response
could in principle also rescue the negative effects of mutation
combinations in a single protein like HisA if the accumulated
mutations destabilize the protein, and if there exists a suitable
chaperone to refold the misfolded protein. The reduced pro-
tein fitness could hence be rescued and the organismal fitness
remain unaffected (fig. 3), allowing for a greater mutational
landscape to be explored without losing fitness. We observed,
on an average, a weak negative epistatic response, but no
rescue of the reduced fitness of the HisA mutants by
GroEL/ES could be seen.

A fourth major conclusion is that all predictors for effects
of mutations perform poorly if used individually, but a linear
combination of predictors explains approximately half of the
variance of the selection coefficient. Generally, mutations
with large deleterious effect are most reliably predicted
with several of the prediction tools whereas small effect muta-
tions are more difficult to identify. It is notable that the simple
measure of distance from the mutated amino acid to the
bound substrate in the protein structure is one of the best
predictors of effect on fitness. Combining different methods
in a multiple linear regression model significantly improves
the predictability, allowing 80% the predictions to fall within
12% of the experimentally observed value. It can still only
explain half of the variation in fitness, indicating that we
are still lacking fundamental knowledge on how to connect
protein structure and function.

Materials and Methods

Strains and Media
All strains used in this study were derived from Salmonella
enterica serovar Typhimurium strain LT2 (DA6192), and are
listed in supplementary table S6, Supplementary Material

online, together with their corresponding s-values. Lysogeny
broth (LB; 5 g yeast extract [Oxoid], 10 g Tryptone [Oxoid],
10 g NaCl [VWR], and 1 mM NaOH per liter) (Bertani 1951),
and SOC (Hanahan 1983) were used as liquid media during
the construction of the strains, with supplementation of 1.5%
(w/v) agar (LA) as the solid medium when required. M9
minimal media (Miller 1992) was used for growth experi-
ments, and for assessing viability or lethality of mutants. For
selection for loss of sacB, sucrose selection plates (LA without
sodium chloride, supplemented with 5% (w/v) sucrose) were
used. When appropriate, media was supplemented with
25mg/ml zeocin, 12.5mg/ml chloramphenicol, 12.5mg/ml
(minimal media), or 50mg/ml (rich media) kanamycin,
7.5mg/ml tetracycline, 0.2% (w/v) glucose, 0.2% (v/v) glycerol,
0.1 mM L-tryptophan, or 0.1 mM L-histidine. For long-term
storage, strains were grown overnight in LB, mixed with di-
methyl sulfoxide (DMSO), at a final concentration of 10% (v/v),
and frozen at�80 �C.

Strain Constructions
Phusion High-Fidelity DNA Polymerase (Thermo Fisher
Scientific Inc.) was used for amplification of DNA cassettes
for recombineering, except for when mutagenesis by error-
prone PCR was performed, in which case GeneMorph II
Random Mutagenesis Kit (Agilent Technologies) was used.
For screening and generation of templates for Sanger se-
quencing, DreamTaq PCR Master Mix (Thermo Fisher
Scientific Inc.) was used.

The construction methodology for the strains used is
outlined in supplementary materials and methods,
Supplementary Material online.

Growth Measurements
Strains were recovered from �80 �C and streaked onto LA
plates. Following overnight incubation at 37 �C, single colo-
nies were picked and either restreaked on M9 minimal media
agar or inoculated in M9 minimal media liquid cultures and
incubated at 37 �C. All strains were tested on M9 minimal
media agar supplemented with glucose and L-tryptophan.
hisA mutants showing no colonies within 2 weeks were clas-
sified as lethal. Exponential growth rates were determined for
all strains showing colonies on minimal media agar after
2 weeks. For growth rate experiments with constructs in
cobA, four independent colonies of each construct were
used to inoculate overnight cultures in M9 minimal media
supplemented with L-tryptophan and were allowed to grow
until no further change in optical density could be observed
(maximum of 4 days). The cultures were diluted 1:1000 and
300ml were added into two separate wells in a honeycomb
plate. An isogenic strain with a wild-type copy of hisA was
used as reference strain to enable calculations of relative
growth rates. The cultures were allowed to grow in a
Bioscreen C Analyzer at 37 �C with shaking for up to 4 days.
The optical density at 600 nm wavelength (OD600) was mea-
sured every 4 min. Exponential growth was observed in an
OD600 range of 0.02–0.055. Growth rates (k, min�1) were
obtained by fitting the curve OD600 / N ¼ N0ekt, where
t (min) is time, to the data. Relative growth rates were
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calculated by dividing the growth rate of each replicate of the
mutant by the average of the growth rate of the wild-type
replicates (eight replicates each). Replicates with a growth
rate much faster than the majority of replicates were assumed
to have acquired media adaptation mutations and were re-
moved from the analysis. If four or more replicates showed a
growth rate much faster than the slowest replicates, the
growth rate experiment was repeated. The measurement var-
iation was calculated as the SD of all replicates included in the
analysis. Student’s t-test was used for testing assay resolution
(i.e., maximum jsj not significantly different from s¼ 0). For
growth rate measurements of strains expressed from ParaBAD

promoter, overnight cultures were grown in M9 minimal
media supplemented with glycerol and 0.05 mM histidine.
Experiments showed that the histidine was depleted in the
culture after overnight growth (data not shown). The cultures
were diluted 1:1000 into M9 minimal media supplemented
with glycerol and 0.1 mg/ml L-arabinose. 300 microliters of
each culture were added into two separate wells in a honey-
comb plate. An isogenic strain with a wild-type copy of hisA
was used as reference strain to enable calculations of relative
growth rates. For test of GroEL/ES rescue of HisA mutants,
pGro7-kan was transformed into a selection of 26 different
strains with different amount of mutations and hisA overex-
pressed from the Ptac promoter in the cobA locus showing
reduced fitness. The pGro7-kan plasmid was also transformed
into an isogenic strain with a wild-type copy of hisA and the
resulting strain was used as reference throughout the experi-
ments. Overnight cultures were grown in M9 minimal media
supplemented with glycerol, tryptophan, and kanamycin.
The cultures were diluted 1:1000 into M9 minimal media
supplemented with glycerol, tryptophan, and kanamycin
and into separate cultures also supplemented with 0.5 mg/ml
L-arabinose.

Competition Experiments
To assess the fitness of mutants undistinguishable from wild-
type in exponential growth rate experiments, we competed
fluorescently marked mutant and wild-type strains against
each other. Strains were taken up from the �80 �C freezer
onto LA plates. Following overnight incubation at 37 �C, sin-
gle colonies were picked and 1 ml M9 minimal media cultures
supplemented with 0.1 mM histidine and 0.1 mg/ml L-arabi-
nose were inoculated. Mutant and wild-type strains with dif-
ferent fluorescent markers were mixed 1:1 (1ml each) in 1 ml
M9 minimal media supplemented with 0.1 mg/ml L-arabinose
and grown for 24 h at 37 �C. 1ml was then transferred to 1 ml
M9 minimal media supplemented with 0.1 mg/ml L-arabi-
nose. At the same time, 50-fold dilutions were made in phos-
phate buffered saline (PBS) for flow cytometry. 20,000 cells
were counted and the fraction of RFP and YFP positive cells
was determined by flow cytometry (MACSQuant VYB,
Miltenyi Biotec). After 24 h of growth at 37 �C (approximately
ten generations), cells were again prepared and fractions were
counted by flow cytometry. The selection coefficients were
determined using the regression model s¼ [ln(R(t)/R(0))]/[t]
(Dykhuizen 1990) where R is the ratio of mutant to wild-type
and t is number of generations. The fitness of each mutant

was measured on eight independent lineages (inoculated
from independent colonies of mutant and wild-type) for
both YFP and RFP markers. Four lineages had the mutant
strain marked with RFP and the wild-type strain marked with
YFP and in four lineages the fluorescent markers were
swapped. The average fitness was calculated between the
medians of the separate fourþ four replicates and is thereby
also independent of any difference in cost between the fluo-
rescent markers. The SD was calculated within the two sets of
dye swaps as the SD between the two median values and was
used as a measurement for variation. Student’s t-test was
used to determine if measured fitness was significantly differ-
ent from s¼ 0 (i.e., neutral).

Structure Analysis
For all mutation effect predictors that required a crystal struc-
ture to be used, the structure of Salmonella enterica
HisA(D7N, D176A) with ProFAR (PDB ID: 5A5W
(Söderholm et al. 2015)) was used. The flexible loops 1–8
were assigned as the catalytic face of the enzyme and the
rest of the enzyme was assigned as the stability face. This
structure was also used for visualization of fitness effects of
mutants (fig. 6). The distance between the mutated amino
acid and the HisA substrate ProFAR was defined as the short-
est distance in the structure of HisA between any atom in the
mutated amino acid to any atom in the cocrystallized
substrate.

Mutational Spectrum
There was no significant bias for the distribution of the muta-
tions over the gene (Kolmogorov–Smirnov test P¼ 0.40). The
mutational spectrum is provided in supplementary table S1,
Supplementary Material online.

Kernel Density Estimation
A linear kernel density function was used to illustrate the
sharp peak at s¼�1 and the wider fitness distribution
over s¼ 0. The bandwidth was empirically set to 0.15 after
analyzing several distributions.

Fitness Predictions
Forty different tools and measures were used to generate
predicted the fitness of a certain mutation. All single amino
acid mutants in this work were manually entered into the
webpage-based user interface of each tool and an effect value
was acquired (except for the structural analysis of the shortest
distance to ligand measure and face assignment). The corre-
lation of the predicted values (i.e., predicted fitness effect) to
the growth rate data (i.e., actual fitness effect) was assessed by
calculating the Pearson correlation coefficient (Pearson’s r)
and served as a measurement of the ability of each method
to predict the fitness effect. The methods used for prediction
calculations are given in supplementary materials and meth-
ods, Supplementary Material online.

Multiple Linear Regression Model
To attempt to better predict the effect of single mutations on
selection coefficient, multiple linear regression models were
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calculated. The full description of the experiment is described
in the supplementary discussion, Supplementary Material on-
line. Briefly, all possible regression models including all possi-
ble combinations of fitness predictions were assessed and the
ones providing an optimal trade-off between sensitivity and
number of predictors were selected. To test the predictive
power of these selected models, half the data set (i.e., half the
mutations) were randomly selected and the difference be-
tween the observed selection coefficient and the one pre-
dicted by the model was recorded. That procedure was
repeated 1000 times, and the prediction power was estimated
by averaging the absolute differences between the observed
and the predicted values.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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