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Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features
underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics
data from human cell- and biopsy-basedmicroarrays experiments studying cellular senescence or in vivo tissue ageing, respectively.
We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer,
focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during
cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle,
DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington’s disease,
MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated
during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing
are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets aremodules
either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma).
Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies.

1. Introduction

The lifetime of complex multicellular organisms includes
embryogenesis (a highly programmed period) and the life-
time after birth, which is marked by the constant exposure
to distinct types of stressors that gradually promote the
stochastic damage of most cellular biomolecules [1, 2]. Due
to the action of both quality control and clearance systems,
organisms retain for a relatively long time low levels of dam-
aged biomolecules but eventually, as the organism gets older,
these homeostatic mechanisms are either compromised or
disrupted, resulting in impaired signalling and repair or
clearance pathways. These effects result in deteriorating
cellular functions that correlate with increased disability,
morbidity, tissue ageing, and inevitably death [3, 4]. In line
with this view, age is the major risk factor for several diseases,

including cardiovascular disease, cancer, neurodegeneration,
and diabetes [5, 6].

Age-related accumulation of damaged biomolecules
affects both the mitotic (e.g., epithelial, stromal, vascular, and
haematopoietic stem cells) and the highly differentiated post-
mitotic cell lineages (e.g., neurons and skeletal muscle cells)
[7]. Mitotic cells, which comprise the renewable tissues and
organs of the human body, namely, the skin, intestines, liver,
kidney, and so on [8], gradually lose their replicative potential
and inevitably stop proliferating, as a result of serial passaging
in tissue culture; this process is referred to as replicative
senescence (RS) and in normal human cells relates to progres-
sive telomere shortening, due to the absence of the telomerase
(hTERT) gene expression [9, 10]. Young normal human
cells having long telomeres may also senesce prematurely if
exposed to various types of stress, during a process termed
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as Stress-Induced Premature Senescence (SIPS) [5]. It is
assumed that a combination of both RS and SIPS contributes
to human cells senescence in vivo [2], while a number of
cellular senescence markers have been detected in various
animal tissues and correlate with chronological ageing [11–
13]. In addition, it has been shown thatmetabolites and secre-
tory factors from senescent cells, such as proinflammatory
cytokines, chemokines, growth factors, and proteases, con-
tribute to various physiological malfunctions and may play a
causative role in ageing or age-related diseases [2, 8].

Several signalling pathways have been functionally
involved in the progression of cellular senescence and in vivo
ageing including nutrients and energy sensing pathways,
stress responsive pathways, as well as sirtuins, the rate of
respiration, telomeres length, signals from the gonads, altered
intercellular communication, exhaustion of stem cells, and
epigenetic modifications [1, 2, 14–16]. Notably, most of these
pathways have not been evolved as direct regulators of ageing
as, for instance, nutrients signalling is critical in promoting
growth effects during embryogenesis and early development
[17].

Various studies have attempted, through high-through-
put genome-wide transcriptomics, to identify gene expres-
sion signatures that define cellular senescence and/or in vivo
tissue ageing. Nevertheless, comparative meta-analyses of
senescence- and/or in vivo ageing-related transcriptomics
data are scarce. Thus, in this study we performed a stringent
bioinformatics meta-analysis of transcriptomics data from
five cell- and seven biopsy-based microarrays experiments
that include mitotic and postmitotic cell lineages and refer
to both cellular senescence and in vivo ageing. Our goal was
to reveal potential biomarkers of ageing, as well as common
molecular pathways that characterize this complicated (and
largely stochastic) biological process. We have succeeded to
identify gene expression signatures and pathways alterations
that mark cellular senescence, skeletal muscle, and neuronal
ageing and also to reveal molecular commonalities between
cellular senescence and tissue in vivo ageing.

2. Materials and Methods

2.1. Data Description. The selection of the transcriptomics
data for our meta-analysis study was based on three criteria.
The first one referred to the inclusion of data solely from
human samples, while the second one referred to the quality
of the deposited data in the database; in this case, only
datasets that were fully annotated with a detailed description
of the array platform were used. The last criterion was the
origin of the transcriptomics data since we included in the
study both mitotic and postmitotic cell lineages undergoing
cellular senescence or in vivo ageing.

2.2. Cell-Based Gene Expression Transcriptomics Data. Cell-
based transcriptomics data have been retrieved from five
high-throughput microarrays experiments of different cell
types that have been deposited in GEO as GSE24810 [18],
GSE19018 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
?acc=GSE19018), GSE15829 [19],GSE13496 [20], andGSE4352
[21]. Based on the cell types used, the five datasets (series)

were grouped into four categories, namely, (a) Human
Diploid Fibroblasts (HDFs) which include the HMF3A and
HMF3S cells of GSE24810, the IMR90 cells of GSE19018, the
HF cells of GSE15829, and the WS1, WI38, and BJ cell lines
of the GSE4352 series; (b) Haematopoietic Progenitor/Stem
Cells (HSCs) including the BMCD34+ and PBCD34+38−
cells of GSE13496; (c) T-cells of GSE13496; and (d) Human
Mammary Epithelial Cells (HMECs) that include the 48R
and 184 epithelial cells of the GSE4352 series.

2.3. In Vivo Gene Expression Transcriptomics Data. Tran-
scriptomic data from in vivo studies have been retrieved from
seven high-throughput microarrays experiments referring to
nerve and muscle biopsies from young and aged healthy
donors.These data have been deposited as six GEODataSets,
namely, GDS707 [22], GDS473, [23], GDS472 [23], GDS288
[24], GDS287 [24], and GDS156 [25], and in one GEO SEries
set (GSE5086) [26]. All records (except GDS707 that grouped
in the “Neuron” set) were grouped into the “Skeletal Muscle”
set which (on the basis of the gender of the donors) was
further subdivided into three groups, namely, “F” (females;
GDS472, GDS473), “M” (males; GDS287, GDS288, and
GDS156), and “F-M” (female and male donors; GDS156).

2.4. Computation Methods for the Estimation of Gene Expres-
sion among Different Experiments and/or Microarrays Plat-
forms. For the transcriptomics data from cell-based exper-
iments (except GSE15829 for which raw intensity values were
not available in GEO), we implemented preprocessing meth-
ods in order to estimate and/or normalize gene expression
levels. Background correction, spot quality filtering, log
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transformation, and normalization were the first prepro-
cessing steps to homogenize retrieved data and compensate
for systematic error measurements among different exper-
imental platforms. These steps were performed by “Gene
ARMADA” (Automated Robust Microarray Data Analysis),
a MATLAB implemented, microarray, statistical analysis
platform, equipped with a graphical user interface (GUI)
(http://www.grissom.gr/armada/) [27]. For the GSE24810,
GSE19018, and GSE13496 series (Affymetrix microarrays)
the ∗.CEL files (Cell Intensity Files) were imported into the
ARMADA platform, while samples of the GSE4352 dataset
were imported as ∗.txt tab delimited files. The number of
experimental conditions in ARMADA was defined as two,
namely, “young” and “old”; in cases where data from quies-
cent cells were available, they were used to exclude genes that
were coregulated in both cellular senescence and quiescence.

For Affymetrix GeneChip microarrays’ background
adjustment, normalization, and summarization, the GC-
RMA algorithm was used (GC-Robust Multiarray Average)
[28–30]; this involves optical correction and gene specific
binding correction. The maximum likelihood method was
used for signal estimation with tuning parameter set at
5 and number of steps (MLE) at 128. The Detection Call
method of MAS5.0 algorithm [31, 32] was also implemented
to characterize the Affymetrix probe sets as “Present (P),”
“Marginal (M),” or “Absent (A)” using the default analytic
parameters (Alpha 1: 0.04; Alpha 2: 0.06; and Tau: 0.015);
marginal probe sets were considered as absent in order to
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reduce the rate of false positives. In the case of GSE4352
(a two-channel cDNA microarray platform), the Signal to
Noise Ratio method for background correction was used
[33]. Spot filtering was performed based on background
noise to exclude spots whose mean signal intensity was less
than 2-fold of the mean background intensity [34]. As a
normalization method, the Robust Linear LOWESS model
[35] with spanning neighbourhood at 0.1 was used [36, 37].
Student’s 𝑡-test with a 𝑃 value cut-off of 0.05 was employed
for outlier detection among replicates of the same condition
in both Affymetrix and cDNA arrays.

In biopsy-based transcriptomics data (GDS707, GDS473,
GDS472, GDS288, GDS287, and GDS156 series), the detec-
tion 𝑃 value threshold of 0.1 of Absolute or Detection Call
of MAS4.0 (Affymetrix Technical Support, 2001) or MAS5.0
algorithm, respectively, was used in order to characterize
each probe set as “Present (P)” or “Absent (A).” Transcripts
with a detection 𝑃 value ≥ 0.1 were considered as absent and
their values were set to NaN (Not a Number), because Gene
ARMADA handles these values as not detectable probes. In
order to reduce the False Discovery Rate, if a probe set was
labelled as “A” in more than 40% of samples of an experi-
mental condition, it was marked as absent in all samples
of this condition [25]; further, if a probe set was labelled
as absent in all experimental conditions it was excluded
from downstream analyses. For the dataset GSE15829 of the
CodeLink platform, we used the assigned quality flags to
remove probes that had been labelled as “MASK” and “Blank
or Control” as well as those with a negative signal, keeping
only spots with a good (G) quality flag. The probe list
was also filtered by using the Negative Control Threshold
of CodeLink data analysis guide from Applied Microar-
rays (http://www.appliedmicroarrays.com/index.php?option
=com content&view=article&id=11&Itemid=17). Finally, the
processed data were imported into ARMADA as normalized
expression values of 1 or 2 channels.

Differences between gene expression distributions among
different slides of an experimental condition were evaluated
by boxplots’ comparison; quantile normalization was also
performed if necessary. After “between slide” scaling, the k-
nearest neighbour (kNN) algorithm was used to impute any
missing value caused by the image processing or the filtering
steps. The Euclidean distance was used as distance metric
among gene vectors and the number of nearest neighbours
was set to 10 [38]. Before the statistical test by ARMADA
for the extraction of differentially expressed gene lists among
different experimental conditions, the Trust Factor (TF)
cut-off for each experimental condition (TF = #Appear-
ances/#Replicates) was set to 0.6. In this case, a probe was
marked as “Present” and its expression value was included
in statistical analysis if it was “Present” at more than
60% of the samples of this condition; otherwise it was
marked as “Absent.” If a probe was absent in all condi-
tions, it was excluded from further analyses. For already
processed biopsy-based transcriptomics, the TF was set to
zero and thus all values were included in statistical analysis.
Data were log
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transformed to comply with the normality

assumption. Finally, Student’s 𝑡-test with a 𝑃 value ≤ 0.05
was adopted as the statistical selection, of the logarithmic

signal values, in order to reveal genes, which are signif-
icantly differentiated between “young” and “old” exper-
imental conditions (analyzed transcriptomics data and
experimental conditions are summarized in Supplemental
Table, S1, in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/732914). For multiple testing
correction, the bootstrap approach of positive False Discov-
ery Rate (pFDR; [39]) was used, with a mean FDR threshold
of 0.1. Coupled to statistical testing, a fold change (FC) calcu-
lation was also applied in the list of significantly differentially
expressed genes between “young” and “old” conditions, in
order to filter out possible artefacts (false positives) of
the preprocessing stage and highlight reliable biologically
relevant changes; as a fold change of gene expression cut-off,
the values of either 1.2- or (in most cases) 1.5-fold were used.
The output of statistical processing including the FC in probe
expression was exported to Excel spreadsheet files. Using
the annotation file of each microarray platform, every probe
ID was matched to a GenBank accession number and/or a
HUGO gene symbol. Whenmultiple transcripts matched the
same gene ID, the average 𝑃 value, average FDR, and average
fold change were estimated; transcripts of the same gene
with controversial pattern of expression were excluded from
further analysis.

2.5. Mapping the Functional Implication of Recovered Genes
in Signalling Pathways. Functional analysis was performed
by statistical enrichment analysis using the StRAnGER
(Statistical Ranking of Annotated Genomic Experimen-
tal Results) web-based application (http://mebioinfo.ekt.gr/
stranger/home) [40]. StRAnGER exploits controlled biologi-
cal vocabularies (e.g., the Gene Ontology or the KEGG path-
ways terms) in order to highlight significantly overrepre-
sented biological processes (BP) and KEGG pathways [41]
(http://www.genome.jp/kegg/pathway.html) involved in the
molecular processes of ageing. For the series GSE15829 and
GSE4352, the human genome annotation file provided by
Ensembl (http://www.ensembl.org/info/genome/genebuild/
genome annotation.html) was used as background file since
the annotation files of the platforms “CodeLink Human
Whole Genome Bioarray” and “Cohen-31k1a” did not con-
tain KEGG ontology terms. The ratio of the number of
observations of a certain term in the list of significant
findings versus the number of its observations in the
whole array (or a more general reference list) is called the
“enrichment score.” The functional enrichment results were
corrected for multiple hypothesis testing following a boot-
strap methodology as was previously described [40]. The
bootstrap iterations were set in the default option (10000
iterations).

In order to further expand our knowledge regarding
the potential, regulatory implications of “ageing-specific”
genes in various cellular processes, we prioritized them
according to their operational centrality (i.e., the estimation
of their simultaneous functional attribution to different
cellular processes) by exploiting Gene Ontology (GO) [42].
At the hierarchical structure of the respective graph tree,
the candidate hub-genes were identified throughGORevenge
(Reverse engineering Gene Ontology networks) tool [43, 44]
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Figure 1: Identification of sex-specific age-related differentially expressed genes in human skeletal muscle. In skeletal muscle from aged
males (M) (blue circle), 420 genes were found to be differentially expressed (𝑃 value ≤ 0.05; FDR ≤ 0.1; FC > 1.2), whereas 838 genes were
differentially expressed in skeletal muscle from aged females (F) (pink circle).The intersection of the two groups refers to 46 genes; from these,
13 genes followed a sex-dependent expression pattern during ageing.The numbers of upregulated (↑) or downregulated (↓) DEGs along with
the “hub-genes” linked to at least twenty Gene Ontology (GO) terms after pruning (revealed by the GORevenge algorithm) are indicated.The
so-called “hub-genes” are linked to a plethora of Gene Ontology (GO) terms and are, likely, involved in numerous cellular procedures.

(http://mebioinfo.ekt.gr/goreveng/default/gr). Identification
of significant genes was also performed in GORevenge
through the use of the Resnik-BubbleGene algorithm with
relaxation threshold set to 0.15 and pruning threshold set to
0.6 [44].

Data manipulation (i.e. sorting, filtering, comparisons,
and heatmaps) of output files was performed in Excel 2003
and Excel 2007 and data retrieval was done by writing
Perl scripts in ActivePerl 5.14.2 Build 1402 platform on
Windows XP and Windows 7. Descriptive statistics were
performed with GraphPad Prism version 5.00 for Windows
(GraphPad Software, San Diego, CA USA). Venn diagram
analyses for comparison between two and four datasets
were implemented with the BioInfoRX Venn diagram plotter
(http://bioinforx.com/free/bxarrays/venndiagram.php) and
VENNTURE software [45], respectively.

3. Results

3.1. Age-Related Differential Gene Regulation in Nervous and
Skeletal Muscle Tissues. Our initial studies in the nervous
tissue (GDS707) dataset revealed a list of 395 significantly
differentiated probe sets that correspond to 390 fully anno-
tated genes with a HUGO gene symbol (Supplemental Table,
S2).The biological processes affected were studied in a subset
of 136 significantly differentiated genes (FC ≥ 1.5-fold) and
were found to refer to synaptic transmission, signal trans-
duction, protein transport, cellular component movement,
calcium signalling pathway, regulation of actin cytoskeleton,
phosphatidylinositol signalling system, andMAPK signalling
pathway (Supplemental Table, S2).

Parallel analyses in the skeletal muscle tissues datasets
revealed sex-specific, age-related differences. Specifically, the
majority of DEGs (119/128 ≈ 93%) with FC ≥ 1.5 in males
appeared to be upregulated, whereasmost of the differentially
regulated DEGs in females (58/63 ≈ 92%) were downregu-
lated. The 13 (out of the 46 common genes in males and

females; Figure 1) that showed sex-dependent regulation are
linked to GO terms involved in signal transduction, protein
folding, apoptosis, cytokine-mediated signalling, RNA pro-
cessing, calcium ion homeostasis, cell adhesion, and MAPK
signalling. After enrichment analysis of (mostly downreg-
ulated) DEGs in female skeletal muscle samples, biological
processes such as protein folding, apoptosis, transcription,
ubiquitin-dependent protein catabolic process, and protein
transport were found to be overrepresented. On the other
hand, mRNA processing, RNA splicing, DNA replication,
and DNA repair were overrepresented in males, where the
majority of DEGs are upregulated (Figure 1; Supplemental
Table, S3). The sex-specific genes that are differentially regu-
lated during skeletal muscle ageing (FC ≥ 1.5-fold) are shown
in Tables 1 and 2, respectively.

The common pathways (KEGGs) found to be affected
significantly during skeletal muscle ageing in males and
females related to oxidative phosphorylation, regulation of
actin cytoskeleton, focal adhesion, MAPK signalling, and
metabolism of carbohydrates. Oxidative phosphorylation
was overrepresented in females (enrichment score: 25/104,
𝑃 value 9.79𝐸 − 11), while in males it was the second most
overrepresented pathway (enrichment score: 24/88, 𝑃 value
1.04𝐸 − 11). Interestingly, the DEGs (and the corresponding
pathways) identified to be implicated in the skeletal muscle
ageing followed (except for carbohydrate metabolism) an
opposite expression pattern in the two sexes as they were
downregulated in females and upregulated in males. The
prevalent pathways that were differentially affected during
male skeletal muscle ageing related to Huntington’s (HD),
Alzheimer’s (AD), and Parkinson’s disease (PD) with the
implicated genes being downregulated (Supplemental Table,
S4).The insulin signalling pathway, which is central in ageing
regulation, was deregulated only in the female skeletal muscle
(enrichment score: 10/125, 𝑃 value 0.0008) with eight genes
being downregulated [EIF4E, IKBKB, EIF4EBP1, SLC2A4,
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Table 1: Age-regulated genes in human males’ skeletal muscle.

Function Gene name Gene description Fold change FDR

Glucose/lipid metabolism

H6PD Hexose-6-phosphate dehydrogenase (glucose
1-dehydrogenase) 2.35 0.013

ALDOA Aldolase A, fructose-bisphosphate 0.12 0.062

ATP5S ATP synthase, H+ transporting, mitochondrial Fo
complex, subunit s (factor B) 0.66 0.102

ZDHHC11 Zinc finger, DHHC-type containing 11 2.04 0.032

Signal transduction/G
protein signalling

LEPR Leptin receptor 2.31 0.021

LGR5 Leucine-rich repeat-containing G protein-coupled
receptor 5 2.34 0.126

Stress response/redox
homeostasis

ADH1B Alcohol dehydrogenase 1B (class I), beta polypeptide 2.17 0.044
BPHL Biphenyl hydrolase-like (serine hydrolase) 0.59 0.027
GSTT1 Glutathione S-transferase theta 1 0.63 0.108
GSR glutathione reductase 0.64 0.082

DHRS4L2 Dehydrogenase/reductase (SDR family) member 4 like
2/dehydrogenase/reductase (SDR family) member 4 0.64 0.028

HSPA2 Heat shock 70 kDa protein 2 1.91 0.092

Cell adhesion/extracellular
matrix organization

LUM Lumican 2.03 0.097
MFAP5 Microfibrillar associated protein 5 2.17 0.053
FN1 fibronectin 1 1.91 0.085

Unknown function
KIAA0240 KIAA0240 2.10 0.015
ABHD3 Abhydrolase domain containing 3 2.34 0.034
KIAA1107 Uncharacterized protein KIAA1107 0.56 0.069

Synaptic function

LIN7C lin-7 homolog C (C. elegans) 1.94 0.015
LRP1B Low density lipoprotein receptor-related protein 1B 2.08 0.057

FCER1A Fc fragment of IgE, high affinity I, receptor for; alpha
polypeptide 0.51 0.022

MTMR3 Myotubular related protein 3 2.05 0.024
DDN Dendrin 2.05 0.04

Cell growth/myelination

ID4 Inhibitor of DNA binding 4, dominant negative
helix-loop-helix protein 2.04 0.051

YPEL1 Yippee-like 1 (Drosophila) 2.18 0.078

CRIM1 Cysteine-rich transmembrane BMP regulator 1
(chordin-like) 1.96 0.094

EMP1 Epithelial membrane protein 1 2.02 0.039

Inflammatory response SOCS2 Suppressor of cytokine signalling 2 0.49 0.041
TACR1 tachykinin receptor 1 0.61 0.024

Mitochondrial/translation MRPS16 Mitochondrial ribosomal protein S16 0.51 0.036
MRPL19 Mitochondrial ribosomal protein L19 1.92 0.015

Transcription
FRY Furry homolog (Drosophila) 0.66 0.053

ZFP36L2 Zinc finger protein 36, C3H type-like 2 2.02 0.015
TET2 tet oncogene family member 2 1.9 0.091

Microtubule cytoskeleton

TUBB2A Tubulin, beta 2A 1.9 0.043
TNNC1 Troponin C type 1 (slow) 0.15 0.082

TUBGCP4 Tubulin, gamma complex associated protein 4 0.61 0.025
MAPT Microtubule-associated protein tau 0.57 0.061

Muscle contraction MYL1 Myosin, light chain 1 0.64 0.094
Apoptosis DAPK3 Death-associated protein kinase 3 0.64 0.083
Shown genes are representative per functional group. Gene names by HUGO; fold changes [indicating differences in old versus young tissues (values <1 denote
downregulation of the respective gene)] and statistical FDR values are indicated.
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Table 2: Age-regulated genes in human females’ skeletal muscle.

Function Gene name Gene description Fold change FDR

Lipid metabolism

GDE1 Glycerophosphodiester phosphodiesterase 1 0.55 0.035

FABP3 Fatty acid binding protein 3, muscle and heart
(mammary-derived growth inhibitor) 0.55 0.019

ECHDC1 Enoyl CoA hydratase domain containing 1 0.57 0.034
REPIN1 Replication initiator 1 0.59 0.078

Signal transduction/G
protein signalling

NDRG2 NDRG family member 2 0.42 0.041
PDE11A Phosphodiesterase 11A 1.78 0.085
TNK2 Tyrosine kinase, nonreceptor, 2 1.52 0.016
SMAD9 SMAD family member 9 1.72 0.070
CNKSR2 Connector enhancer of kinase suppressor of Ras 2 0.50 0.021
SH3BP5 SH3-domain binding protein 5 (BTK-associated) 2.12 0.022

Stress response HSPB6 Heat shock protein, alpha-crystalline-related, B6 0.58 0.029

Cytoskeleton SYNPO2 Synaptopodin 2 1.88 0.045
MYOM3 Myomesin family, member 3 0.51 0.018

Proteolysis

FBXO32 F-box protein 32 1.63 0.064

SPG7 Spastic paraplegia 7 (pure and complicated autosomal
recessive) 0.52 0.031

DNAJC1 DnaJ (Hsp40) homolog, subfamily C, member 1 1.51 0.050
TFRC Transferrin receptor (p90, CD71) 0.50 0.026

Cell death/apoptosis
CABC1 Chaperone, ABC1 activity of bc1 complex homolog (S.

pombe) 0.36 0.053

YWHAE
Tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein, epsilon
polypeptide

0.58 0.038

SCOC Short coiled-coil protein 0.54 0.037

Transmembrane transport SLC16A3 Solute carrier family 16, member 3 (monocarboxylic
acid transporter 4) 0.50 0.011

TMED2 Transmembrane emp24 domain trafficking protein 2 0.56 0.024
Transcription DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 0.53 0.038

PHTF2 Putative homeodomain transcription factor 2 0.54 0.045
Mitochondrial/translation MRPL4 Mitochondrial ribosomal protein L4 0.56 0.038
Shown genes are representative per functional group. Gene names by HUGO; fold changes [indicating differences in old versus young tissues (values <1 denote
downregulation of the respective gene)] and statistical FDR values are indicated.

RHOQ, PHKA1,ARAF, and PRKAG1 (the full gene names are
reported in Supplemental Table, S5)] and two genes (INSR
and PIK3R1) being upregulated.

3.2. Comparative Analyses of Age-Related Gene Expression
Signatures in the Postmitotic Nervous and Skeletal Muscle
Tissues. In order to identify genes that are regulated in an
age-dependent manner in postmitotic tissues, we searched
for common age-related alterations in both the skeletal
muscle and nervous tissues (Figure 2). The SEPP1, PIK3C2A,
and NFE2L2 genes were found to be upregulated more than
1.5-fold in both tissues. On the other hand, AZIN1, ANK2,
DDX3X, and PAK1 were downregulated in both tissues,
while SERINC5 was found to be upregulated in nervous and
downregulated in the skeletal muscle.

In skeletal muscle, the KEGG pathways that were over-
represented (enrichment score: >20%, 𝑃 value < 0.00001)

were oxidative phosphorylation, citrate cycle (TCA cycle),
and pyruvate metabolism, while the DEGs involved in
these processes were downregulated. Genes encoding for
the subunits of mitochondrial ATP synthase (e.g., ATP5B,
ATP5G3, ATP5J, and ATP5C1), cytochrome c oxidase (e.g.,
COX5A, COX5B, and COX6C), succinate dehydrogenase
(e.g., SDHB, SDHC), NADH dehydrogenase (ubiquinone),
(e.g., NDUFA8, NDUFA9, NDUFB5, and NDUFS1), and
the ubiquinol-cytochrome c oxidoreductase (e.g., UQCRB,
UQCRC1, and UQCRH) were deregulated in different
datasets and highlighted KEGG pathways are involved in
neurodegenerative diseases such as AD, HD, and PD. Fol-
lowing the descending order of enrichment score, three other
affected KEGG pathways (in this case the vast majority of
DEGswere upregulated)were proteasome (enrichment score:
19.4%, 𝑃 value 0.0007), adherens junction (enrichment score:
17.3%, 𝑃 value 2.31𝐸 − 05), and the Jak/STAT signalling
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Figure 2: Identification of (gender-independent) coregulated potential biomarkers of ageing in human postmitotic skeletal muscle and
nervous tissues. Venn diagram comparing DEGs in skeletal muscle and nervous tissues of young and aged individuals (𝑃 value ≤ 0.05; FDR
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of their GO terms’ linkage number.

pathway (enrichment score: 11.43%, 𝑃 value 0.0008); the
DEGs (>1.5-fold) implicated in these processes are listed in
Supplemental Table, S4. At the nervous tissue, the phos-
phatidylinositol signalling system (enrichment score: 12.3%,
𝑃 value: 1.24𝐸 − 07; DEGs were mainly downregulated), the
calcium signalling pathway (enrichment score: 7.3%, 𝑃 value:
4.98𝐸 − 07; DEGs mainly downregulated), and regulation of
actin cytoskeleton (enrichment score: 6.5%, 𝑃 value: 4.31𝐸 −
06; DEGs mainly upregulated) were the KEGG pathways
with the higher enrichment scores. The DEGs (>1.5-fold)
implicated in these biological processes are listed in Supple-
mental Table, S4.

Finally, commonly regulated functions/pathways during
ageing of the studied human postmitotic tissues (skeletal
muscle and nervous tissues) includedMAPK signalling, focal
adhesion, regulation of actin cytoskeleton, metabolic path-
ways, calcium signalling, and pathways involved in cancer
(Figure 3); the first three pathways were overrepresented in
more than four of the datasets analysed (Figure 3(b); see also
Supplemental Table, S4).

3.3. Genes and Molecular Signalling Pathways Affected by
Cellular Senescence. The transcriptomics data obtained by
models of cellular senescence were grouped into four differ-
ent categories (see Section 2) based on the cell type. Analyses
of the transcriptional alterations occurring during senescence
of HFL-1 cells lead to the identification of 2532 DEGs (>1.2-
fold); subsets of this list were represented by 1163 genes in
HMF3A cells (GSE24810), 263 genes in IMR90 cells (cultured
under 20% O

2
; IMR90 cells cultured in 3% O

2
were not

included in this analysis because under these conditions their
replicative lifespan increases by ∼30% [46–48]) (GSE19018),
237 genes in HF cells (GSE15829), 377 genes in WS1 cells
(GSE4352), 25 genes in WI-38 cells (GSE4352), and 467

genes in BJ cells (GSE4352). The DEGs that were common
between HMF3A and WS1 cells were 40, between HMF3A
and BJ cells were 38 genes, and between HMF3A and IMR90
were 36 genes. The only common gene that was differentially
expressed during senescence of BJs, HFL-1, IMR90, and
HMF3A cells was FBN2. The biological processes that were
overrepresented during cellular senescence of at least 50%
of the different fibroblastic cell lines referred to signal trans-
duction, cell adhesion, cell cycle regulation, protein amino
acid phosphorylation, apoptosis, DNA repair, proteolysis,
and RNA splicing. The molecular pathways associated with
the aforementioned biological processes were focal adhesion,
MAPK signalling, and pathways involved in cancer, while
DNA replication and cell cycle scored the highest mean
enrichment value (17.8% and 11.1%, resp.).

To determine whether ageing has similar impact on the
gene expression of haematopoietic stem cells (HSCs), DEGs
of human CD34+ cells from bone marrow (BMCD34+) and
mobilized stem cell products (PBCD34+38−) were compared.
Notably, no common genes were depicted between these
cell lines and thus we included in our analyses DEGs of T-
cells since they also derive from bone marrow pluripotent
stem cells. Between PBCD34+38− and T-cells, we found four
common DEGs, namely, C1QBP, TXN, PDIA6, and SERBP1,
whereas between T-cells and BMCD34+ we identified two
commonly regulated DEGs, namely, NUP50 and PICALM.
Notably, among the KEGG pathways affected in T-cells and
BMCD34+ cells were type I diabetes mellitus and the Vibrio
cholerae infection pathway.

Concerning HMECs (cell lines 184 and 48R), only the
UPP1 gene was found to be in common among the identi-
fied cellular senescence-related DEGs. In these datasets, the
majority (63.1%) of identified DEGs involved were downreg-
ulated and are involved in functions such as cell proliferation,



8 Oxidative Medicine and Cellular Longevity

Regulation of Actin cytoskeleton 
Metabolic pathways

G
D

S2
87

G
D

S4
73

G
D

S7
07

G
D

S1
56

G
D

S2
88

G
SE

50
86

G
D

S7
07

G
SE

50
86

G
D

S2
87

G
D

S7
07

G
D

S2
87

G
D

S7
07

G
D

S1
56

G
SE

50
86

G
D

S4
72

G
D

S2
87

G
D

S4
73

G
D

S7
07

G
D

S4
72

G
D

S7
07

G
D

S1
56

G
SE

50
86

0.00
1.50
3.00
4.50
6.00
7.50
9.00

10.50
12.00

Pathways in cancer
Calcium signaling pathway

Focal adhesionMAPK signaling pathway
Datasets

En
ric

hm
en

t (
%

)

(b)

(a)

20 6 2

In vivo tissue ageing

Analyzed experiments (1)Analyzed 
experiments (6)

Gender-free

Skeletal muscle
(26 KEGG pathways)

Nervous tissue
(8 KEGG pathways)
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mitosis, RNA metabolism, and apoptosis; on the other hand,
the upregulated genes were mostly involved in blood clotting
and platelet activation.

Finally, in order to further extend our statistical and
functional meta-analysis, we tried to identify genes whose
differential expression marks cellular senescence in a cell-
independent manner (Figure 4). Our analyses revealed that
HDFs andT-cells share 11 commonDEGs,HDFs andHMECs
67 DEGs, T-cells and HMECs 3 DEGs, HDFs and HSCs 48
DEGs, and finally T-cells and HSCs 3 DEGs; the only DEGs
that were common in more than two cell lines were the six

genes shown in Figure 4. The functional analyses of cellular
senescence-related DEGs in the four cell types revealed
KEGG pathways, such as Huntington’s and Parkinson’s dis-
ease, cell cycle, focal adhesion, DNA replication, purine-
pyrimidine metabolism, actin cytoskeleton, proteasome, and
oxidative phosphorylation.

3.4. Comparison of Cell- (Cellular Senescence) and Biopsy-
Based (In Vivo Tissue Ageing) Transcriptomics Data. In
order to identify human genes and/or molecular pathways,
which are modulated by both cellular senescence and in
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senescence are indicated. The two shaded intersections represent
commonly regulated DEGs (respective genes are listed in each case)
during cellular senescence of HDFs-HSCs-HMECs and of HDFs-
HSCs-T-cells, respectively.

vivo tissue ageing, we compared cell- and biopsy-based
microarrays datasets. The numbers of DEGs during cellular
senescence and in vivo tissue ageing, as well as the common
genes between these two conditions, are summarized in
Figure 5; the decreased number of DEGs shown in Figure 5
(as compared to Figures 2 and 4) is due to the more
stringent fold change cut-off (≥1.5) that was applied. We
found that 14.63% and 7.03% of DEGs that were identified
during in vivo ageing and cellular senescence, respectively,
were common. Notably, several DEGs (53.8%) displayed an
opposite expression profile in the two biological settings.
Furthermore, the genes identified to be involved in cellular
senescence in a cell-type independent manner (Figure 4)
were not found among the genes affected by in vivo tissue
ageing (Figure 2). The majority (75.2%) of the 109 common
genes were overexpressed in males’ skeletal muscle and in
human brain and were overrepresented in senescent HDFs.

The biological processes affected during both cellular
senescence and in vivo tissue ageing were RNA processing (𝑃
value < 0.001; 13 genes), glucose catabolic process (𝑃 value
< 0.001; 5 genes), cell migration (𝑃 value < 0.01; 6 genes),
cell adhesion (𝑃 value < 0.05; 5 genes), response to hormone
stimulus (𝑃 value< 0.01; 8 genes), DNA repair (𝑃 value< 0.05;
2 genes), negative regulation of cell development (𝑃 value <
0.05; 3 genes), and blood vessel morphogenesis (𝑃 value <
0.05; 5 genes). To further investigate whether the common
DEGs are enriched for genes associated with certain KEGG
pathways, the execution of StRAnGER algorithm revealed
four KEGG pathways, namely, spliceosome (𝑃 value < 0.05; 6
genes), glycolysis/gluconeogenesis (𝑃 value < 0.05; 4 genes),
small cell lung cancer (𝑃 value < 0.05; 4 genes), and the
systemic lupus erythematosus (𝑃 value = 0.05; 4 genes).

By analyzing the overlap of cellular senescence and
tissue ageing affected KEGG pathways, we found that this
overlap comprises seven KEGG pathways that showed a high
enrichment score (Figure 6); these were MAPK signalling

(overrepresented in 6 out of 7 biopsy-based datasets and in 2
out of 5 cell-based studies), focal adhesion (overrepresented
in 5 out of 7 biopsy-based datasets and in 3 out of 5 cell-based
studies), regulation of actin cytoskeleton (overrepresented in
4 out of 7 biopsy-based datasets and in 3 out of 5 cell-based
studies), metabolic pathways (overrepresented in 3 out of 7
biopsy-based datasets and in 2 out of 5 cell-based studies),
oxidative phosphorylation (overrepresented in 3 out of 7
biopsy-based datasets and in 2 out of 5 cell-based studies),
Huntington’s disease (overrepresented in 1 out of 7 biopsy-
based datasets and in 1 out of 5 cell-based studies), and cancer
(overrepresented in 2 out of 7 biopsy-based datasets and in 2
out of 5 cell-based studies).

We also noted that most of the KEGG pathways being
overrepresented exclusively at the cell- or the biopsy-based
datasets were modules of the same common reference path-
way, such as the citrate cycle, glycolysis/gluconeogenesis,
and the pyruvate metabolic pathways found at the biopsy-
based datasets or the purine, pyrimidine, inositol phosphate,
alanine, aspartate, and glutamate metabolic pathways that
were found at the cell-based transcriptomics. Furthermore,
they represent KEGG pathways that are closely interrelated
such as the adherens and tight junction pathways (biopsy-
based datasets) or the cell adhesion molecules pathway (cell-
based datasets), which are both interrelated to the common
focal adhesion pathway. Similarly, the thyroid cancer and
melanoma pathways are modules of the common reference
pathway “pathways in cancer.” On the other hand, we also
found tissue- or cell type-specific overrepresented KEGG
pathways, such as the “axon guidance,” “neuroactive ligand-
receptor interaction,” and the “cardiac muscle contraction”
pathways, that reflect functions of the neuromuscular system
or the “natural killer cell mediated cytotoxicity” and the
“Vibrio cholerae infection” found in the T- and BMCD34+
cells. It is noteworthy that although the biological processes
“cell cycle” and “DNA replication” were found to be overrep-
resented in the majority of cell- and biopsy-based data (most
genes were found to be downregulated), their corresponding
KEGG pathways were statistically significant only in the cell-
based datasets. Moreover, the “Lysosome” and “Proteasome”
pathways (which participate in protein turnover and mainte-
nance), along with the “RNA degradation” (which tunes gene
expression), the “Base excision repair” (whch controls DNA
damage), and the “p53 signalling pathway” (which exerts
a dominant role in cellular senescence) were found to be
differentially regulated specifically in the cell-based datasets.

4. Discussion

It is still elusive whether the molecular alterations that mark
cellular senescence correlate with similar gene expression
changes during in vivo tissue ageing. To address this issue,
we have investigated the cellular senescence- or in vivo age-
related gene expression profile of mitotic (HDFs, HSCs, T-
cells, and HMECs) cell lineages and postmitotic skeletal
muscle and nervous tissues. By conducting a meta-analysis
of transcriptomics data derived from 12 microarray experi-
ments, we demonstrate herein significant similarities in the
age-related gene expression, biological processes, and KEGG
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Figure 5: Differentially regulated human genes during cellular senescence and in vivo tissue ageing. (a) Venn diagram showing the
differentially regulated genes (𝑃 value ≤ 0.05; FC ≥ 1.5) during cellular senescence and in vivo tissue ageing. The yellow circle represents
the number of DEGs derived by the merging of five different datasets (experiments) of the cell-based transcriptomics data, while the blue
circle represents the number ofDEGs derived by themerging of seven different datasets (experiments) of in vivo tissue ageing transcriptomics.
The overlapping “green” area indicates the number of DEGs that are common in both conditions. (b) Two-way hierarchical clustering analysis
based on the expression profiles of the common differentially expressed genes. Each column represents the gene expression levels per dataset
and each row denotes the corresponding gene. Red and dark-green colours indicate that the obtained values are greater than 1.5-fold or less
than −1.5-fold, respectively; grey colour indicates statistically not significant changes or not expressed genes. Gene symbols are given in the
left. HSCs-1: PBCD34+38−. HSCs-2: BMCD34+.
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Figure 6: Significantly enriched KEGG pathways, which are deregulated during human ageing. (a) Venn diagram of KEGG pathways
identified as overrepresented among the transcripts significantly up- or downregulated (𝑃 value ≤ 0.05; FDR ≤ 0.1) in cell- and biopsy-based
transcriptomics; only KEGG pathways with count-threshold ≥2 (minimum number of genes for each KEGG pathway) were considered. The
green circle represents the total number of KEGG pathways as derived by the combination of five different experiments, whereas the blue
circle represents the number of KEGG pathways as derived by the analysis of seven different experiments; the overlapping area represents the
common KEGG pathways (indicated in bold in Figure 6(b)). (b) Heatmap of the enrichment (%) score of predicted KEGG pathways in the
context of the five cell- and seven biopsy-based datasets. Columns represent the enrichment score (%) of KEGG pathways per dataset and
rows indicate the individual KEGG pathway; empty cells denote statistically not significant or no overrepresented KEGG pathway. M: male;
F: female; skeletal muscle 1 (M): GDS287; skeletal muscle 2 (M): GDS156; skeletal muscle 3 (M): GDS288; skeletal muscle 4 (F): GDS472;
skeletal muscle 5 (F): GDS473; skeletal muscle 6 (M, F): GSE5086; HSCs-1: PBCD34+38− cells; HSCs-2: BMCD34+ cells.

pathways changes during cellular senescence and in vivo tis-
sue ageing. Our findings validate previously reported results
on microarrays experiments of ageing-related studies [18–
22, 24–26] and meta-analyses of age-related gene expression
profiles [49, 50], and they indicate potential biomarkers of
human ageing; these putative biomarkers include genes that
were found to be differentially expressed in both the muscle
and nervous system (Figures 2 and 5(a)).

The majority of underexpressed genes during ageing
in the nervous tissue are associated directly or indirectly
with synaptic transmission and plasticity [51, 52] that
affects learning and memory functions [53]. Genes encoding
for neurotransmitter receptors such as HTR2A, GRIN2A,

subunits of the GABAA receptor, and KCNAB1 showed
significantly reduced expression in samples from aged
donors. Suppressed genes in the brain included genes
that mediate synaptic vesicle release and recycling (e.g.,
SCAMP5, SYN2, and CRH), as well as members of the
calcium signalling pathway (e.g., CALM3, CAMK2A, and
CACNB2), the calcium-binding protein CALB1, the Ca2+
transporting plasma membrane ATP2B2, and the calcium-
activated transcription factor MEF2C with a central role in
neuronal differentiation and survival [54, 55]. Furthermore,
members of the protein kinase C family (e.g., PRKCB) and
genes involved in vesicle/protein trafficking showed reduced
expression during ageing, including Rab GTPases, TGOLN2,
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DYNC1I1, and CLTB. It is worth noting that many genes
of the cytoskeleton and cell motility pathways were age-
repressed such as ACTA1, KIF1B, MAP1B, MAP2, MAPT,
and the RAN protein, which regulates the formation and
organization of microtubule network; all these proteins are
necessary for the stabilization of microtubules promoting the
axonal transport [56]. In addition, reduced expression levels
in the elderly were found for the PAK1 and PAK3 genes,
which play a crucial role in neuronal cell fate, polarization,
and migration and are implicated in neurodegenerative
diseases [57, 58]. In the group of genes identified to be
consistently and robustly underexpressed during nervous
tissue ageing, we also found genes being involved in DNA
repair and proteolysis, such as the TOP2B enzyme [59]
and KLHDC3 which interacts with cullin-3 ubiquitin ligase
[60, 61].

In parallel to the aforementioned findings that reveal
reduced functionality of neuron cells in the aged brain,
we observed overexpression of genes involved in stress
responses, repair, and apoptosis. Among them is HSPA2, a
chaperone that inhibits aggregation and mediates folding of
newly translated polypeptides [62], and SEPP1, that plays
central role in selenium homeostasis [63, 64] and has been
linked to glucose metabolism and type 2 diabetes [65], as
well as several members of the ROS-activated MAPK family
(e.g., MAPK1, MAP2K1, MAP3K4, and MAP4K3) [66, 67].
Additional induced stress-related genes includedDDIT4 that
regulates p53/TP53-mediated apoptosis in response to DNA
damage via its inhibition on mTORC1 activity [68, 69]; GJA1,
which mediates the transduction of cell survival signals [70,
71]; andLITAF, which has been functionally involved inTNF-
𝛼 and p53-induced apoptosis [72, 73] as well as in inflam-
matory and immune responses [74, 75]. These observations
are in line with a previous meta-analysis study of age-related
gene expression profiles by de Magalhães and coworkers [49]
who found that the immune/inflammatory response pathway
is upregulated during aging, highlighting also genes involved
in stress responses and apoptosis. Thus, as these authors
suggested [49], the identified gene expression signatures
(though, likely, revealing true biomarkers of human ageing)
may in fact indicate an indirect transcriptional response to
the progression of ageing rather than an underlying mecha-
nism; nevertheless, this notion should await further experi-
mental evidence.

Regarding the sex-dependent gene expression signature
in the aged skeletal muscle, most of the 46 common (though
being differently regulated) DEGs in males and females are
involved in fundamental biological processes and pathways,
including oxidative phosphorylation, MAPK signalling, pro-
tein folding, apoptosis, cytokine-mediated signalling, and
calcium ion homeostasis.These observations further support
the notion that gender is a risk factor for a plethora of patho-
logical conditions in humans including ageing [76–78].These
sex-dependent differences in expression profiles could be
explained by documented variations in gene regulation [79,
80] or by the different physiological or biochemical require-
ments of the respective tissues in the two genders. Specifically,
the reported sex-dependent differences in skeletal muscle
overallmass and fatigability [81], the type of individual fibbers

[82–85], the activities of several metabolic enzymes, the sex-
dependent lipid content and oxidation [82, 86, 87], the rela-
tive expression of different myosin isoforms [88], and the dis-
tinct hormonal levels may impact age-related changes of the
muscle [89] including muscle protein synthesis and differen-
tiation [90]. On the basis of our findings, gene expression
profile in males is characterized by overexpression of genes
involved in transcription, mRNA processing, and translation
process (these genes were suppressed in females) [80], some-
thing which might represent a reparative mechanism in the
muscle to counteract the age-related declined protein syn-
thesis and increased muscle break-down. Sex-dependent dif-
ferential gene expression levels were also associated with the
key longevity regulating pathway of insulin signalling in the
skeletal muscle of aged females, where we noted suppression
of the EIF4E, IKBKB, EIF4EBP1, SLC2A4, RHOQ, PHKA1,
ARAF, and PRKAG1 genes and overexpression of INSR and
PIK3R1. Various studies have indicated that females are more
sensitive to insulin as regards both the stimulation of glucose
uptake in muscle and the suppression of glucose production
in liver [91]; the defects in this pathway lead to various
metabolic abnormalities such as type 2 diabetes, hyperlip-
idaemia, and cardiovascular diseases. On the other hand,
genetic polymorphisms or mutations affecting (among oth-
ers) the insulin receptor or downstream intracellular effectors
such asAKT,mTOR, andFOXOhave been linked to longevity
in humans and model organisms [2, 92]. The prevalent
pathways that were differentially affected during male ageing
relate to neurodegenerative diseases such as HD, AD, and
PD; in this case, the implicated genes (CASP7, CALM3,
CYCS, SDHC, multiple subunits of Complex I, Complex IV,
and ATP synthase) are downregulated. Our observations are
supportive of previous studies implicating dysfunction of
mitochondria [49, 93] and accumulation of reactive oxygen
species (ROS) in the pathogenesis of progressive neurodegen-
erative diseases [94, 95].

Despite the limited number of common DEGs among
the skeletal muscle and nervous tissues, our analyses have
revealed commonly affected KEGG pathways; these include
the MAPK signalling pathway, focal adhesion, regulation
of actin cytoskeleton, metabolic pathways, the calcium sig-
nalling pathway, and pathways involved in cancer. These
findings support the existence of common age-related gene
expression signatures in the different tissues [49]; neverthe-
less, the low number of common DEGs indicate age-related
gene expression patterns which are, likely, tissue-specific [26,
96]. On the basis of the existing commonalities, we can
assume that different genes or/and members of protein fami-
liesmay operate as sensors of the ageing process by regulating
common nodal hub-genes that have been evolutionary
“chosen” to operate as conductors. These hub-genes could
represent candidate targets for rejuvenating and pharmaceu-
tical interventions aiming to improve human health during
ageing.

In the case of cellular senescence, gene expression pro-
filing of distinct cell types including epithelial, fibroblastic,
vascular, and haematopoietic stem cells highlighted the great
genetic heterogeneity that characterizes cellular senescence in
culture, since the only gene that was differentially expressed
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during senescence of human fibroblasts was FBN2. FBN2
is secreted into the extracellular matrix (ECM), becomes
incorporated into the insoluble microfibrils, and is likely
involved in elastic fibber assembly [97]. Moreover, FBN2
has been associated with reduced TGF-𝛽, expression, angio-
genesis, and increased oxidative stress in dermal fibroblasts
[98]. Concerning HMECs, only the UPP1 gene was common
among the 244 DEGs found in senescent cells; UPP1 has
been found overexpressed in various forms of solid cancers
such as breast and ovarian cancer [99, 100]. DEGs that were
common in more than two cell lines among the four cell
types studied (Figure 4) have been associatedwith senescence
phenotype and age-related diseases such as PD or AD. In
particular, NUP50 is involved in age-related deterioration
of nuclear pore complexes, leading to increased nuclear
permeability and influx of cytoplasmic proteins into the
nucleus. This nuclear “leakiness” is dramatically accelerated
during ageing, leading to the disruption of genome integrity.
It has thus been associated with the increased oxidative
damaged nucleoporins in old cells [101]. The protein PDIA6,
an enzyme located in the endoplasmic reticulum (ER),
catalyzing disulfide-bond formation, has a pivotal role in
protein folding. The upregulation of its expression under ER
stress in transgenic mouse models driven by the accumula-
tion of unfolded proteins indicates a cytoprotective role for
PDIA6 [102, 103]. Specific alleles of PICALM gene, encoding
phosphatidylinositol-binding clathrin assembly protein, were
recently shown to be associated with high risk of AD in
the elderly [104–106]. The ANP32E, a protein phosphatase
2 inhibitor (particularly in brain tissue, together with Cpd1
regulating protein phosphatase 2A activity), has been found
to be localised at synapses during synaptogenesis [107] acting
in a complex with ANP32A and SET for the stabilization
of short-lived mRNAs, containing AU-rich elements. More-
over, the ANP32E protein possesses an acetyl-transferase
inhibitory activity (in a complex with SET protein), playing
an important a role in chromatin remodelling and tran-
scriptional regulation [108]. Finally, the PTTG1 gene has
been involved in cell cycle regulation through the inhibition
of sister chromatid separation. Upregulation of PTTG1 has
been correlated with tumor formation and its induction
in senescent fibroblasts correlates with activation of p53
pathway in response to DNA damage [109]. Furthermore, the
identification of the “Lysosome” and “Proteasome” pathways
(among those that are deregulated during cellular senescence
of different cell types) is of interest as these machineries
play a central role in protein homeostasis and their func-
tionality declines with age [110, 111], while perturbations of
the ubiquitin-proteasome pathway have been involved in the
pathogenesis of various neurodegenerative diseases including
AD and HD [112–115].

Interestingly, over 50% of the common DEGs between in
vivo tissue ageing and cellular senescence exhibit a controver-
sial expression profile with the majority of them being upreg-
ulated in postmitotic tissues and downregulated in senescent
cells. Genes involved in transcriptional activation, chromatin
remodelling, cell-matrix adhesions, signal transduction,
inflammation, and repair processes had increased expres-
sion levels in tissue samples, highlighting the differential

complexity that characterizes in vivo tissue ageing and cel-
lular senescence. This is anticipated since the cells within a
tissue are confronted with a plethora of stimuli and stress
factors that derive from the extracellular environment and
dictate genetic and epigenetic changes that could account
for the observed differences. However, despite these dif-
ferences, seven KEGG pathways were overrepresented in
both conditions (i.e., cellular senescence and in vivo tis-
sue ageing), namely, Huntington’s disease, cancer, MAPK
signalling, focal adhesion, regulation of actin cytoskeleton,
metabolic pathways, and oxidative phosphorylation; these
findings indicate that (at least to some extent) there are
significant commonalities between cellular senescence and in
vivo ageing with enriched pathways being involved in cell-
extracellular matrix interactions and stress responses [116].
For instance, intercellular communication, as well as the
interplay of cells with the extracellular matrix, is pivotal
for the appearance of the senescent phenotype. This is
supported by the fact that senescent cells can also induce
senescence in neighbouring cells via gap junction-mediated
cell-cell contacts and processes involving ROS [117]. Indeed,
the cell-matrix adhesions were found to play essential role
in our analyses. Integrin signalling is dependent upon the
nonreceptor tyrosine kinase activities of the FAK (Focal
Adhesion Kinases) and Src (protooncogene tyrosine-protein
kinases) proteins, as well as the adaptor protein functions
of FAK, Src, and Shc (Src homology 2 domain containing)
to initiate downstream signalling events. These signalling
events culminate in reorganization of the actin cytoskele-
ton: a prerequisite for changes in cell shape, motility, and
gene expression [118]. However, FAK is activated not only
by integrin engagement but also through stimulation by
hormones and growth factors, including insulin and insulin-
like growth factor-I (IGF-I) [119, 120]; the latter is being
underexpressed during both cellular senescence and in vivo
tissue ageing.

5. Conclusions

In conclusion, our presented studies have revealed several
signalling pathwayswhich are, likely, implicated in themolec-
ular phenotypes of cellular senescence and/or in vivo tissue
ageing; the clarification, however, of whether these alterations
reflect responses to the progression of ageing or causal mech-
anisms (i.e., gerontogenes) should await further experimen-
tation. Despite sex-dependent variability (which has been
also reported previously in mouse studies analyzing caloric-
restriction mediated effects [121]), a number of responses to
signalling pathways which are functionally involved in can-
cer, focal adhesion, actin cytoskeleton, MAPK, and calcium
signalling, as well as in metabolism regulation, were found
to be differentially regulated during ageing of the skeletal
and nervous postmitotic tissues. On the other hand, genes
that are regulated in a cell type-independent manner during
cellular senescence refer to pathways involved in neurological
diseases, focal adhesion, actin cytoskeleton, proteasome, cell
cycle, DNA replication, purine-pyrimidine metabolism, and
oxidative phosphorylation. Coregulated pathways during cel-
lular senescence and in vivo tissue ageing referred to cancer,
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Huntington’s disease, MAPK signalling, focal adhesion, actin
cytoskeleton, oxidative phosphorylation, and metabolic sig-
nalling. In summary, our reportedmeta-analysis has revealed
novel sex- and tissue-biomarkers and biological processes
that are functionally involved in the human ageing pheno-
type, setting thus the basis formore detailed future functional
and validation studies.
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