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Abstract
α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applica-

tions including topical treatment of acne and skin cancer. Towards finding new pharmacolog-

ical strategies that overcome NRASmutant melanoma, we performed a cell proliferation-

based combination screen using a collection of well-characterized small molecule kinase

inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib

pharmacological efficacy against an NRASmutant melanoma cell line. The synergistic

effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated

AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis.

The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR).

MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular

docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of

RXR andmay thereby compete with RXR-mediated control of MITF expression. In summary,

these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with

mechanistic actions that convert a known safe natural product to a candidate combinatorial

therapeutic agent.

Introduction
Melanoma is a common, deadly form of skin cancer associated with sun exposure whose inci-
dence has been on the rise in recent years [1]. Historically melanoma has been insensitive to
systemic therapies and the primary treatment was surgical excision. BRAF and NRAS muta-
tions are the most common genetic drivers of melanoma, found in ~50% and ~20% of tumors
respectively, and are nearly mutually exclusive [2,3]. Several targeted therapies are now avail-
able for BRAF-mutated melanoma [4,5]. However there are few effective targeted therapy
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options for RAS-driven cancers. Identification of targetable vulnerabilities in NRAS mutated
cancers is an area of active research but so far no effective single-agent systemic therapies have
been identified [6,7]. Based on the observation that signaling pathways downstream of NRAS
often interact through ‘cross talk’ or feedback loops, attention has turned to identifying combi-
nations of drugs targeting effectors involved in distinct RAS signaling pathway [8].

Here we have examined a potential use of α-Mangostin, a naturally occurring organic
xanthonoid compound which can be isolated from various parts of the mangosteen tree (Garci-
nia mangostana), as a potential combinatorial agent against an NRAS mutated melanoma cell
line. Xanthones extracted from mangosteen have shown anti-proliferative activity in human
cancer cell lines, such as leukemia, breast cancer and liver cancer [9–11]. Isolates of α-Mangos-
tin are widely used in Southeast Asia for medicinal purposes based on antioxidant, anti-bacte-
rial, anti-inflammatory, anti-cancer and skin cancer prevention activities. Previously we found
α-Mangostin to have limited anti-proliferation activities against human primary melanocytes
at up to 10 μM concentration [12]. We reasoned that α-Mangostin might exhibit combinatorial
activity when paired with kinase inhibitory small molecules, which might reveal synergistic
opportunities. To this end, we performed a combination screen using a collection of well-char-
acterized kinase inhibitors whose targets are known, against the NRAS-mutant melanoma cell
line, SK-MEL2.

Materials and Methods

Combination screening of kinase inhibitor library with α-Mangostin
The library of kinase inhibitors (Table A in S1 File) was screened against the SK-MEL-2 cell
line alone or in combination with α-Mangostin to test for compounds with synergistic effects.
Cells were plated in 384-well clear bottom plates (Corning, Tewksbury, MA, USA) with 20,000
cell/ml density. Kinase inhibitors were pin-transferred into each well at a concentration of
2 μMwith or without 5 μM α-Mangostin. Cell proliferation and cytotoxicity were measured
via CellTiter-Glo Luminescent Cell Viability Assay Kit (Promega, Madison, WI) at 48 hours.
The combination index (CI) was used to quantitatively define an additive effect (CI = 1), syner-
gism (CI< 1), and antagonism (CI> 1) in drug combinations. CI was calculated as described
in (Chou 1984), using Calcusyn software (Biosoft, UK) [13].

Human melanoma cell lines culture
SK-MEL-2 cells and SK-MEL-30 cells were grown in Dulbecco’s modified Eagle medium
(DMEM; fetal calf serum, 10%; penicillin, 100 000 U/l; streptomycin sulphate, 100 mg/l; Life
Technologies, Grand Island, NY, USA). UACC257 cells were grown in Roswell Park Memorial
Institute (RPMI) 1640 Medium (serum, 10%; penicillin, 100 000 U/l; streptomycin sulphate,
100 mg/l; Life Technologies, Grand Island, NY, USA). Human primary melanocytes were
grown in TIVAMedium (Hams F10; fetal bovine serum 10%; Pennicillan 10,000 U/ml; Strep-
tomycin 10,000 U/ml; Glutamine 29.2 mg/ml; TPA-Phorbal Myristate Acetate 100 μg/ml;
3-Isobutyl-1-Methylxanthine 5x 10-3 M; N6, 20-O-Dibutyryladenosine 30,50-cyclic monophos-
phate sodium salt 1 x 10-2 M; Sodium Orthovanadate 100 mM; Fungizone 250 μg/ml; Geneti-
cin 50 mg/ml; Gibco and Sigma). Cells were incubated at 37°C in 5% CO2, 5% humidify and
passaged at 2 x 104 cells/ml when near-confluent monolayers were achieved. Cells were verified
as free fromMycoplasma contamination.
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Treatment of melanoma cells
The pan-RAF inhibitor Sorafenib was purchased from Bayer Corporation, West Haven, CT,
and α-Mangostin was purchased from Sigma. Compounds were dissolved in DMSO and
added directly to the culture medium of melanoma cells at the concentrations to be tested. Mel-
anoma cells incubated with culture medium with vehicle (DMSO) served as controls.

Cell proliferation assay
Drug cytotoxicity was determined using CellTiter-Glo Luminescent Cell Viability Assay Kit
(Promega, Madison, WI). Cells were plated in 96-well clear bottom plates (Corning, Tewks-
bury, MA, USA) at a density of 20 000 cells/ml in culture medium (DMEM supplemented with
10% FBS and penicillin/streptomycin), drugs were added to the first well of each row at a con-
centration of 2 μM alone or in combination with α-Mangostin (5 μM), then double diluted
more than 10 times. After 48 hours of culture, CellTiter-Glo reagents were used to measure cell
proliferation ratio. Luminescent assay measurements were read on the EnVision1 Multilabel
Plate Reader (Envision, Perkin Elmer) using ultrasensitive luminescence.

Colony formation assay
SK-MEL-2 cells were seeded in 6-well plates at a density of 100 cells/well and drugs were added
into each well at a concentration of 5 μM alone or with α-Mangostin (2 μM) for 6 days. Cells
were fixed with 4% paraformaldehyde, and colonies were stained with 0.1% crystal violet.

Immunofluorescence microscopy
SK-MEL-2 cells mounted on glass slides were fixed with 4% paraformaldehyde for 20 minutes,
and permeabilized with PBS containing 0.1% Triton X-100 and 0.1% glycine for 2 minutes on
ice. TUNEL Staining was performed using In Situ Cell Death Detection Kit, Fluorescein
(Roche Diagnostics, Germany). Cells were co-stained with 4’6’-diamidino-2-phenylindole
(DAPI) to visualize nuclei. The fluorescence images were taken using a FSX100 all-in-one
microscope (Olympus Corporation, Japan)

Western blotting
Western Blot analysis was performed as described previously [14]. The following primary anti-
bodies were used: anti-ERK, anti-phospho-ERK (Thr202/Tyr204), anti-AKT, anti-phospho-
AKT (Thr473), anti-Mcl-1, anti-beta-actin, anti-phospho-eIF2a, anti-eIF2a, anti-LC3, anti-
Atg5, anti-MITF (Cell Signaling Technology). UACC257 cells were cultured in Vitamin D defi-
cient medium for more than one week, and then treated with different concentration of α-
Mangostin (5 μM or 0.5 μM), ATRA (5 μM or 0.5 μM) or their combination for 8 hours. The
expression level of MITF was detected by western blot. ChemiDoc XRS system (Bio-Rad) was
used for imaging.

RT-PCR of CHOP and 36B4 relative expression
SK-MEL-2 cells were treated with α-Mangostin (2 μM), Sorafenib (5 μM) or their combination
for 8 hours. Total RNA was extracted from treated or vehicle control (DMSO treated) cells by
using an RNeasy kit (QIAGEN). The RNAs were PCR amplified using specific primers for
CHOP and 36B4. The primers used were CHOP forward (5’-GCGTCTAGA TCATGCT
TGGTGCAGATTC-3’), CHOP reverse (5’-GCGTCTAGAATGG CAGCTGAGTCATTGCC-3’),
to yield a 509-bp amplicon. The primers for the 36B4 RNA, which served as an internal stan-
dard, were obtained from Life Technologies.
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Statistical and computational analysis
The significance of the differences between the experimental conditions was determined using
Student’s t test for unpaired observations.

Drug Interaction analysis: The software Calcusyn (Biosoft, UK) was used for calculating
drug combination effect. CI (Combination Index) was used as the indicator of drug combining
dose-effect.

Molecular docking: Docking was performed using the Glide program within the Schrö-
dinger software suite. Coordinates for PDB ID 3A9E [15] were loaded and prepared using the
Protein Preparation Wizard by addition of hydrogen atoms and elimination of non-interacting
waters. A docking grid was generated for the region surrounding the RXR ligand, (2E, 4E, 6Z)-
3- methyl-7- (5,5,8,8-tetramethyl-3-propoxy-5,6,7,8-tetrahydronaphthalen-2-yl)octa-2, 4,6-tri-
enoic acid, in the original structure without imposing positional or hydrogen bond constraints.
Ligands were prepared using LigPrep for all possible states between pH 5 to pH 9. During
docking both rigid and flexible ligand sampling were allowed and the top scoring poses were
evaluated.

Results

Screening of the kinase inhibitors and verification of the combination
effect
To search for potential synergistic effects of combinatorial inhibition by α-Mangostin and
kinase inhibitors, a collection of known kinase inhibitors was screened with or without the
presence of α-Mangostin, which alone showed quite mild cytotoxity with IC50>10 μM in
human primary melanocytes (Table B in S1 File). The screening scheme is illustrated in Fig 1A
and 1B and utilizes a cell proliferation assay in the NRAS mutant melanoma cell line SK-MEL-
2. Top hit compounds were identified as significantly inhibiting cell proliferation after being
combined with α-Mangostin at a concentration of 5 μM and further verified by dose-response
relationships profiling assay. Analysis of validated hits indicated a relatively narrow clustering
of targets which included the inhibitors of the receptor tyrosine kinases VEGFR, EGFR,
mTOR, and GSK3β (Fig 1B). Sorafenib, Rapamycin, Torin1 and CHIR99021 are representative
compounds.

We were specifically interested in the combinatorial effect of Sorafenib and α-Mangostin
since Sorafenib has already been FDA approved for use in humans; current indications are
for advanced renal cell and hepatocellular carcinomas. Although Sorafenib has shown little
promise as a single agent in melanoma patients, Sorafenib targets multiple kinases including
VEGFR, PDGFR, FLT3, C-Kit and the RAF family [16]. In a 48 hour cell proliferation assay, α-
Mangostin enhanced Sorafenib potency more than 5 fold in SK-MEL-2 cells by improving Sor-
afenib’s IC50 from 3.41 μM to 0.71 μM (Fig 1C and 1E), and more than 3 fold in SK-MEL-30
cells from 3.9 μM to 1.2 μM (Fig 1D and 1E). The synergistic effect of α-Mangostin and Sorafe-
nib was further verified with Calcusy analysis [13]. The Combination Index (CI) is widely used
as an indicator of drug interactions. The quantitative definition of additive effect (CI = 1), syn-
ergism (CI< 1), and antagonism (CI> 1) were used in drug combinations. When calculated
for α-Mangostin and Sorafenib, the CI was 0.1 both in SK-MEL-2 cells and SK-MEL-30 cells at
the half lethal dosage, suggesting strong synergistic effects (Fig 1E).

Combining α-Mangostin and Sorafenib suppresses cell colony formation
We next asked if the synergistic effect of Sorafenib and α-Mangostin on inhibition of SK-MEL-
2 could be replicated in prolonged cell culture and therefore performed a 6-day clonogenic
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growth assay. SK-MEL-2 cells treated with Sorafenib (5 μM) and α-Mangostin (2 μM) signifi-
cantly suppressed colony growth by more than 50%, as compared to cells grown in the presence
of individual agents (5 μM Sorafenib or 2 μM α-Mangostin) (Fig 2A and 2B). We then asked
whether the combination of Sorafenib and α-Mangostin was inducing apoptosis in these can-
cer cells using TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) stain-
ing assays. Strong TUNEL staining indicates DNA fragmentation and activated apoptosis. We
saw a significant increase in the number of apoptotic cells when Sorafenib was combined with

Fig 1. A cell proliferation based combination screening of α-Mangostin with kinase specific inhibitors.
A and B, show the screening scheme of primary screening and hit identification on SK-MEL-2 cell line. C, The
dosage dependent cell proliferation assay of drugs and drug combination on SK-MEL-2 cells. D, The dosage
dependent cell proliferation assay of drugs and drug combination on SK-MEL-30 cells. E, Synergistic effect of
drug combination. CI (Combination Index) value at half lethal dosage IC50 indicated a strong synergistic effect
of α-Mangostin and Sorafenib combination.

doi:10.1371/journal.pone.0155217.g001

Fig 2. α-Mangostin activates Sorafenib induced apoptosis. A, Clonogenic survival assay was performed
to examine the synergistic effect of the combination of Sorafenib and α-Mangostin on the survival of SK-MEL-
2 cells. Cell colonies ware stained in blue. B, Colony numbers were counted. The combination of Sorafenib
and α-Mangostin significantly suppressed colony formation (p = 0.001). C, TUNEL staining detects cell
apoptosis. Slices were cultured in medium containing Sorafenib (5 μM), α-Mangostin (2 μM) or their
combination for 3 hours and stained for TUNEL (red) or 40, 6-diamidino-2-phenylindole (DAPI; blue).
Representative images of three independent experiments are shown. D. Apoptotic cells were counted.
Student’s T-test showed that a significant increase of apoptotic cells appeared in the drug combinatorial
treatment (p = 0.0003).

doi:10.1371/journal.pone.0155217.g002
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α-Mangostin treatment (Fig 2C and 2D). To further examine this observation, we monitored
levels of Mcl-1, an important component of many survival pathways [17], in prolonged 8 hour
drug treatment experiments and noted a significant down regulation with combination treat-
ment (Fig 3A). We also observed increased levels of cleaved-PARP for the combination treat-
ment (Figure A in S1 File). These results suggest that apoptosis could play a major role in the
enhanced anti-proliferative effects of Sorafenib/α-Mangostin treatment on SK-MEL-2 cells.

The combination effect of α-Mangostin and Sorafenib on AKT and ERK
activation
To explore signaling consequences upon exposure to combination Sorafenib and α-Mangostin,
we examined the expression and activation status of AKT and ERK which are often activated
in RAS-driven tumors and are cytoprotective, as has been observed in drug-resistant mela-
noma [18,19]. The effects of Sorafenib (5 μM), α-Mangostin (2 μM) or their combination on
the phosphorylation of AKT and ERK in SK-MEL-2 cells for 3 hours were analyzed byWestern
blot (Fig 3B) and revealed that the phosphorylation of AKT (S473) and ERK are more strongly
suppressed with combination treatment when compared to single agent treatment.

α-Mangostin enhances Sorefenib’s induction of ER stress and inhibits
autophagy
Sorafenib has been shown to induce autophagy in human hepatocellular carcinoma cells
(HCC) through a mechanism that involves endoplasmic reticulum (ER) stress [20]. Autophagy
upregulation has also been proposed as a possible mechanism for drug resistance in HCC [20].
To evaluate whether similar mechanisms may be involved here, we studied markers of autop-
hagy and ER stress. Expression levels of CHOP and phosphorylation levels of eIF2-α are proto-
typical markers of the endoplasmic reticulum stress dependent unfolded protein response
(UPR) signaling pathway [21]. Autophagy protein 5 (Atg5), an E3 ubiquitin ligase, is required
for autophagy due to its role in autophagosome elongation and conversion of the soluble form
of LC3 (LC3-I) to a lapidated and autophagosome-associated form (LC3-II) [22]. We found
elevated expression levels of CHOP and p-eIF2α in SK-MEL-2 cells upon combinatorial treat-
ment with α-Mangostin and Sorefenib (Fig 3C and 3D) suggesting that ER stress and autop-
hagy could induce apoptosis. However, expression levels of autophagy-related proteins Atg5
and LC3II (Fig 3C and 3D) were decreased in SK-MEL-2 cells treated with the combination of
5 μM Sorefenib and 2 μM α-Mangostin for 8 hours. These data suggest that the relationship of
this drug combination to autophagy is not straightforward and may or may not contribute to
the mechanism of synergy.

α-Mangostin Acts Through the Retinoic Acid Receptor (RXR)
To gain further clues regarding the molecular mechanism(s) of action for α-Mangostin, we
used a compound-structure oriented approach to identify possible targets of α-Mangostin (Fig
4A). We searched for compounds with known biological targets whose core structures were
similar to α-Mangostin and found several including RXR modulators LG100754 [23] and
CF31 [24]. The binding of CF31 and RXR- α results in inhibition of RXR- α transactivation
and induces TNF- α dependent cancer cell apoptosis. Additionally, we previously reported that
α-Mangostin could alter MITF (Microphthalmia-associated transcription factor) mRNA
expression [12,25], which has been suggested to be regulated by RAR (Retinoic Acid Receptor)
and VDR (Vitamin D Receptor) by forming a heterodimer with RXR (Retinoid X Receptor)
[26–28].
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A molecular docking study using a previously reported crystal structure of RXR (PDB
3A9E) showed that α-Mangostin is compatible with the RXR’s ligand binding pocket, the com-
mon binding partner of RAR and VDR (Fig 4B). Comparison of a docking model of α-Man-
gostin and several analogues to the previously characterized binding mode of the RXR ligand
LG100754 [15,24] showed similar modes of insertion between LG100754, α-Mangostin and its

Fig 3. Impact of Sorafenib and α-Mangostin combination on AKT, ERK, and ER stress and autophagy
markers. A, MCL-1 expression was suppressed by Sorafenib (5 μM) and α-Mangostin (2 μM) treatment for 8
hours in SK-MEL-2 cells. B, Down regulation of phosphorylation of AKT and ERK is much stronger at three
hours treatment with the combination of Sorafenib (5 μM) and α-Mangostin (2 μM) as compared to single
agent treatments. C, The increased expression of phosphorylation of eIF2α were induced by the combination
of Sorafenib and α-Mangostin for 8 hours, indicating ER stress. D, The relative mRNA expression level of
CHOP. SK-MEL-2 cells were treated with Sorafenib (2 μM), α-Mangostin (2 μM) or their combination for 3
hours. The relative mRNA expression level of CHOP was detected by real-time polymerase chain reaction
(PCR). Data shown are the means (±SEM) from at least three independent experiments. The statistical
significance increase of CHOP expression was determined by Student’s T test (P = 0.02). E. Atg5 and LC3II
levels were detected after the treatment of Sorefenib (5 μM) or α-Mangostin (2 μM).

doi:10.1371/journal.pone.0155217.g003

Fig 4. α-Mangostin modulates MITF expression via RXR binding. A. Chemical structure of α-Mangostin
resembles CF31, which targets RXR. B, Molecular docking shows that α-Mangostin is accommodated by the
RXR ligand binding pocket. In the top panel RXR is cyan and α-Mangostin is shown as spheres. A close-up
view of interactions between RXR and α-Mangostin is shown in the bottom. C. Structure of MITF promoter
region. The binding sites of VDR/RXR, RAR/RXR D5 and NURR1/RXR are located at position of -912, -722,
and -238 respectively. D. ATRA, a RAR activator, significantly induces expression of MIFT in a dose
dependent manner but α-Mangostin blocks expression.

doi:10.1371/journal.pone.0155217.g004
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analogs into the RXR hydrophobic ligand binding cleft. However, stabilization of the interac-
tion of α-Mangostin and RXR protein is primarily by hydrophobic interactions (Fig 4B).

Based on the docking results and similarity to other RXR ligands, we hypothesized that α-
Mangostin might interrupt RAR and VDR binding through binding to the RXR ligand binding
pocket. To test this, we studied the effects of α-Mangostin on UACC 257 cells, where it had
been previously shown that the expression level of MITF is regulated by RXR and associated
proteins [29]. More specifically, motif mapping of the MITF promoter suggested that a VDR/
RXR binding motif is located at position -912, and a RAR/RXR D5 binding motif is at position
-722. MITF also has a NURR1/RXR binding site at -238 (Fig 4C). Western analysis confirmed
that α-Mangostin modulates MITF expression in a dose dependent manner, and the upregula-
tion of MITF expression level by ATRA is neutralized by 5 μM α-Mangostin (Fig 4D).

Discussion
Although about 20% of melanomas contain RAS mutations, there are still no approved targeted
therapies available for them. The challenge for targeting RAS mutant cancer lies in the complexity
of targeting the RAS protein, coupled to the multiple biological properties and functional roles of
RAS involved in cell growth, differentiation and survival [30]. Once activated, RAS recruits and
stimulates a number of signaling pathways includingMAPK and PI3K/AKT pathway. Aberrant
activation of RAS leads to constitutive activation of the MAPK signal transduction pathway
resulting in proliferation and promotion of tumor growth [31]. The existence of redundant feed-
back among RAS-MEK-ERK, PI3K/AKT pathways and intensive crosstalk among other cell sur-
vival signaling pathways, such as JNK-p38 make it extremely difficult to target RAS alone [32–
34]. Various alternative strategies have been proposed, including targeting membrane localization
of RAS protein by inhibiting farnesyltransferase [35], targeting upstream or downstream effectors
of RAS signaling through inhibitors of EGFR, BRAF, PI3K/AKT and PLK [36,37]. Even though
all these approaches hold promise, none has translated into effective clinic use. This prompts us
to search alternative therapeutic strategies for RAS mutant melanoma treatment, especially to use
protein kinase inhibitors in combination with therapeutics having different modes of action. One
rationale is that multiple kinase inhibitors have been approved for cancer treatment, and RAS sig-
naling pathways are intensively involved with kinase cascades [38,39].

In an attempt to search for new compounds that could partner with kinase inhibitors for
inhibition of NRAS mutant melanoma [40], we combined α-Mangostin with a series of kinase
inhibitors to treat the NRAS mutant melanoma cell line SK-MEL-2. Mangosteen (Garcinia
mangostana Linn) pericarp, which contains primarily xanthones, has been used for medicinal
purposes for a long time in Southeast Asia. α-Mangostin is the most abundant xanthone in
mangosteen pericarp. It has been confirmed to have anti-proliferative and apoptotic effects in
various types of human cancer cells at the high end of dosage [41–43]. Even though α-Mangos-
tin has not shown an anti-cell proliferation effect in our previous human skin pigmentation
studies [12], we suspected that α-Mangostin might combine with other compounds to extend
its medicinal utility. We therefore performed a drug combination screening of α-Mangostin
with a collection of compounds containing known-target kinase inhibitors, against SK-MEL-2,
a NRAS mutant melanoma cell line.

Our primary screening results indicated that the top kinase inhibitor hits, which synergized
with α-Mangostin primarily targeted three kinase clusters, i.e., Receptor Tyrosine Kinases
(VEGFR, EGFR), mTOR and GSK3β. Agents targeting these enzymes included Sorafenib, Rapa-
mycin, Torin1 and CHIR99021. Sorafenib is the first RAF kinase-targeting drug that reached
clinical trials, and is an oral multi-kinase inhibitor that inhibits RAF/MEK/ERK, VEGFR, and
PDGFR [44]. Sorafenib showed insufficient potency against melanoma even with BRAFmutation
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[45,46]. When combined with α-Mangostin, the potency of Sorefenib against SK-MEL-2 cell
growth was enhanced more than 5 fold. Further clonogenic assay indicated that the combination
of α-Mangostin and Sorefenib could suppress cancer cell clonogenic growth. Cell signaling analy-
sis indicated that the cell survival pathways mediated by AKT and ERK were down regulated sig-
nificantly by the combination of α-Mangostin and Sorefenib. While α-Mangostin and Sorefenib
appeared to induce ER stress, it autophagy markers were diminished after exposure to the combi-
nation. Further analysis of autophagy in the context of this drug combination will be needed
[20,47,48]. Since it is common for small molecule kinase inhibitors to produce eventual cancer
cell resistance, it is plausible that sorafenib resistance may eventually emerge. The use of a potenti-
ating nontoxic natural product as shown here, may improve this concern, but it remains realistic
to assume that resistance may eventually arise. It will be interesting to determine whether more
specific kinase inhibitors than sorafenib may produce distinct patterns of resistance.

The compounds in the family of Xanthones are known to possess a wide spectrum of phar-
macologic properties, including antioxidant, anti-tumor, anti-inflammatory, and anti-bacterial
activities [49]. Because of its relatively rigid chemical structures and lipophilic properties, Xan-
thones potentially can target a variety of cellular proteins [50]. There are several reports on the
proposed cellular targets of α-Mangostin, such as CDK4 [51] and fatty acid synthase [10]. In
order to search for a potential cellular target of α-Mangostin, we performed a molecular dock-
ing study using a previously reported crystal structure of RXR (PDB 3A9E). The computational
data showed that α-Mangostin is compatible with the RXR’s ligand binding pocket, the com-
mon binding partner of RAR and VDR, primarily by hydrophobic interactions. α-Mangostin
showed similar modes of insertion between LG100754, CF31 and its analogs into the RXR
hydrophobic ligand binding cleft [15,24].

In summary, we discovered that the potential benefits of Sorafenib in combination with α-
Mangostin might serve as a new therapeutic platform upon which to improve treatment of
melanoma patients harboring NRAS mutations. The synthetic lethality of the α-Mangostin
and Sorafenib combination might produce their effects through synergistic inhibition of
MAPK/AKT signal transduction and modulation of MITF mediated cell survival pathways.
Natural products have been widely studied as candidates in treatment of various cancers.
There is a need to characterize promising dietary agents for chemoprevention and therapy of
melanoma. Our discovery of α-Mangostin targeting RXR might provide a new mechanistic
understanding of its medicinal utility. The use of these novel compounds alone or in combina-
tion therapies will hopefully provide eventual value to patients.

Supporting Information
S1 File. Supporting Information. Table A: The list of the top hit compounds that were tested.
Table B: The dose dependent cell proliferation assay of α-Mangostin on human primary mela-
nocytes. α-Mangostin shows no sign of cytotoxicity in the range of concentrations we tested,
with IC50>10 μM. Figure A: The expression of cleaved-PARP and PARP. The expression of
cleaved-PARP and PARP were analyzed by western blot in SK-MEL-2 cell lines exposed to Sor-
afenib (2 μM) in either the presence or absence of α-Mangostin (2 μM) for 8 hours. The expres-
sion of cleaved-PARP was increased with the combination of Sorafenib and a-Mangostin.
(PPTX)
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