
����������
�������

Citation: Zhang, R.; Gao, R.; Gou, Q.;

Lai, J.; Li, X. Precipitation

Polymerization: A Powerful Tool for

Preparation of Uniform Polymer

Particles. Polymers 2022, 14, 1851.

https://doi.org/10.3390/

polym14091851

Academic Editor: Asterios (Stergios)

Pispas

Received: 25 March 2022

Accepted: 8 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Precipitation Polymerization: A Powerful Tool for Preparation
of Uniform Polymer Particles
Randi Zhang * , Rong Gao , Qingqiang Gou, Jingjing Lai and Xinyang Li

Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd.,
Beijing 100013, China; gaor.bjhy@sinopec.com (R.G.); gouqq.bjhy@sinopec.com (Q.G.);
laijj.bjhy@sinopec.com (J.L.); lixinyang.bjhy@sinopec.com (X.L.)
* Correspondence: zhangrd.bjhy@sinopec.com

Abstract: Precipitation polymerization (PP) is a powerful tool to prepare various types of uniform
polymer particles owing to its outstanding advantages of easy operation and the absence of any
surfactant. Several PP approaches have been developed up to now, including traditional thermo-
induced precipitation polymerization (TRPP), distillation precipitation polymerization (DPP), reflux
precipitation polymerization (RPP), photoinduced precipitation polymerization (PPP), solvothermal
precipitation polymerization (SPP), controlled/“living” radical precipitation polymerization (CRPP)
and self-stabilized precipitation polymerization (2SPP). In this review, a general introduction to
the categories, mechanisms, and applications of precipitation polymerization and the recent devel-
opments are presented, proving that PP has great potential to become one of the most attractive
polymerization techniques in materials science and bio-medical areas.

Keywords: precipitation polymerization; polymer microspheres; applications

1. Introduction

Functional materials are the core of the new materials field and have been developed
very rapidly in recent years [1]. The polymer microspheres with optimized characteristics,
such as uniform size and shapes, the functionality of the base polymer, the morphology
of the polymer particles, and the degree of crosslinking, are attractive for a wide number
of applications, including supporting phases for separation science [2,3], biomedical de-
vices [4], chromatography separation [5–7], casting additives [8], and controlled release
reservoirs [9,10].

Polymer microspheres of a particular size and uniformity are generally obtained with
one of the heterogeneous polymerizations, including suspension, emulsion, dispersion,
and seeded polymerizations. All the methods mentioned above require the presence of
a suitable stabilizer or surfactant, usually in large quantities, to induce the formation of
particles and prevent the aggregation of the colloidal particles. For instance, in disper-
sion polymerization, polymeric particles form and precipitate from the reaction medium,
and stabilizers such as poly(vinyl pyrrolidone) must be utilized to stabilize polymeric
particles. Precipitation polymerization (PP), first reported by Stöver et al. [11], was a very
impressive method for the preparation of surface-clean microspheres without adding any
stabilizer/surfactant or other additives, in which polymeric microspheres form by self-
crosslinking of monomers/crosslinkers and precipitate out of the homogeneous solution
due to the newly formed polymers with low solubility in the selected reaction media (Θ
solvent) [12].

PP starts from a homogeneous mixture of monomer, initiator, and optional
solvent [11,13,14]. Stöver et al. proposed that precipitation polymerization of divinylben-
zene (DVB) in near-Θ solvents is an entropic precipitation in cases where cross-linking
prevents the polymer and solvent from freely mixing [15], and they further proposed the
transient solvent-swollen gel layer mechanism to explain the formation, stabilization,
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and growth of microspheres [13,14]. Uniform spherical polymer particles are formed
through the particle nucleation and growth stages, where particle nuclei are generated
by the aggregation of oligomers at the beginning of the polymerization, and their growth
occurs mainly through capturing oligomeric radicals from the reaction medium by their
reacting with the residual vinyl groups on the surfaces of the existing particles [14]. Fur-
ther examinations showed that the presence of bifunctional monomers, suitable reaction
medium, and moderate shaking are the keys to the formation of highly cross-linked
monodisperse microspheres and various functionalized, porous, and core-shell micro-
spheres by PP have been well prepared [16,17]. Figure 1 shows the polydivinylbenzene
(PDVB) microspheres with porous shells prepared in a toluene/acetonitrile mixture.
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Figure 1. SEM image of poly(DVB-55) microspheres with porous shells prepared in a
toluene/acetonitrile (40/60) mixture. Reprinted with permission from Ref. [16]. Copyright 2000
American Chemical Society.

Recent years have witnessed the rapid development of precipitation polymerization,
and again, the method could offer an efficient way to tune the size and porosity of the
spherical particles through control of the polymerization condition, as well as avoiding
environmental pollution and increasing costs of additives, thus opening up numerous
potential applications of functional materials [6,18]. More researchesr have been focused
on such techniques, such as molecularly imprinted polymers (MIPs) [19–23] or liquid crys-
talline (LC) polymer particles [24,25], which have been attractive in recent years. Figure 2
shows the typical crosslinkers and monomers (including copolymer monomers) adopted
for PP, along with 2,2-azobisisobutyronitrile (AIBN) as the frequently used initiator.



Polymers 2022, 14, 1851 3 of 15Polymers 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 2. The chemical structures of crosslinkers (1–5) and monomers (6–17) for the precipitation 
polymerization. (1) Divinylbenzene, (2) ethylene glycol dimethylacrylate, (3) trihydroxymethyl 
propane trimethyl acrylate, (4) N,N′-methylenebis(acrylamide), (5) N,N′-Bis(acryloyl)cystamine, (6) 
acrylic acid, (7) methacrylic acid, (8) 2-hydroxyethyl methacrylate, (9) glycidyl methacrylate, (10) 
vinyl acetate, (11) styrene, (12) maleic anhydride, (13) 1-vinyl-2-pyrrolidone, (14) 4-vinyl pyridine, 
(15) 1-vinylimidazole, (16) 2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium, (17) 2-
methacryloyloxyethyl phosphorylcholine. 

2. Categories of Precipitation Polymerization 
During the development of PP, several different kinds of approaches based on the 

conventional free radical polymerization mechanism have been developed for the 
preparation of uniform crosslinked spherical polymer particles. Except for traditional 
thermo-induced precipitation polymerization (TRPP) [16,17,26–28], new methods such as 
distillation precipitation polymerization (DPP) [29], reflux precipitation polymerization 
(RPP) [30,31], photoinduced precipitation polymerization (PPP) [32–34], solvothermal 
precipitation polymerization (SPP) [35], controlled/‘‘living’’ radical precipitation 
polymerization (CRPP) [36,37] and self-stabilized precipitation polymerization (2SPP) 
[38,39] have also been successively developed (Figure 3). So far, in addition to DVB, many 
other multifunctional monomers have been applied to prepare crosslinked polymeric 
microspheres, including methacrylates, acrylamides, styrene, acrylonitrile, and p-
chloromethylstyrene. Functionalization of polymer particles is of great importance for 
their application, and microspheres have unreacted double bonds on their surface, 
allowing their post functionalization and the synthesis of microspheres with core-shell 
structures [40,41]. 

Over the years, many research groups have become interested in further exploring 
the scope, versatility, and mechanisms of PP, including addressing the challenges that 
remain in the enhancement of productivity and solving the restriction of solvents in order 
to enlarge more types of monomers [42–44]. In addition to being a source of academic 
interest, those new systems and their resulting crosslinked polymeric microspheres have 
displayed genuine potential for industrial applications and have been systematically 
summarized [12]. Herein, we collect together some of the more recent results within the 
field, with the main emphasis being placed on the new types of precipitation 

Figure 2. The chemical structures of crosslinkers (1–5) and monomers (6–17) for the precipitation
polymerization. (1) Divinylbenzene, (2) ethylene glycol dimethylacrylate, (3) trihydroxymethyl
propane trimethyl acrylate, (4) N,N′-methylenebis(acrylamide), (5) N,N′-Bis(acryloyl)cystamine,
(6) acrylic acid, (7) methacrylic acid, (8) 2-hydroxyethyl methacrylate, (9) glycidyl methacrylate,
(10) vinyl acetate, (11) styrene, (12) maleic anhydride, (13) 1-vinyl-2-pyrrolidone, (14) 4-vinyl pyridine,
(15) 1-vinylimidazole, (16) 2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium, (17) 2-
methacryloyloxyethyl phosphorylcholine.

2. Categories of Precipitation Polymerization

During the development of PP, several different kinds of approaches based on the con-
ventional free radical polymerization mechanism have been developed for the preparation
of uniform crosslinked spherical polymer particles. Except for traditional thermo-induced
precipitation polymerization (TRPP) [16,17,26–28], new methods such as distillation precip-
itation polymerization (DPP) [29], reflux precipitation polymerization (RPP) [30,31], pho-
toinduced precipitation polymerization (PPP) [32–34], solvothermal precipitation polymer-
ization (SPP) [35], controlled/“living” radical precipitation polymerization (CRPP) [36,37]
and self-stabilized precipitation polymerization (2SPP) [38,39] have also been successively
developed (Figure 3). So far, in addition to DVB, many other multifunctional monomers
have been applied to prepare crosslinked polymeric microspheres, including methacrylates,
acrylamides, styrene, acrylonitrile, and p-chloromethylstyrene. Functionalization of poly-
mer particles is of great importance for their application, and microspheres have unreacted
double bonds on their surface, allowing their post functionalization and the synthesis of
microspheres with core-shell structures [40,41].

Over the years, many research groups have become interested in further exploring the
scope, versatility, and mechanisms of PP, including addressing the challenges that remain
in the enhancement of productivity and solving the restriction of solvents in order to
enlarge more types of monomers [42–44]. In addition to being a source of academic interest,
those new systems and their resulting crosslinked polymeric microspheres have displayed
genuine potential for industrial applications and have been systematically summarized [12].
Herein, we collect together some of the more recent results within the field, with the main
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emphasis being placed on the new types of precipitation polymerization, such as categories,
origin, and mechanisms. We hope our collected findings will illustrate the value of the
research and, furthermore, will encourage other researchers to become involved in the
challenges ahead.
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2.1. Distillation/Reflux Precipitation Polymerization

Distillation precipitation polymerization (DPP) is a method of controlling microsphere
formation by solvent distillation during the polymerization process. The solvent will
evaporate out with the increase in the temperature, and the concentration of the reactants
gradually increases, which would result in faster reaction rates [45]. Huang and Yang et al.
have made efforts to achieve the hydrophilic property of the surface of the microspheres
with wider ranges of polarity and functionality [29], as well as giving the growth mecha-
nism for leading to good spherical shape [46,47]. During the investigation of the hydrophilic
poly(methacrylic acid) (PMAA) polymer particles, they proposed that the presence of hydro-
gen bonding interactions between the carboxylic acid groups as a non-covalent linkage or
physical crosslinking plays a key role in the nucleation process [48]. Functional monomers
such as methacrylates, acrylates, chloromethylstyrene, amide, pyrrolidone, carboxylic
acid, and acrylonitrile were introduced to prepare narrow-disperse microspheres [49–54];
meanwhile, the tri- or tetra-layer polymer and inorganic/polymer composite/hybrid mi-
crospheres with movable inner core have also achieved successfully [55,56]. Wang et al.
then proposed a more efficient approach, reflux precipitation polymerization (RPP) [31],
by simplifying the apparatus to a handy manual refluxing operation and introducing
mechanical stirring, in which the well-defined polymeric nanogels could precipitate from
the poor solvent without adhesion to the reaction flask inner wall that makes it easily be
scaled up and freely time-controlled [30]. Currently, most of the efforts have focused on
the combination of DPP or RPP with other polymerization techniques (e.g., living radical
polymerization [57,58] or ‘click’ chemistry [59–61]) to meet the use of specific materials
in various areas, such as drug/gene delivery, glycopeptides/protein enrichment [62,63],
molecular recognition [45] and cell detection. For the precisely controlled structures, modu-
lar functionalities, and desirable payload encapsulation [49,64–68], we can foresee its huge
potential in preparing novel multifunctional nanostructures to meet the requirements of
multidisciplinary applications [69].

In particular, a series of biodegradable zwitterionic stimuli-responsive (e.g., pH/redox)
nanogels with crosslinker that contains disulfide bond or metal ions, especially for drug de-
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livery, via either DPP/RPP or aqueous precipitation polymerization, have been prepared for
its advantages of avoiding the application of toxic surfactants and stabilizers [64–68,70–76].
Much of the residual functional groups on the core surface, which enables the polymer
nanoparticles for further modification, remained [77,78]. The applications in recognizing
small organic molecules, especially for MIPs [79,80], or facilitating the uniform polymer
coating on the magnetic nanoparticle surface [81], have also attracted much attention.
Zhao et al. combined RAFT and RPP for the synthesis of novel water-compatible MIPs
with improved mass transport [57]. Jiang et al. prepared a novel kind of Ni2+ immobilized
crosslinked PMAA layer coated Fe3O4 magnetic core, which was promising for practi-
cal applications of His-protein separation and purification in proteomics [82]. Yuan et al.
developed superparamagnetic microspheres bearing phosphine oxide groups for effec-
tive extraction of uranium from highly acidic solution [83,84]. Chang et al. prepared
Fe(II)-based coordination polymer nanohydrogels as a new type of nanozyme by RPP
with N,N′-methylenebis(acrylamide) (MBAm) as a crosslinker, showing a regular spherical
morphology with a larger size (Figure 4) [76].
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2.2. Photoinitiated Precipitation Polymerization

Limé and Irgum prepared a series of highly cross-linked micrometer-sized polymer
particles made from DVB, alone or copolymerized with 2,3-epoxypropyl methacrylate or
styrene by irradiation from a 150 W short arc xenon lamp with AIBN as the initiator, and
namely photoinitiated precipitation polymerization (PPP) [33,34]. By using photoinitiation
instead of thermal initiation, it was possible to avoid coagulum and arrive at spherical
particles with an exceptionally high monodispersity for particles of this size range (polydis-
persity index < 1.02) and with monomer loadings well above 5 % [85–87]. Moreover, the
PPP method can be carried out at low temperatures with corresponding lower tendencies
of aggregate formation and also allows the polymerization temperature and initiation rate
to be varied independently [33]. Chemtob et al. summarized the main cross-linkers and
monofunctional monomers used in PPP, as well as the polymerization mechanism that a
transient polymer surface gel layer plays a key role in the colloidal stabilization of particles
by a so-called “auto-steric” stabilization process [88].

Tugrul Cem Bicak first reported the combination of type II photoinitiation with PP for
the synthesis of highly crosslinked and spherical PDVB particles with click functionality
by using a benzophenone-tertiary amine initiation system [41]. Wang et al. prepared
the composite of acrylamide on the surface of nano TiO2 under ultraviolet light by PPP,
providing a facile strategy for the synthesis of organic-inorganic hybrid flocculants [89].
Zeng et al. prepared a new absorbent triethylene tetramine-modified crosslinked polyacry-
lonitrile in water at room temperature using FeC2O4 as the photoinitiator and MBAm as a
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crosslinking agent, which could be used as an effective adsorbent for Cu(II) ions removal
from wastewater [90].

2.3. Solvothermal Precipitation Polymerization

To address the challenges of high solid content and high microsphere yield in the
fabrication of monodisperse microspheres (ex. the maximum monomer loading of DVB
in ACN cannot exceed 5% vol., and the yield for common precipitation polymerization
was always less than 50%), Chen et al. prepared monodisperse spherical PDVB, via
solvothermal precipitation polymerization (SPP), by adding monomer, initiator, and solvent
in a closed reaction vessel at temperatures above the boiling point of the solvent without
stirring [35]. Due to its fascinating features, such as an enhanced reaction rate, high yields,
uniformed size distribution, and the appropriate diameters ranging from nano-size to
micron-size, the proposed SPP method could find numerous ways in the synthesis of a
variety of monodisperse microspheres and the building of new inorganic–organic hybrid
materials [91]. Chen et al. further prepared a series of micron-sized, highly crosslinked
polymeric microspheres containing epoxy, lauryl, carboxyl, and hydroxyl groups by SPP at
20% (mass) monomer loading with over 94% microsphere yield (Figure 5), suggesting its
potential value for large scale-up preparation of various monodisperse microspheres with
a pure surface [92].
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2.4. Controlled/“Living” Radical Precipitation Polymerization

Living polymers with reactive end groups can be easily obtained via controlled/“living”
radical polymerization (CRP), which can be further extended to produce block polymers
and polymers with other more complicated architectures. Zhang et al. first introduced
the CRP mechanism into traditional polymer bead-forming, and proposed a series of
controlled/“living” radical precipitation polymerization (CRPP) approaches, including
(normal and reverse) atom transfer radical precipitation polymerization (ATRPP), iniferter-
induced “living” radical precipitation polymerization (ILRPP), and RAFT precipitation
polymerization (RAFTPP) [37]. Other new techniques have also been developed, such
as nitroxide-mediated precipitation polymerizations (NMPP) [93]. Similar to the TRPP,
all CRPPs should involve the typical particle nucleation and growth stages, while their
particle growth mechanisms are quite different. The particle growth mechanism of TRPP
could be defined as “grafting to” the mechanism according to the grafting concept, while
the normal ATRPP and ILRPP systems were suitable for “grafting from” particle growth
mechanism, in which the polymer particles grow by directly capturing monomers from
the reaction solutions through the surface-initiated CRPs [94,95]. In addition, a combined
“grafting from” and “grafting to” particle growth mechanism was found to be present in
the reverse ATRPP and RAFTPP systems, which could be attributed to the presence of both
the “living” initiating or chain transfer groups on the polymer particles and traditional
free radical initiators in the polymerization systems [96]. The Zhang group has presented
detailed overviews of CRPP approaches and their advances in the preparation of advanced
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functional polymers [36,37,94], and Hasanah et al. recently published a review summariz-
ing various CRPPs for preparing molecularly imprinted microspheres (MIMs) as well as
comparing advantages and disadvantages of each technique [97]. In the following parts,
we will summarize the related works in recent years.

2.4.1. Atom Transfer Radical Precipitation Polymerization (ATRPP)

ATRPP is the incorporation of an ATRP system with a PP procedure, which is sim-
ply a substitute for the conventional initiator (e.g., AIBN) with an ATRP initiator. After
activation under appropriate reaction conditions, all chains are quickly initiated and grow
simultaneously, leading to soluble branched oligomers at the beginning of the polymeriza-
tion. The controlled characteristics of ATRPP have major roles in uniform particle growth
and size [98,99]. Efficient strategies have been continuously conducted to prepare high-
quality polymer microspheres. Zhang et al. first introduced the ATRP mechanism into
PP for the generation of uniformly “living” polymer microspheres with number-average
diameters ranging from 0.73 to 3.25 µm and polydispersity indices being typically lower
than 1.01 (Figure 6) [98]. Yang et al. combined the reverse ATRP mechanism with PP
and obtained surface-functionalized “living” polymer microspheres via two-stage PP with
better-controlled chain growth and size distribution, where the first stage is a conventional
PP (for nucleation) and the second stage is a reverse ATRP (for particle growth) [100]. Cor-
mack et al. first reported a new ATRP-based methodology, electron transfer atom transfer
radical precipitation polymerization (ARGET ATRPP), in which the products are of high
quality (in a size range of 1–3 µm) and can be used directly in grafting-from experiments
without any need for the installation of initiator moieties [101].
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2.4.2. Iniferter-Induced “Living” Radical Precipitation Polymerization (ILRPP)

ILRPP is the most recently developed CRPP and functions by incorporating the ILRP
system into PP by using an iniferter agent (as initiator, transfer agent, and the terminator at
the same time during radical polymerization). The polymer particles in the ILRPP system
mainly grow by directly capturing monomers (including both divinyl crosslinkers and
monovinyl functional monomers) from the reaction solution through the surface-initiated
controlled polymerization process. Similar to that in ATRPP, a “grafting from” growth
mechanism should mainly work in ILRPP [95], where every part of the iniferters in ILRPP
is immediately converted into macroiniferters at the onset of polymerization, though it
showed less control when compared to ATRPP and RAFTPP. All the resulting polymer
microspheres by ILRPP generally contained active iniferter groups on their surfaces, thus
allowing further surface functionalization [102].

2.4.3. RAFT Precipitation Polymerization (RAFTPP)

RAFTPP was developed by introducing the RAFT polymerization mechanism into the
PP system by simply adding an appropriate chain-transfer agent (or RAFT agent), which is
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highly promising for the development of various well-defined advanced functional poly-
mer materials [103,104] used in drug delivery and molecular recognition (MIPs) [105,106].
Zhang et al. has developed a series of highly efficient approaches for the preparation of
MIP particles with surface-grafted well-defined hydrophilic polymer layers, involving
the “one-step approach” and “two-step approach” [107–110]. They have obtained “living”
PMAA particles via RAFTPP of MAA or a mixture of MAA and a functional comonomer
and expected that the growth of such “living” PMAA particles could take place not only
by capturing oligomeric radicals with particle surface vinyl groups (Figure 7a) and ad-
sorbing oligomeric polymer chains from the continuous phase through hydrogen-bonding
interaction (Figure 7b) but also by the surface-initiated RAFT polymerization through the
surface dithioester groups (Figure 7c) [48]. Subsequent surface-grafting polymerizations
have also been obtained to prepare uniform hairy hollow polymer particles with different
hydrophilic polymer brushes and hydrodynamic diameters [111].
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face dithioester groups. Reprinted with permission from Ref. [48]. Copyright 2019 American
Chemical Society.

Taken together, all the prepared advanced functional polymers possess great potential
for applications such as controlled drug release vehicles, carriers for reagents, enzymes,
catalysts, and so on. Other methods, such as free-radical precipitation polymerization [112],
have also been developed rapidly and as a powerful support for biomedical applications.

2.5. Self-Stable Precipitation Polymerization

In recent years, the Yang group has developed a novel heterogeneous polymeriza-
tion technique, termed self-stabilized precipitation polymerization (2SPP), beyond emul-
sion/dispersion/suspension. Compared with the TRPP method, this reaction system has
the following characteristics: (1) High monomer concentration and the choice of the reaction
medium is crucial; (2) Quiescent polymerization, a stable colloid composed of uniform
polymer particles and reaction medium was formed through a self-nucleation and surface
deposition process in the absence of any stabilizers; (3) The polymer particles can be easily
separated from the solvent, and the supernatant liquid can be recycled, making this one of
the most efficient, green and easily scaled-up strategies [113]. A possible mechanism was
proposed for this 2SPP process that the nucleation of particles occurred homogeneously
only at the early stage in the solution phase; polymer chains will aggregate and gradually
grow and nucleate out of the solution. Then polymer chains are continuously deposited on
the particles that were precipitated from the solution and eventually grow into balls [114].
Wang et al. further used a fluorescence self-imaging method based on aggregation-induced
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luminescence to monitor the process of particle generation and growth during 2SPP in a
real-time and disturb-free manner [115].

A range of common olefinic monomers, including mono-olefins, di-olefins, and aro-
matic olefins, can undergo a 2SPP reaction in a specific solvent environment with maleic
anhydride (MAH) or its derivatives. The copolymerization equipped with highly enhanced
reactivity of MAH with vinyl acetate (VAc), styrene, α-methyl styrene, and DVB [116–118]
has been achieved, and the obtained polymers could support further preparing bio-based,
thermally stable, or fluorescent materials [119–125]. The 2SPP method also provides a
new way to transform huge amounts of olefinic compounds in the C4~C9 fraction of
the petrochemical industry and prepare polyolefin products containing acid anhydride
functional groups. This convenient and efficient process can make up for deficiencies of
the heterogeneous catalyst (Ziegler–Natta, Metallocenes, etc.) in the preparation of polar
copolymers and getting well-defined nano- or micron-sized polymeric particles [38].

Recently, such heterogenization strategies have been explored in the field of ethy-
lene polymerization [126] and ethylene–polar monomer copolymerization [127] to obtain
polyolefin spherical particles with improved mechanical properties and great product
morphology control. Through modulating polymerization parameters, the particles could
be well-tuned, causing the precipitation and separation of polymers from reactive medium
avoiding reactor fouling (see Figure 8). Chen et al. designed an ionic cluster strategy to
synthesize polar-functionalized polyolefins via PP, which greatly enhances the catalyst’s
thermal stability (90–150 ◦C) and enables the homopolymerization of both terminal and
internal polar-functionalized olefins [127].
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3. Conclusions and outlook

Precipitation polymerization is the most common method to prepare monodisperse
polymer microspheres, which also allows further functionalization via the next process.
Much effort has been made to precisely control the particle size of the internal pore struc-
tures to satisfy various application requirements. In addition to the approaches and
applications described above, other new techniques have also been developed, making it
an irreplaceable tool to prepare functional materials. For example, nitroxide-mediated PP
employing photo-crosslinkable prepolymers [128]; catalyst-free aza-Michael addition PP
method enabled polymer particles with abundant active groups for direct post-modification
in mild conditions [129]; the aqueous free-radical PP method used to prepare thermo- or
light-responsive responsive microgels [130–132]; water-based redox PP for synthesizing
polypyrrole nanoparticles as a promising substance for photoacoustic imaging [133]. Novel
particles have been creatively prepared, such as deoxyribonucleic acid (DNA) cross-linked
polymeric nanoframework [134] or those supporting Pd or Au catalysts [135,136], exhibiting
great potential in both material science and bio-medical areas.
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The improved PP method resulted in microspheres with controlled particle size and
active groups on the surface; the amount of monomer input and the yield of the particles
were increased with guaranteed microsphere monodispersity; thus, providing strong
support for the next step of industrial scale-up production and fitting specific applications
in various areas. In the future, the introduction of each advanced technique into the area of
precipitation polymerization is expected to progress and achieve great product morphology
control and precise application rapidly.

Precipitation polymerization is a powerful tool for the preparation of uniform polymer
particles with a clean surface and can also be easily combined with other techniques. How
to further reduce the production cost, simplify the production process, and expand the
production scale will also be the focus of much attention and research in the future.
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