
Citation: Wang, J.; Su, H.; Wu, Z.;

Wang, W.; Zhou, Y.; Li, M. Integrated

Metabolites and Transcriptomics at

Different Growth Stages Reveal

Polysaccharide and Flavonoid

Biosynthesis in Cynomorium

songaricum. Int. J. Mol. Sci. 2022, 23,

10675. https://doi.org/10.3390/

ijms231810675

Academic Editor: Andrey

Turchinovich

Received: 16 August 2022

Accepted: 9 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Integrated Metabolites and Transcriptomics at Different
Growth Stages Reveal Polysaccharide and Flavonoid
Biosynthesis in Cynomorium songaricum
Jie Wang 1, Hongyan Su 2, Zhibo Wu 3, Wenshu Wang 4, Yubi Zhou 1,* and Mengfei Li 2,*

1 Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China

2 State Key Laboratory of Aridland Crop Science, College of Life Science and Technology,
Gansu Agricultural University, Lanzhou 730070, China

3 Station of Alxa League Aviation Forest Guard, Alxa 750306, China
4 Alxa Forestry and Grassland Research Institute, Alxa 750306, China
* Correspondence: ybzhou@nwipb.cas.cn (Y.Z.); lmf@gsau.edu.cn (M.L.)

Abstract: Cynomorium songaricum is a perennial parasitic herb, and its stem is widely used as a
traditional Chinese medicine, which largely relies on bioactive compounds (e.g., polysaccharides,
flavonoids, and triterpenes). To date, although the optimum harvest time of stems has been demon-
strated at the unearthed stage (namely the early flowering stage, EFS), the accumulation mechanism
of polysaccharides and flavonoids during growth stages is still limited. In this study, the physiological
characteristics (stem fresh weight, contents of soluble sugar and flavonoids, and antioxidant capacity)
at four different growth stages (germination stage (GS), vegetative growth stage (VGS), EFS, and
flowering stage (FS)) were determined, transcriptomics were analyzed by illumina sequencing, and
expression levels of key genes were validated by qRT-PCR at the GS, VGS, and EFS. The results
show that the stem biomass, soluble sugar and total flavonoids contents, and antioxidant capacity
peaked at EFS compared with GS, VGS, and FS. A total of 6098 and 13,023 differentially expressed
genes (DEGs) were observed at VGS and EFS vs. GS, respectively, with 367 genes co-expressed.
Based on their biological functions, 109 genes were directly involved in polysaccharide and flavonoid
biosynthesis as well as growth and development. The expression levels of key genes involved in
polysaccharides (e.g., GLCs, XTHs and PMEs), flavonoids (e.g., 4CLLs, CYPs and UGTs), growth and
development (e.g., AC58, TCPs and AP1), hormones biosynthesis and signaling (e.g., YUC8, AIPT and
ACO1), and transcription factors (e.g., MYBs, bHLHs and WRKYs) were in accordance with changes
of physiological characteristics. The combinational analysis of metabolites with transcriptomics
provides insight into the mechanism of polysaccharide and flavonoid biosynthesis in C. songaricum
during growth stages.

Keywords: Cynomorium songaricum; polysaccharide biosynthesis; flavonoid biosynthesis; different
growth stages; transcriptomics; gene expression

1. Introduction

Cynomorium songaricum Rupr. is a perennial parasitic herb that is primarily distributed
in the desert and saline areas of northwest China, including: Qinghai, Xinjiang, and Inner
Mongolia [1]. The stem of C. songaricum is a traditional Chinese medicine and widely used
to tonify kidneys, replenish essence, supplement the blood, and relax the bowels [2]. In
recent years, the stem has also been applied in anti-oxidation, anti-viral and anti-obesity
diseases, which largely rely on bioactive compounds such as polysaccharides, flavonoids,
and triterpenes [3–6].

In order to improve the yield and quality of C. songaricum, several studies have been
conducted on different host plants and harvest stages. Previous studies have found that
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C. songaricum is mainly a host in four species, including: Nitraia roborowskii Kom., N.
sibirica Pall., N. tangutorum Bobr., and N. sphaerocarpa Maxim [7–9]; additionally, there were
greater stem biomass and polysaccharides content in the C. songaricum host in N. roborowskii
than N. sibirica [10]. The types and contents of liposoluble components (e.g., β-sitosterol,
hexadecanoic acid, and (Z)-9-octadecenoic acid) in C. songaricum were significantly different
among different hosts [11]. For other parasitic plants, there were significant differences
in contents of flavonoids (e.g., rutin, isorhamnetin, and kaempferol) in Cuscuta chinensis
from different hosts [12]. Generally, the optimum harvest time of the C. songaricum stem is
between the unearthed prophase (namely vegetative growth stage, VGS) and unearthed
stage (namely early flowering stage, EFS), with greater contents of polysaccharides and
protocatechuic acid compared with the flowering stage (FS) and fruiting stage [13,14].
Extensive studies have demonstrated that reproductive growth significantly decreased
the accumulation of bioactive compounds. For example, the contents of ferulic acid and
total flavonoids in the root of Angelica sinensis decreased with prolonged bolting and
flowering [15]; the contents of hypericin and total flavonoids and polyphenols in aerial
parts of Hypericum perforatum on a per plant basis maximized at the EFS, while significantly
decreased at the FS and fruiting stage [16]; the nutrients (water-soluble carbohydrate and
crude protein) and the silage quality of Lolium multiflorum were higher and better at the
earring stage than the booting and flowering stages [17]. At the molecular level, to reveal
the genes regulating bioactive compounds, two genes, leucoanthocyanidin reductase (LAR)
and dihydroflavonol 4-reductase (DFR), have been identified to be involved in catechin
biosynthesis based on transcriptome analysis of C. Songaricum [18].

As known, polysaccharides are critical quality markers for many medicinal plants
and exhibit immunomodulatory, anti-diabetic, anti-aging, anti-cancer, and anti-oxidant
properties [19]. Plant polysaccharides are composed of a variety of monosaccharides with
complex structure [20]. Their biosynthetic pathway mainly includes three parts: (1) sucrose
is converted to Glc-1P and Fru-6P; (2) uridine diphosphate glucose (UDP-Glc) is derived
from Glc-1P immediately, and Fru-6P is converted to GDP-Man indirectly, meanwhile,
other nucleotide-diphospho-sugar (NDP) sugars are further converted via the NDP-sugar
interconversion enzymes (NSEs); and (3) various NDP-sugars form growing polysac-
charide chains via the glycosyltransferases (GTs) [21–23]. During these processes, many
key enzymes are involved such as sucrose synthase (SUS), sucrose phosphate synthase
(SPS), invertase (INV), hexokinase (HK), fructokinase (FRK), UDP-glucose hydrogenase
(UGDH), UDP-glucose pyrophosphorylase (UGPase), UDP-glucose rhamnose synthase
(RHM), phosphomannose isomerase (PMM), GDP-mannose pyrophosphorylase (GMPP),
and GTs [19–21]. In addition, polysaccharide biosynthesis is found to be regulated by the
MYB transcription factors (TF) [24].

Flavonoids are generally classified into seven subclasses including: flavonols, flavones,
isoflavones, anthocyanidins, flavanones, flavanols, and chalcones, which exhibit anti-
inflammatory, anti-cancer, and anti-oxidant properties and reduce the risk of cardiovascular
disease [25]. Flavonoids are derived from p-coumaroyl CoA (via the shikimate pathway)
and malonyl CoA (via the acetate pathway) [26]. p-coumaroyl CoA is synthesized from
phenylalanine by the catalyzation of phenylalanine ammonialyase (PAL), cinnamic acid
hydroxylase (C4H), and coumarin CoA ligase (4CL) [27,28]. Naringenin chalcone is pro-
duced from p-coumaroyl CoA and malonyl CoA by the condensation and isomerization
of chalcone synthase (CHS) [29]. Then, flavanones and naringenin are produced by the
catalyzation of chalcone isomerase (CHI) [26]. Naringenin is the common precursor of most
intermediate metabolites and end products in the synthesis of flavonoids. Flavones can be
produced from naringenin via the flavone synthase I (FNS I) or flavone synthase II (FNS
II), isoflavones can be produced via isoflavone synthase (IFS), and dihydrokaempferol can
be produced via the flavanone-3-hydroxylase (F3H). Meanwhile, dihydroquercetin and
dihydromyricetin can be produced via flavonol 3′-hydroxylase (F3′H) and flavonol 3′5′-
hydroxylase (F3′5′H), respectively. Flavonols (e.g., kaempferol, quercetin and myricetin)
and leucoanthocyanidins can be synthesized from dihydroflavonol under the action of
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flavonol synthase (FLS) and DFR, respectively. Subsequently, anthocyanidins can be synthe-
sized by leucoanthocyanidin dioxygenase (LDOX), and then anthocyanins (e.g., pelargonin,
cyandin, and delphinidin) can be produced by anthocyanidin synthase (ANS) and uri-
dine diphosphate (UDP)-glucose flavonoid-3-O-glycosyltransferase (UFGT); furthermore,
leucoanthocyanidins can generate flavanols via LAR, producing proanthocyanins [30,31].
Generally, flavonoid biosynthesis is regulated by the TFs such as MYB, bZIP, bHLH or their
complex [32,33]; in addition, cytochrome P450s (CYPs) are also observed to be involved
in flavonoid biosynthesis [34]. Finally, these relatively stable flavonoids that are modified
through acylation (e.g., acetyltransferase, ATs), methylation (e.g., methyltransferases, MTs),
and glycosylation (e.g., UDP-glycosyltransferases, UGTs) can accumulate in plants [35,36].

To date, although the host plants and optimum harvest time of stem at the EFS,
based on the stem biomass and metabolites content, have been demonstrated in previous
studies [7–10,13,14], the accumulation mechanism of stem biomass, polysaccharides, and
total flavonoids of C. songaricum during growth stages has not been revealed. In this study,
the physiological characteristics (e.g., fresh weight, contents of soluble sugar and flavonoids,
and antioxidant capacity) of C. songaricum at four different growth stages (germination
stage (GS), vegetative growth stage (VGS), early flowering stage (EFS), and flowering
stage (FS)) were determined, the transcriptomics were analyzed, and expression levels of
key genes were validated at the GS, VGS, and EFS. We found that there were significant
differences in stem biomass, contents of soluble sugar and flavonoids, antioxidant capacity,
as well as expression levels of genes involved in plant growth and polysaccharide and
flavonoid biosynthesis in C. songaricum during the growth stages.

2. Results
2.1. Changes of Fresh Weight at Different Growth Stages

As shown in Figure 1, there is a significant difference in the stem fresh weight (FW)
between the four different growth stages, with a 3.85- and 1.32-fold increase at the EFS
compared with the GS and VGS, respectively, while there is a 1.22-fold decrease at the FS
compared with the EFS.
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Abbreviations: GS, germination stage; VGS, vegetative growth stage; EFS, early flowering stage; 
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Figure 1. Stem fresh weight of C. songaricum at four different growth stages (mean ± SD, n = 10).
Abbreviations: GS, germination stage; VGS, vegetative growth stage; EFS, early flowering stage; FS,
flowering stage. Different letters represent a significant difference (p < 0.05) at different growth stages.

2.2. Changes of Soluble Sugar and Total Flavonoids Contents at Different Growth Stages

Significant differences in soluble sugar and total flavonoids contents in stems were ob-
served at the four different growth stages (Figure 2). The soluble sugar and total flavonoids
contents showed a similar change trend, with a decrease at the VGS, an increase at the EFS,
and then a decrease at the FS.
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2.3. Changes of Antioxidant Capacity at Different Growth Stages

Significant differences in antioxidant capacities of extracts from stems were observed
at the four different growth stages (Figure 3). The DPPH scavenging activity and FRAP
value showed a similar change trend, with a decrease at the VGS, an increase at the EFS,
and then a decrease at the FS.
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Figure 3. DPPH scavenging activity and FRAP value of extracts from stems of C. songaricum at four
different growth stages (mean ± SD, n = 3). Images (A,B) represent DPPH scavenging activity and
FRAP value, respectively. Different letters represent a significant difference (p < 0.05) at different
growth stages.

2.4. Transcriptomics Analysis at Different Growth Stages
2.4.1. Global Gene Analysis

To reveal the accumulation mechanism of stem biomass, soluble sugar, and total
flavonoids during the growth stages of C. songaricum, a comparison of the transcripts was
performed between the GS, VGS, and EFS. After data filtering, 50.22, 51.24, and 52.69 million
high-quality reads were collected, and 41.17, 42.46. and 43.59 million unique reads with 1.62,
1.61. and 1.62 million multiple reads were mapped at the GS, VGS, and EFS, respectively
(Table 1; Figure S1).
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Table 1. Summary of sequencing data of C. songaricum at GS, VGS, and EFS (mean ± SD, n = 3).

GS VGS EFS

Filtered data
Data of reads number (million) 50.22 ± 5.50 51.24 ± 3.29 52.69 ± 3.95
Data of reads number × read length (million) 7533 ± 824.75 7686 ± 493.36 7904 ± 592.2
Q20 (%) 97.16 ± 0.19 96.83 ± 0.47 97.05 ± 0.27
Q30 (%) 92.21 ± 0.42 91.54 ± 0.92 92.00 ± 0.54
Mapped data
Data of unique mapped reads (million) 41.17 ± 4.37 42.46 ± 2.79 43.59 ± 3.30
Data of multiple mapped reads (million) 1.62 ± 0.18 1.61 ± 0.13 1.62 ± 0.12
Mapping ratio (%) 85.21 ± 3.68 86.01 ± 4.22 85.80 ± 4.52

A total of 95,126 unigenes were annotated on KEGG (10,274), KOG (17,550), Nr (40,427),
and Swissprot (16,181) databases (Figure S2). Using the KEGG database, 6098 DEGs
at VGS vs. GS were enriched for 103 metabolism pathways such as global and overview
maps, energy metabolism, and carbohydrate metabolism; 13,023 DEGs at EFS vs. GS were
enriched for 123 metabolism pathways such as global and overview maps, carbohydrate
metabolism, and energy metabolism (Figure S3). Using the KOG database, 18.45% of uni-
genes encoded the identified proteins that could be classified into 25 functional categories
(Figure S4). Using the NR database, the top 10 species include: Cajanus cajan, Vitis vinifera,
Cephalotus follicularis, Theobroma cacao, Nicotiana attenuata, Juglans regia, Corchorus capsularis,
Brassica napus, B. rapa, and Medicago truncatula (Figure S5). Using the SwissProt database,
17.01% of unigenes were annotated. Using the GO database, the DEGs were classified into
three ontologies, including biological process (BP), cellular component (CC), and molecular
function (MF) (Figure S6).

2.4.2. Identification of Differentially Expressed Genes (DEGs)

A total of 6098 and 13,023 DEGs were observed from 95,126 unigenes, with 3398
up-regulated (UR) and 2700 down-regulated (DR) at VGS vs. GS, and 4516 UR and 8507 DR
at EFS vs. GS (Figure 4), based on the principal component analysis (Figure S7) and Pearson
correlation analysis (Figure S8).
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2.4.3. Distribution and Classification of DEGs

Among the 6098 and 13,023 DEGs at VGS vs. GS and EFS vs. GS, 950 and
2847 genes were identified from the KEGG, KOG, Swiss-Prot or GO databases, respectively
(Figure 5A,B). Of the identified DEGs, 367 genes co-expressed at the GS, VGS, and EFS
(Figure 5C). Based on their biological functions, the 367 genes were classified into 10 cate-



Int. J. Mol. Sci. 2022, 23, 10675 6 of 18

gories, including primary metabolism (79), secondary metabolism (16), cell morphogenesis
(28), bio-signaling (41), transcription factor (38), transport (39), photosynthesis and energy
(43), polynucleotide metabolism (29), protein metabolism (23), and stress response (31)
(Figure 5D).
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2.5. Functional Classification of DEGs
2.5.1. DEGs Involved in Polysaccharide Biosynthesis

Among the 79 DEGs associated with primary metabolism, 24 genes were identified
to be involved in polysaccharide biosynthesis, including: glucose (BGLU23, BGLU44,
At5g56590, GAPA, and MTH_209), sucrose (INVA and BFRUCT3), fructose (FBA2, PFP-BETA,
and At3g55800), xylan (BXL5, GT17, TBL19, TBL31, ESK1, and XTH9), trehalose (TPPF),
and pectin (PAE8, GAUT12, At5g63180, PME7, PMEI10, PME15, and PME40) (Table S1).
The other 55 genes were involved in lipid, fatty acid, and amino acid metabolism (Table S2).
The expression levels of 12 select genes involved in polysaccharide biosynthesis were
validated by qRT-PCR, with a 1.67- (INVA) to 21.08-fold (BGLU23) UR of the 12 genes,
while there was a 0.41-fold (PMEI10) DR at VGS and EFS vs. GS (Figure 6). Meanwhile,
the relative expression levels (RELs) were consistent with their Reads Per kb per Million
(RPKM) values (Table S1).

2.5.2. DEGs Involved in Flavonoid Biosynthesis

Among the 16 DEGs associated with secondary metabolism, 11 genes were identified
to be involved in flavonoid biosynthesis including: 4CLL1, 4CLL6, HST, CHI3, CAD9,
CYP714C2, CYP93B1, F6′H1, UGT84A13, UGT87A1, and UGT94E5 (Table S3). The other
5 genes were involved in terpene biosynthesis (Table S4). The expression levels of the
11 genes involved in flavonoid biosynthesis were validated, with a 1.96-(UGT94E5) to
8.81-fold (4CLL6) UR of 10 genes, while there was a 0.57-fold (UGT87A1) DR at VGS vs. GS;
and a 1.84- (CHI3) to 13.35-fold (4CLL6) UR of 7 genes, while there was a 0.52-(UGT87A1)
to 0.99-fold (F6′H1) DR of 4 genes at EFS vs. GS (Figure 7). Meanwhile, the RELs were
consistent with their RPKM values (Table S3).
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2.5.3. DEGs Involved in Cell Growth and Flower Development

Among the 28 DEGs associated with cell morphogenesis, 20 genes were identified
to be involved in cell growth (9 genes; AC58, ADF, ATJ11, CYCP3-1, SDS, LRX6, MIZ1,
PATROL1, and TBB7) and flower development (11 genes; CSLD4, EXLB1, AP1, ASOL,
AMP1, TKPR2, TCTP1, CYP704B1, HAT, Os05g0239150, and Os05g0583200) (Table S5). The
other eight genes were involved in other cell morphogenesis, such as seed development
and programmed cell death (Table S6). The expression levels of eight select genes in-
volved in cell growth and flower development were validated, with five genes showing a
2.85-(CYCP3-1) to 17.98-fold (AC58) UR, while three genes showed a 0.43-(HAT) to 0.91-fold
(AMP1) DR at VGS and EFS vs. GS (Figure 8). Meanwhile, the RELs were consistent with
their RPKM values (Table S5).
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2.5.4. DEGs Involved in Hormone Biosynthesis and Signaling

Among the 41 DEGs associated with bio-signaling, 22 genes were identified to be
involved in hormone biosynthesis, including: auxin (YUC8), cytokinin (AIPT and LOG5),
gibberellin (LE), ethylene (ACO1 and ACS1), and abscisic acid (CYP707A6), and hormone
signaling, including: auxin (AUX22D, ARP12.5, SAUR71, GH3.6, and PILS2), cytokinin
(AHK4), jasmonic acid (JOX2), and ethylene (AIL1, AIL6, ETR2, SHN3, REF6, ERF010,
ERF034, and ERF114) (Table S7). The other 19 genes were involved in other bio-signaling,
such as protein kinase and calcium and receptor serine/threonine kinase (Table S8). The
expression levels of 15 select genes were validated, with genes involved in auxin (e.g.,
YUC8, AUX22D, and GH3.6) and cytokinin (e.g., AIPT, LOG5, and AHK4) showing UR,
while in abscisic acid (e.g., CYP707A6) and ethylene (e.g., ACO1, AIL1 and ERF010) showing
DR at VGS and EFS vs. GS (Figure 9). Meanwhile, the RELs were almost consistent with
their RPKM values (Table S7).
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2.5.5. TFs Involved in Flavonoid Biosynthesis as Well as Growth and Development

Among the 38 DEGs associated with TFs, 28 TFs were identified to be involved in
flavonoid biosynthesis, including: MYB (6 genes; LIMYB, MYB2, MYB14, MYB52, MYB83,
and MYB306), bHLH (2 genes; BHLH52 and BHLH94), and WRKY (4 genes; WRKY6,
WRKY53, WRKY70 and WRKY72), as well as growth and development, including: cell
growth (8 genes; DREB2D, DREB3, At2g01810, MMD1, PRE5, TCP9, TCP18, and UPB1)
and flower development (8 genes; AHL17, AHL20, AHL22, AHL23, MIP1B, HEC2, SCRM,
and PAN) (Table S9). The other 10 genes were involved in other TFs such as Transcription
repressor OFPs, B3 domain-containing proteins, and Zinc finger CCCH domain-containing
proteins (Table S10). The expression levels of 12 select genes involved in flavonoid biosyn-
thesis as well as growth and development were validated, with most TFs (e.g., MYB83,
BHLH52, WRKY53, TCP9, and UPB1) showing UR, while some TFs (e.g., MYB2, WRKY72,
At2g01810, and AHL20) showed DR at VGS and EFS vs. GS (Figure 10). Meanwhile, the
RELs were almost consistent with their RPKM values (Table S9).
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2.5.6. DEGs Involved in Polysaccharide Transport

Among the 39 DEGs associated with transport, 6 genes were identified to be involved
in polysaccharide transport, including: sugar transporter (SWEET5, slc37a2 and At5g55950)
and ABC transporter family (ABCB2, ABCG1, and ABCG22) (Table S11). The other 33 genes
were involved in other transport, such as protein, lipid, and amino acid (Table S12). The
expression levels of the six genes involved in polysaccharide transport were validated,
with four genes (SWEET5, slc37a2, At5g55950, and ABCB2) showing UR, while two genes
(ABCG1 and ABCG22) showed DR at VGS and EFS vs. GS (Figure 11). Meanwhile, the
RELs were almost consistent with their RPKM values (Table S11).

2.5.7. DEGs Involved in Other Biological Functions

In this study, there are 126 DEGs involved in other biological functions, including:
photosynthesis and energy (43 genes; Table S13), polynucleotide metabolism (29 genes;
Table S14), protein metabolism (23 genes; Table S15), and stress response (31 genes;
Table S16). These genes may also participate in the biosynthesis of polysaccharides and
flavonoids as well as the growth and development of C. songaricum.
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3. Discussion

Although the optimum harvest time of the C. songaricum stem at EFS has been demon-
strated in previous studies [12,13], the mechanism of polysaccharide and flavonoid biosyn-
thesis during growth stages is still limited. In this study, the maximum values of stem
fresh weight, soluble sugar and total flavonoids contents, and antioxidant capacity in
C. songaricum were observed at EFS compared with GS, VGS, and FS; a total of 367 DEGs
co-expressed at the GS, VGS, and EFS with 109 genes directly involved in polysaccharide
and flavonoid biosynthesis as well as growth and development.

Previous studies have found that there was a significant decrease in bioactive com-
pounds (polysaccharides and protocatechuic acid) in C. songaricum during reproductive
growth [12,13]. Here, we also found that there was a significant increase in stem biomass
and content of bioactive compounds (polysaccharides and flavonoids) during vegetative
growth (from the GS to EFS), while significant decrease during reproductive growth (from
the EFS to FS). Extensive studies have demonstrated that there is a significant positive
relationship between antioxidant capacity and bioactive compounds (e.g., polysaccharides,
flavonoids, and phenols) in plants [37–39]. Here, the antioxidant capacities (DPPH scav-
enging activity and FRAP value) also showed a similar change trend with the contents of
soluble sugar and total flavonoids, which indicates that the constituents of polysaccharides
and flavonoids play critical roles in the pharmacological properties of C. songaricum.

Polysaccharide biosynthesis is a complex process due to its various structures and
involvement of many enzymes (e.g., SUS, SPS, INV, UGDH, UGPase, and GTs) in the
polysaccharide metabolic pathways [20–23]. Here, 24 genes involved in polysaccharide
biosynthesis participate in the metabolism of glucose, fructose, xylan, trehalose, and
pectin. For example, BGLU23 and GAPA can hydrolyze the 1,3-beta-D-glucosidic link-
ages in 1,3-beta-D-glucans to produce beta-D-glucose [40]; INVA is involved in sucrose
metabolism by the hydrolysis of the terminal beta-D-fructofuranoside residues in beta-
D-fructofuranosides [41]; FBA2 plays a key role in glycolysis that is part of carbohydrate
degradation [42], while At3g55800 is involved in the pathway calvin cycle that is part
of carbohydrate biosynthesis [43]; BXL5 is involved in the xylan catabolic process, while
TBL31 in the xylan biosynthetic process [44]; XTH9 participates in cleaving xyloglucan
polymers [45]; and PAE8 and PME7 are involved in pectin degradation, while the PMEI10
inhibits the pectin degradation [46–48]. These molecular functions of select genes once
again prove that the polysaccharide metabolic process is complex and regulated by multi-
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genes and multi-pathways. In addition, three genes may be involved in polysaccharide
transport, with SWEET5 participating in sugar transmembrane transporter activity [49],
slc37a2 in transporting cytoplasmic glucose-6-phosphate into the lumen of the endoplasmic
reticulum [50]; and At5g55950 in nucleotide-sugar transmembrane transport [51].

The flavonoid synthesis is also complex in plants, and their metabolic pathways are
generally regulated by a series of key enzymes, including: PAL, C4H, 4CL, CHS, CHI,
F3′H, and UGTs [26–31]. In this study, 11 genes were involved in flavonoid biosynthesis,
including: 4CLL1, 4CLL6, HST, CHI3, CAD9, CYP714C2, CYP93B1, F6′H1, UGT84A13,
UGT87A1, and UGT94E5. Clearly, 4CLL1, 4CLL6, CHI3, F6′H1, UGT84A13, UGT87A1, and
UGT94E5 directly participate in flavonoid biosynthesis. CYP714C2 and CYP93B1 may also
participate in flavonoid biosynthesis, with the overexpression of the two CYP714C2 and
CYP93B1 genes enhancing flavonoid accumulation [52]. In addition, HST and CAD9 are the
key branch enzymes in the phenylpropanoid metabolic pathway, leading to lignin/lignan
biosynthesis [53,54]. Generally, flavonoids can be transported through proton antiport and
ABC-type transporter in plants [55]. In this study, three ABC transporters (ABCB2, ABCG1,
and ABCG22) were observed to be involved in flavonoid transport [56].

Although C. songaricum is a parasitic plant, growth and development are essential
for plant morphogenesis. As described previously, stem quality (i.e., biomass and bioac-
tive compound contents) was significantly affected by the growth stages. In this study,
20 genes were involved in cell growth and flower development. Examples for the cell
growth: AC58 plays an important role in cell shape determination and cell division [57];
CYCP3-1 can regulate meristem cell division and lateral root development [58]; and MIZ1
participates in lateral root development [59]. For flower development, AP1 and AMP1 are
involved in flower development [60,61]; TKPR2 is involved in pollen exine formation [62];
and HAT is essential for plant growth and development, especially in post-embryonic
development [63].

It is noteworthy that endogenous hormones play critical roles in cell growth and flower
development. In this study, 22 genes were involved in hormone biosynthesis and signaling.
Specifically, in the hormone biosynthesis, YUC8 is involved in auxin biosynthesis [64];
AIPT and LOG5 are involved in cytokinin biosynthesis [65,66]; LE is involved in gibberellin
biosynthesis by converting the inactive GA9 and GA20 in the bioactives GA4 and GA1 [67];
ACO1 and ACS1 are involved in ethylene biosynthesis [68,69]; and CYP707A6 is involved
in the oxidative degradation of abscisic acid [70]. For bio-signaling, AUX22D, SAUR71,
and GH3.6 regulate cell expansion, root cell differentiation, and shoot cell elongation by
mediating the auxin-activated signaling pathway [71–73]; AHK4 regulates many develop-
mental processes such as cell division, root repression, and shoot promotion by acting as a
positive regulator of cytokinin signaling [74]; and AIL1, ERF010, and ERF114 are involved
in cell proliferation and axillary bud outgrowth by acting as a transcriptional regulator or
integrator of ethylene signaling [75,76].

Moreover, TFs play vital roles in the biosynthesis of polysaccharides and flavonoids as
well as plant growth and development [77]. Previous studies have demonstrated that MYBs,
BHLHs, and WRKYs or their complex (e.g., MYB-bHLH) play regulatory roles in flavonoid
biosynthesis [78–80]. In this study, MYBs (e.g., MYB2, MYB14, and MYB83), BHLHs
(e.g., BHLH52 and BHLH94), and WRKYs (e.g., WRKY6, WRKY53, and WRKY72) may
play an important role in regulating flavonoid biosynthesis in C. songaricum. Meanwhile,
MYBs may also participate in polysaccharide biosynthesis [24]. In addition, 16 TFs were
involved in plant growth and development. For example, TCP9 and TCP18 may participate
in axillary bud and root development [81,82]; UPB1 can modulate the balance between
cellular proliferation and differentiation in root growth [83]; AHL20 acts as a negative
regulator of FLOWERING LOCUS T (FT) that is a downstream floral integrator [84]; and
BHLH52 may be related to floral organ development [85].
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4. Materials and Methods
4.1. Plant Materials

Stems of C. songaricum host in N. roborowskii were collected at four different growth
stages: GS, VGS, EFS, and FS on 15 March, 15 April, 15 May, and 15 June 2019, respectively,
from Dulan county (2800 m; 36◦2′25” N, 97◦40′26” E) of Qinghai, China (Figure 12). The
stems were cleaned and rapidly frozen in liquid nitrogen, the middle part of the stem was
used for the determination of soluble sugar and total flavonoids contents as well as antioxi-
dant capacity, and the shoot apical meristems (SAM) were used for transcriptomic analysis.
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4.2. Measurement of Stem Biomass

Stem fresh weight (FW) was immediately measured after C. songaricum was dug out
from the soil. Specifically, 10 sites of C. songaricum were randomly selected from 10 host
plants of N. roborowskii, onevmedium-length stem was chosen from the independent site of
C. songaricum and measured using an electronic balance, and then the average FW of the
10 stems was calculated. Generally, the C. songaricum plants grow in clusters, and the sizes
of stems are basically the same (Figure S9).

4.3. Determination of Soluble Sugar and Total Flavonoids Contents as Well as Antioxidant Capacity
4.3.1. Extracts Preparation

Extracts were prepared according to previous protocols [10]. Briefly, fresh stems (1.0 g)
were ground into homogenate by adding ethanol (95% v/v, 20 mL), agitated at 120 r/min
and 22 ◦C for 72 h, then centrifuged (TGL20M, Changsha, China) at 5000 r/min and 4 ◦C
for 10 min. The supernatant was increased by 20 mL with ethanol (95% v/v), and then kept
at 4 ◦C for the determination of soluble sugar, flavonoids, and antioxidant capacity.

4.3.2. Determination of Soluble Sugar Content

Soluble sugar content was determined using the phenol-sulfuric acid method [10,86].
Briefly, extracts (15 µL) were added in the reaction. An absorbance reader was taken at 485 nm
using a spectrometer (V1800, Shanghai, China). Soluble sugar content was calculated based
on mg of sucrose.

4.3.3. Determination of Flavonoids Content

Flavonoids content was determined using the NaNO2-AlCl3-NaOH method [87,88].
Briefly, the extracts (80 µL) were added into ddH2O (2 mL) and NaNO2 (5% w/v, 0.3 mL);
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after oscillation, AlCl3 (10% w/v, 0.3 mL) was added and reacted at 22 ◦C for 1 min; then,
NaOH (1.0 mol/L, 2 mL) was added to stop the reaction. An absorbance reader was taken
at 510 nm using a spectrometer (V1800, Shanghai, China). Flavonoid content was calculated
based on milligram of catechin.

4.3.4. Determination of Antioxidant Capacity

Antioxidant capacity was determined using two different methods: 1,1-diphenyl-1-
picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) [37,89].

DPPH radical scavenging assay was determined according to a previous protocol [90,91].
Briefly, extracts (5 µL) were added in the reaction. An absorbance reader was taken at
515 nm using a spectrometer (V1800, Shanghai, China). The capacity to scavenge DPPH
radicals was calculated as follows:

DPPH scavenging activity (%) = [(A0 − A)/A0] × 100

where “A0” and “A” were the absorbance of DPPH without and with sample, respectively.
FRAP assay was determined according to a previous protocol [91,92]. Briefly, extracts

(10 µL) were added in the reaction. An absorbance reader was taken at 593 nm using a
spectrometer (V1800, Shanghai, China). The FRAP value was calculated on the basis of
(FeSO4·7H2O, 500 µmol Fe (II)/g), as follows:

FRAP value (µmol Fe(II)/g) = [(A − A0)/(AFeSO4·7H2O − A0)] × 500 (µmol Fe(II)/g)

where “A0” and “A” are the absorbance of FRAP without and with sample, respectively;
AFeSO4·7H2O is the absorbance of FeSO4·7H2O.

4.4. Transcriptomic Analysis
4.4.1. RNA Extraction and Illumina Sequencing

Total RNA samples at GS, VGS, and EFS with three biological replicates were extracted
using an RNA kit (R6827, Omega Bio-Tek, Inc., Norcross, GA, USA) according to the
manufacturer’s protocols. The quality of the total RNA was determined using an Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). The processes of enrichment,
fragmentation, reverse transcription, synthesis of the second-strand cDNA, and purifica-
tion of cDNA fragments were applied according to previous protocols [93]. Reads were
generated by using an Illumina HiSeqTM 4000 platform (Gene Denovo Biotechnology Co.,
Ltd., Guangzhou, China).

4.4.2. Reads Filtration, Assembly, Unigene Expression Analysis, and Basic Annotation

Raw reads were filtered using a FASTQ system to obtain high-quality clean reads
by removing reads containing adapters, removing reads containing more than 10% of
unknown nucleotides (N), and removing low-quality reads containing more than 50%
low-quality (Q-value ≤ 20) bases [94]. Clean reads were assembled using Trinity [95].
The expression level of each transcript was normalized to the values of the Reads Per kb
per Million (RPKM). Differential expression analysis of transcripts was performed using
DESeq2 software between different groups [96]. The differential expression levels between
VGS vs. GS and EFS vs. GS were determined with the criteria of the false discovery
rate (FDR) < 0.05 and |log2(fold-change)| > 1. The function of DEGs was annotated
using BLAST against the databases, including Nr, KEGG, KOG, Swiss-Prot, and GO with
e-value ≤ 10−5 as a threshold [97].

4.5. qRT-PCR Validation

The primer sequence (Table S17) was designed via a primer-blast in NCBI and synthe-
sized by Sangon Biotech Co., Ltd. (Shanghai, China). First, cDNA was synthesized using
a RT Kit (KR116, Tiangen, China). PCR amplification was performed using a SuperReal
PreMix (FP205, Tiangen, China). Melting curve was analyzed at 72 ◦C for 34 s. The Actin
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gene was used as a reference control [10]. The RELs of genes were calculated using a 2−∆∆Ct

method [98].

4.6. Statistical Analysis

All the measurements were performed using three biological replicates. Duncan tests of
SPSS 22.0 software was used for statistical comparisons, with p < 0.05 considered significant.

5. Conclusions

From the above observations, the accumulation of polysaccharides and flavonoids
reached the highest levels at the EFS during growth stages. A total of 6098 and 13,023 DEGs
were observed at the VGS and EFS vs. GS, respectively, with 109 genes directly involved
in polysaccharide and flavonoid biosynthesis as well as growth and development. The
specific roles of key genes in the regulation of polysaccharide (e.g., GLCs, XTHs, and PMEs)
and flavonoid (e.g., 4CLLs, CYPs and UGTs) biosynthesis will require additional studies.
These findings will provide theoretical and useful information for the large-scale cultivation
and collection of C. songaricum, as well as improve the yield and quality of C. songaricum by
regulating the nutrient transport of the host Nitraia species.
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