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Abstract 
 
Background and Objectives: Within frontotemporal dementia (FTD), the behavioral variant (bvFTD) 
characterized by frontal atrophy, and semantic behavioral variant (sbvFTD) characterized by right anterior 
temporal lobe (rATL) atrophy, present diagnostic challenges due to overlapping symptoms and 
neuroanatomy. Accurate differentiation is crucial for clinical trial inclusion targeting TDP-43 
proteinopathies. This study investigated whether automated speech analysis can distinguish between 
FTD-related rATL and frontal atrophy, potentially offering a non-invasive diagnostic tool. 
 
Methods: In a cross-sectional design, we included 40 participants with FTD-related predominant frontal 
atrophy (n=16) or predominant rATL atrophy (n=24) and 22 healthy controls from the UCSF Memory and 
Aging Center. Using stepwise logistic regression and receiver operating characteristic (ROC) curve analysis, 
we analyzed 16 linguistic and acoustic features that were extracted automatically from audio-recorded 
picture description tasks. Neuroimaging data were analyzed using voxel-based morphometry to examine 
brain-behavior relationships of regional atrophy with the features selected in the regression models. 
 
Results: Logistic regression identified three features (content units, lexical frequency, familiarity) 
differentiating the overall FTD group from controls (AUC=.973), adjusted for age. Within the FTD group, 
five features (adpositions/total words ratio, arousal, syllable pause duration, restarts, words containing 
‘thing’) differentiated frontal from rATL atrophy (AUC=.943). Neuroimaging analyses showed that 
semantic features (lexical frequency, content units, ‘thing’ words) were linked to bilateral inferior 
temporal lobe structures, speech and lexical features (syllable pause duration, adpositions/total words 
ratio) to bilateral inferior frontal gyri, and socio-emotional features (arousal) to areas known to mediate 
social cognition including the right insula and bilateral anterior temporal structures. As a composite score, 
this set of five features was uniquely associated with rATL atrophy. 
 
Discussion: Automated speech analysis effectively distinguished the overall FTD group from controls and 
differentiated between frontal and rATL atrophy. The neuroimaging findings for individual features 
highlight the neural basis of language impairments in these FTD variants, and when considered together, 
underscore the importance of utilizing features’ combined power to identify impaired language patterns. 
Automated speech analysis could enhance early diagnosis and monitoring of FTD, offering a scalable, non-
invasive alternative to traditional methods, particularly in resource-limited settings. Further research 
should aim to integrate automated speech analysis into multi-modal diagnostic frameworks. 
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Introduction 
Frontotemporal dementia-spectrum disorders (FTD) encompass various neurodegenerative 

clinical syndromes, each associated with varying probabilities of a spectrum of pathological changes called 
frontotemporal lobar degeneration. Behavioral variant FTD (bvFTD) is the most prevalent FTD syndrome,1 
clinically characterized by behavioral and personality changes, and neuroanatomically by predominant 
atrophy in the frontal lobes, generally right more than left-lateralized.2,3 Within bvFTD, anterior temporal 
lobe (ATL) atrophy is variable and, if present, is typically linked to Pick’s pathology when in conjunction 
with frontal atrophy, or TDP-43 proteinopathy type C (TDP-C) pathology when atrophy is isolated to the 
right ATL (rATL).4,5 Since isolated rATL atrophy is highly predictive of TDP-C pathology, recent studies have 
highlighted the importance of characterizing and isolating this syndrome from other FTD syndromes.6 To 
this end, new criteria have been proposed for a syndrome named semantic behavioral variant FTD 
(sbvFTD), characterized by rATL atrophy and non-verbal semantic memory impairment related to 
socioemotional concepts.3,7-9 Differential diagnosis of sbvFTD remains challenging due to the clinical 
overlap in socio-emotional functioning with bvFTD, and lexical semantic deficits with the left-lateralized 
semantic variant of primary progressive aphasia (svPPA).3,7,10 While distinguishing rATL and svPPA-related 
left ATL (lATL) atrophy is theoretically interesting, it is less clinically crucial since both syndromes (together 
classified as semantic dementia) share common pathology. However, accurately differentiating bvFTD and 
sbvFTD is clinically relevant for selecting participants for trials targeting TDP-43 proteinopathies as 
predominantly rATL atrophy is specifically linked to TDP-C, while bvFTD-associated frontal atrophy varies 
in neuropathology.11  

In the current bvFTD criteria, clinical changes manifest as a wide range of symptoms, including 
loss of empathy and ability to form social relationships, disinhibition and impulsive behavior, loss of 
interest in activities and hobbies, decreased motivation and initiative, changes in food preferences and 
eating habits, apathy and lack of emotion, and/or decline in personal hygiene and grooming.4,12 SbvFTD 
with isolated rATL atrophy is instead described as having a more circumscribed  set of symptoms related 
to loss of understanding of socioemotionally relevant, mainly non-verbal semantic concepts, such as 
person-specific biographical, facial expression, and emotion knowledge3,13 This type of semantic 
impairment most often results in loss of understanding of people’s identity and emotions, manifesting 
clinically as loss of empathy and difficulties recognizing familiar people. Difficulty interpreting non-verbal 
concepts (e.g., food and taste-related semantics) and extralinguistic social cues (e.g., sarcasm), repetitive 
behaviors, apathy, and verbal semantic deficits can be present, likely in relation to compromised 
functional connectivity or atrophy in orbitofrontal regions (linked to behavioral changes) and lATL regions 
(linked to semantic changes).3,7,10   

The proposed sbvFTD criteria are in the early stages of development and serve as a starting point 
to highlight the need for a better understanding of the clinical manifestations of rATL damage, as well as 
its differentiation from behavioral symptoms caused by mainly frontal atrophy.3,7 There is a pressing need 
for new tools that can distinguish between symptoms of frontal atrophy associated with bvFTD and 
symptoms of predominantly rATL atrophy associated with sbvFTD. While both bvFTD and sbvFTD share 
behavioral symptoms, sbvFTD uniquely falls on the semantic dementia spectrum, introducing distinct 
linguistic and socio-emotional impairments that could facilitate clearer differentiation between bvFTD and 
sbvFTD. 

Automated connected speech analysis using natural language processing (NLP) offers promising 
avenues for identifying early cognitive markers of dementia.14 This method involves automatically 
extracting various linguistic and acoustic features from audio recordings and transcriptions (e.g., 
responses to a picture description task or a free prompt). Previous connected speech research has largely 
focused on Alzheimer’s disease, mild cognitive impairment, and PPA, with less studies focused on 
behavioral FTD variants.15-17 Notably, one prior study demonstrated the potential of automated connected 
speech analysis in distinguishing between right and left ATL atrophy.18  
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The present study focused on investigating the clinically-relevant question of whether automated 
speech analysis can effectively differentiate between rATL atrophy and frontal atrophy in FTD. Language 
is a multifaceted communication system composed of hundreds of interrelated linguistic and acoustic 
features that work together to convey meaning, structure, tone, emotion, prosody, pragmatics, and 
speaker intent. The interplay of these elements not only provides the structural and functional framework 
of spoken language but also encodes social and contextual information, speaker identity, and cognitive 
states. For this study, we investigated linguistic and acoustic features based on clinical observations of 
speech and language in bvFTD, PPA, and semantic dementia.18-20 In particular, we focused on 21 features 
that may mark elements in speech that capture 1. behavior (e.g., loss of interest, decreased initiative): 
number of t-units (i.e., main clause plus any subordinate clauses that may be attached to it), average t-
unit length, number of verb phrases per t-unit; 2. socio-emotional aspects: valence, arousal; 3. semantic 
deficits (e.g., word-finding difficulties, coherence, and topic deviation): words containing ‘thing’/total 
words ratio, age of acquisition, familiarity, ambiguity, concreteness, lexical frequency, number of content 
units, informativeness ratio, pause rate, number of silent pauses, average syllable pause duration, number 
of restarts; or 4. less complex language use: adpositions/total words ratio, noun/verb ratio, 
content/function word ratio, number of content words. Our hypotheses about brain-behavior 
relationships were that behavioral features would link to bilateral frontal brain regions, socio-emotional 
features to the rATL, and semantic features to the lATL. We did not hypothesize specific brain regions for 
features indicative of less complex language use, beyond anticipating associations with atrophy in the 
frontal and/or temporal lobes. 
 
Methods 
Participants 

Participants were part of the University of California, San Francisco (UCSF) Memory and Aging 
Center (MAC) database. Study sample selection for rATL and frontal atrophy patterns followed procedures 
as described by Younes et al.3 In short, we identified all individuals meeting a clinical diagnosis of sbvFTD, 
bvFTD and/or svPPA based on Neary-FTD, Neary-Semantic, bvFTD, svPPA, and the newly established 
sbvFTD diagnostic criteria,6,12,21,22 who had research visits between 1998 and 2023 in the UCSF MAC 
database. In addition to the exclusion criteria in Younes et al., individuals were excluded in this study if 
they did not complete a picture description task to elicit connected speech, were not native speakers of 
English, and did not have a brain MRI scan within one year of their cognitive evaluation. Based on 
anatomical criteria, individuals were included if they had peak atrophy in either the frontal lobe or rATL, 
and if the ratio of temporal to frontal atrophy showed more atrophy in their peak atrophy lobe compared 
to the contrasting lobe. Additionally, a group of cognitively healthy control participants was selected from 
the MAC database. Figure 1 shows a flowchart of participant selection with a final sample of 62 
participants. All participants or caregivers provided informed consent following procedures aligned with 
the Declaration of Helsinki, and the study was approved by the UCSF Institutional Review Board.  
 
Speech Task and Automated Speech and Language Analysis 

Speech samples were collected using the ‘picnic scene’ picture description task of the Western 
Aphasia Battery.23 Participants were tested individually in a quiet room at a table with the investigator 
seated opposite of them and their speech was recorded. Participants were instructed to: “Tell me what 
you see. Talk in sentences.” Participants were allowed approximately three minutes to complete the task; 
in our sample, participants completed the picnic picture description task within 1-2 minutes with an 
average time of 1m20s.  

We developed an in-house pipeline for automated connected speech transcription and language 
analysis, named the Clinical Linguistic Automated Speech Pipeline (CLASP). Digital audio recordings of 
participants’ picnic descriptions were converted uniformly to .wav files (henceforth: acoustic files). 
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Acoustic files were manually diarized by editing out any speech not belonging to the participant using 
Audacity version 3.5.1 (author BTM). Subsequently, acoustic files were denoised using Adobe Premiere 
Pro DeNoise at 50% (i.e., the amount of processing applied to the audio signal). In the next step, acoustic 
files were automatically transcribed using OpenAI’s large Whisper model and manually checked for quality 
in terms of correct wording, punctuation, and grammar (author BTM). Next, the pipeline utilized various 
NLP and computational tools to extract acoustic and linguistic features from both the audio recordings 
and their transcriptions; these tools include spaCy,24 PRAAT (via MyProsody25), PyDub, TAASSC,26 and 
custom scripts (see Table 1). 
 
Statistical Analysis 

Sample characteristics and feature distributions were analyzed with descriptive statistics, general 
linear models, chi-square tests, and Pearson’s correlation coefficients. The distributions of each feature 
were examined for outliers by each diagnostic group (defined as values >2.5 SDs from the feature’s group 
mean) for measurement error or data entry error; we did not remove individual outlier values. We closely 
examined individuals whose data included outliers on multiple features and removed one participant who 
was an outlier on four features (all other participants had outliers on at most two features). We also 
excluded four individuals who were too impaired to complete the task, producing fewer than 25 words 
(see flowchart Figure 1). We applied a logarithmic transformation to 10 features to render skewed 
distributions more normal and diminish effects of outliers. To assess the linearity assumption of 
continuous predictors in a logistic regression model, we ran Box-Tidwell tests; all variables passed these 
tests for both outcomes (controls vs. FTD, or frontal vs. rATL atrophy). There were no missing data on the 
linguistic and acoustic features. 

We examined multicollinearity among the 21 features (see Introduction) with a Pearson 
correlation table; based on a high correlation of r > |0.7| we removed five features from further 
consideration, including number of verb phrases per t-unit, number of content words, number of silent 
pauses, ambiguity, and concreteness. Thus, we included 16 linguistic and acoustic features extracted with 
our in-house pipeline to measure various aspects of participants’ speech and language use (Table 1). 

We performed stepwise logistic regression to automatically select a reduced number of linguistic 
and acoustic features for building the best-performing classification model per binary outcome. Both 
models included age as a covariate, and the model of frontal vs. rATL atrophy additionally covaried for 
MMSE score as a proxy of disease severity.27 Sex and education were not included as covariates because 
there were no significant group differences. The predicted probabilities of the optimal set of features 
were saved as a new variable and entered into a receiver operating characteristic (ROC) curve analysis to 
evaluate the area under the curve (AUC). We combined the feature values of the optimal set to distinguish 
frontal and rATL atrophy into a composite score using z-scores, and tested this composite score in an 
multiple linear regression model adjusted for age and MMSE score to understand how FTD group 
membership (frontal vs rATL atrophy; independent variable) is associated with changes in the composite 
score of features (dependent variable). To put the classification performance of the set of linguistic and 
acoustic features into context, we also performed an ROC-AUC analysis on the Boston Naming Test,28 an 
established neuropsychological task to detect lexical-semantic difficulties. 
 All statistical analyses were performed in SPSS Version 28.0.1.0. Tables and figures for these 
analyses were generated using R Version 4.3.0 with packages: dplyr, ggplot2, furniture, summarytools, 
pROC, Hmisc, and corrplot. All analysis code is available at https://github.com/jmjvonk.  
 
Neuroimaging Analysis 

We performed a Voxel-Based Morphometric (VBM) analysis using the Computational Anatomy 
Toolbox 12 (dbm.neuro.uni-jena.de/cat) in Statistical Parametric Mapping 12 software 
(fil.ion.ucl.ac.uk/spm/software/spm12) through MATLAB (version 9.14.0.2239454). MRI acquisition T1 
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images were acquired for all subjects with sequences, previously described, on either 1.5T (n=6),29 3T 
(n=50),30 or 4T (n=2).31 After a visual quality check, the structural images underwent enhancement using 
a spatial adaptive non-local means denoising algorithm followed by bias field correction, affine 
transformation for alignment, and processing using SPM's "unified segmentation" protocol. The images 
were then (i) segmented into gray matter, white matter, and cerebrospinal fluid and (ii) spatially 
normalized to the Montreal Neurological Institute (MNI) reference space via an advanced geodesic 
shooting technique, (iii) adjusted by the Jacobian determinants of the deformation field during spatial 
normalization to maintain the tissue volume integrity, and (iv) output with a uniform isotropic voxel 
resolution of 1.5 × 1.5 × 1.5 mm³, (v) spatially smoothed with an 8 mm full-width at half-maximum 
isotropic Gaussian kernel to compensate for residual anatomical variability. 

We examined brain-behavior relationships between linguistic features and gray matter volume 
loss (atrophy). The search volume included regions of interest based on known distribution of atrophy in 
FTD variants using an explicit mask created with WFU PickAtlas 
(https://www.nitrc.org/projects/wfu_pickatlas/), including the frontal lobe, temporal lobe, anterior 
cingulate, frontal-temporal space, precentral gyrus, paracentral lobule, transverse temporal gyrus, 
parahippocampal gyrus. Using general linear models (GLM) across the whole sample (i.e., independent of 
diagnostic group), we examined the relationship between gray matter volume and each linguistic feature 
that was selected in the forward stepwise logistic regression models. Additionally, we tested the 
relationship between gray matter volume and the composite score of the optimal set of features that 
behaviorally distinguished the rATL and frontal atrophy group. All models were adjusted for age, 
sex/gender, scanner (3T vs non-3T), and total intracranial volume. For each computed T-contrast, the 
corresponding statistical map was evaluated at a peak-level uncorrected threshold of p<0.001 and a 
cluster-level threshold of p<0.05 family-wise error (FWE) corrected for clusters with a minimum size of 
100 voxels. Visualization of peak locations of brain-behavior associations between features and atrophy 
was performed using MRIcroGL (https://www.nitrc.org/projects/mricrogl). 
 
Results 
Participants 

The final selection of participants for the behavioral analyses included 16 with predominant 
frontal atrophy, 24 individuals with predominant rATL atrophy, and 22 control participants (n=62; see 
flowchart Figure 1). Participant characteristics are described in Table 2; the three groups did not differ in 
mean years of education nor their distribution of sex/gender, race/ethnicity, or handedness. The frontal 
and rATL atrophy groups did not differ in mean age, while the control group was on average slightly older. 
Four participants’ MRI scans, two control and two rATL, were excluded for neuroimaging analyses due to 
poor image quality (i.e., n=58 for neuroimaging analyses). 
 
Automated Speech and Language Analysis 

From the list of 16 linguistic and acoustic features (Table 1), the forward stepwise logistic 
regression model selected an optimal set of three features to classify controls versus individuals with FTD: 
content units, lexical frequency, and familiarity. The model demonstrated a good fit as indicated by the 
Omnibus test (p<.001) and explained a large proportion of the variance with a Nagelkerke R² of .803. The 
model achieved an accuracy of 90.3% (i.e., number of correct predictions/total number of predictions). 
The predicted probabilities from the logistic regression were used to generate a ROC curve with an AUC 
of .969 for the linguistic features alone (Figure 2A). When age was included as a covariate, the AUC 
increased to .973. 

The forward stepwise logistic regression model to distinguish between frontal and rATL atrophy 
selected from the list of 16 features an optimal set of five features: adpositions/total words ratio, arousal, 
syllable pause duration, restarts, and words containing ‘thing’ (henceforth: “thing words”). The model 
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demonstrated a good fit (Omnibus test p<.001), explained a substantial proportion of the variance 
(Nagelkerke R² = .708), and achieved an accuracy of 85.0%. The AUC was .924 for the linguistic features 
alone (Figure 2B). When age and MMSE scores were included as covariates, the AUC increased to .943. In 
comparison, an unadjusted model of the Boston Naming Test showed a moderate fit (Omnibus test 
p=.047), explained a small proportion of the variance (Nagelkerke R² = .130), and achieved an accuracy of 
74.4% and AUC=.688. When adjusted for age and MMSE scores, the AUC improved to .813. 

We created a composite score from this optimal set of five features that distinguish between 
frontal and rATL atrophy: adpositions/total words ratio, arousal, syllable pause duration, restarts, and 
thing words. Within the 40 participants with FTD, this composite score ranged from -.59 to 1.07 (m=.087, 
SD=.388). Multiple linear regression showed that the unstandardized coefficient B was 0.557 (SE=.97) 
units higher in the rATL group than the frontal group, holding covariates constant (standardized Beta = 
.712, p<.001; indicating a large effect size). Boxplots of performance on the selected features and the 
composite score per diagnostic group are shown in Figure 3. 
 
Brain-Behavior Associations 

Table 3 displays the VBM results for the neural correlates of the speech and language features 
selected in the logistic regression models, and Figure 4 provides a visual representation. Across all 
participants, the adpositions/total word ratio was positively associated with cortical atrophy in the right 
orbitofrontal cortex and left inferior frontal and precentral gyri. Arousal was negatively associated with 
atrophy in the right insula, middle temporal gyrus, and anterior cingulate, as well as left inferior temporal 
structures. Content units was positively associated with atrophy in left inferior temporal structures as well 
as a right-sided cluster that stretched from the amygdala to the orbitofrontal cortex. Lexical frequency 
was negatively associated with the left inferior temporal gyrus and left middle frontal gyrus. Syllable pause 
duration was negatively associated with atrophy in the left pars triangularis, and thing words was 
negatively associated with atrophy in the right fusiform, middle temporal, and inferior temporal gyri. We 
did not find associations of familiarity (a priori tested direction: negative) or number of restarts (a priori 
tested direction: negative)  with cortical atrophy in our sample. The composite score of the optimal set of 
features that distinguished frontal from rATL atrophy (adpositions/total words ratio, arousal, syllable 
pause duration, restarts, and thing words) was negatively associated with focal atrophy in the rATL, with 
peaks in the right fusiform gyrus, right middle temporal gyrus, and right temporal pole. 
 
Discussion 

This study investigated the utility of automated speech and language analysis in differentiating 
between healthy controls and individuals with FTD, particularly focusing on two atrophy patterns: 
individuals with frontal atrophy (typically associated with bvFTD) and individuals with rATL atrophy 
(typically associated with sbvFTD). The results revealed a set of three linguistic and acoustic features that 
distinguished FTD from healthy controls, and a set of five features that discriminated frontal and rATL 
atrophy. This study addressed a crucial gap in the diagnostic process given the challenges in differentiating 
between bvFTD and sbvFTD,3,7 which has traditionally relied heavily on clinical judgment and 
neuroimaging. Moreover, the ability to distinguish controls from FTD based on speech and language 
features presents a promising screening tool for detecting this disease, offering quick, easily administered 
assessments with the potential for remote and scalable implementation outside of in-person clinical 
settings. By distinguishing among FTD-related frontal versus rATL atrophy, this approach could help 
identify patients with rATL atrophy for inclusion in molecule-targeted pharmacological clinical trials. 

Previous work using automated speech analyses often has focused on comparing performance on 
individual linguistic and/or acoustic features, often overlooking that the true complex 'shape' of 
someone's communication emerges from how these features interact and are tuned together in a 
multidimensional context. Our analytic approach using forward stepwise logistic regression centered on 
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automatically selecting a combined set of linguistic and acoustic features for discrimination, highlighting 
the importance of synergistic feature combinations over isolated feature performance for predictive 
accuracy. Our results showed that certain combinations of speech and language features can detect the 
slight differences in clinical characteristics associated with frontal vs. rATL atrophy. Moreover, this set of 
features outperformed the Boston Naming Test, an established neuropsychological task to detect lexical-
semantic difficulties. As a composite score, this selected set of features was uniquely associated with rATL 
atrophy. The individual features that contributed to this composite score were consistent with expected 
patterns of language impairment in the rATL group. For example, the rATL atrophy group used words with 
on average higher arousal ratings compared to the frontal atrophy and control groups. Previous work 
showed that atrophy in left-lateralized emotion-relevant systems in the temporal lobe relates to 
enhanced positive emotions in FTD,32 corresponding to the asymmetrical yet bilateral temporal atrophy 
in rATL. Moreover, the increased syllable pause duration and increased use of restarts and thing words 
are indicators of word-finding problems, characteristic of semantic difficulties similar to svPPA.22 Thus, the 
combined set of linguistic and acoustic features that differentiated frontal and rATL atrophy groups 
includes both aspects of emotional alterations and semantic impairment that together mark the sbvFTD 
syndrome. 

The clinical presentations of bvFTD and sbvFTD have been linked to specific focal atrophy. 
Neuroanatomically, bvFTD is associated with atrophy particularly in the bilateral medial frontal cortex, its 
adjacent frontal cortex, the anterior insula, and the striatum.2,3 These areas are considered to play a role 
in social cognition, emotion alterations, motivation, and decision-making.33,34 SbvFTD is associated with 
bilateral right-more-than-left and medial-more-than-lateral neurodegeneration of the ATLs, right-more-
than-left insula, right caudate, and right anterior cingulate cortex.3,8,29 The bilaterial ATLs have been linked 
extensively to their role in semantic processing;35 the lATL is associated with verbal semantics, while the 
rATL is associated with non-verbal semantics, particularly regarding visual and socioemotional 
knowledge.8,36 Our neuroimaging results show associations of linguistic and acoustic features with both 
left and right cortical structures, reflecting the bilateral atrophy patterns of both groups as well as the role 
of the left hemisphere in language and the right hemisphere in emotional processing. For example, we 
showed that the average arousal-value of the generated words was associated with the right insular 
cortex. The insula is known for its role in moderating social cognition.37 Moreover, the right insula in 
particular has been linked to moderating physiological arousal such as heart rate.38 Importantly, we 
observed that both patient groups produced on average words with a higher arousal rating than controls, 
in line with previous reports showing that left-lateralized atrophy in the temporal and frontal lobes in FTD 
can impair the ability to suppress positive emotions such as happiness.32,37  

Lexical frequency, content units, and thing words share a common semantic focus. We found that 
these linguistic features were related to inferior temporal lobe structures, which are known to be a critical 
neural substrate for semantic processing.39 Notably, the association of the left inferior temporal gyrus 
with lexical frequency derived from automated speech analysis in an FTD population replicates the 
findings by Cho et al.19 Average syllable pause duration, which detects filled pauses (“uhm”), was 
associated with the pars triangularis of the inferior frontal gyrus. This region that is part of Broca’s area is 
considered to be involved in the production of speech, including the planning and articulation of verbal 
expressions. For example, a connected speech analysis by Wilson et al.40 showed that this region was 
related to speech rate. As such, the association of this region with average syllable pause duration—an 
acoustic feature that measures long stable syllables pronounced at a low pitch as an indicator of disfluency 
in speech—is theoretically supported. These findings underscore the importance of both temporal and 
frontal regions in different aspects of speech production and semantic processing, highlighting the neural 
basis of language impairments in FTD. 

Our findings show that digital language markers from connected speech can classify FTD and 
differentiate between FTD variants, supporting the growing evidence of language and speech impairments 
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as early indicators of neurological decline.14 While the majority of studies on connected speech in 
dementia have focused on Alzheimer’s disease,15,17 this study further expanded this field to FTD,19,20,41 
showcasing the potential of connected speech analysis in differentiating between its non-language 
dominant subtypes and underscoring the complexity of FTD as a spectrum disorder with diverse clinical 
presentations. Theoretically, this study contributes to the understanding of neurodegenerative disorders, 
particularly in elucidating the relationship between language dysfunction and brain atrophy patterns in 
FTD. Practically, the identification of specific speech and language markers could aid in selection of 
participants into clinical trials targeting TDP-43 proteinopathies. In addition, the use of connected speech 
analysis as a cognitive tool offers a non-invasive and accessible method for monitoring disease 
progression. This application is particularly relevant for clinical trials and longitudinal studies, where 
objective measures of cognitive function are needed to assess the efficacy of therapeutic interventions.  

A major strength of this study lies in its innovative use of automated methods to analyze 
connected speech. Our approach provides a scalable and quantitative method for analyzing speech and 
language, in contrast to time-consuming manual transcription. While we currently include a manual 
quality check, future research should determine whether this step is necessary or if it can be omitted 
without significantly affecting classification accuracy, allowing for full automation. Another strength is the 
inclusion of a relatively large group of individuals with rATL atrophy given the low prevalence of this 
disease,42 due to the collection of these data across many years at the specialized UCSF MAC. However, 
the focus on participants from a single database may not reflect the diversity of the general population. 
It is important to note that this study's participant group was specifically selected to address our 
experimental questions as a proof-of-concept. Further research is needed to determine whether similar 
results, including the AUC-ROC classifications, can be replicated in more diverse, unselected patient 
groups. As sbvFTD and its associated rATL atrophy pattern is a relatively rare disease, our sample sizes are 
moderate yet comparable to other studies on rATL atrophy.9,43 The moderate sample size may have made 
the results vulnerable to potential biases inherent in speech sample collection, such as participants’ mood 
or environment during recording. Lastly, brain-behavior relationships in structural MRI are inherently 
restricted to areas with atrophy in the included disease patterns. Therefore, our findings may not capture 
possible associations between linguistic features and brain regions that are not affected by atrophy in the 
included syndromes. 

Future research should aim to replicate these findings in larger and more diverse populations and 
focus on external validation efforts. Additionally, future work should focus on developing these measures 
into an easy-to-use tool with a friendly user interface to assist healthcare providers in overcoming any 
barriers to utilizing these techniques. Moreover, exploring the integration of speech analysis in a multi-
model approach with other biomarkers and diagnostic methods, such as cognitive, neuropathological and 
genetic data, could enhance the accuracy and utility of these findings. Longitudinal studies may also 
provide insights into the progression of FTD and the potential of speech analysis in monitoring disease 
progression and response to treatment. The methods and findings of this study also have broader 
implications for research in other neurodegenerative diseases. In addition to Alzheimer's disease and FTD, 
the application of automated speech and language analysis could be extended to conditions like 
Parkinson's disease and multiple sclerosis, where language and cognitive impairments are also prevalent.  

Early diagnosis of bvFTD and sbvFTD is critical for developing management strategies, potential 
treatment, and an appropriate care plan. Connected speech analysis provides a complementary 
assessment of cognitive function to established methods, capturing nuances of the complex interplay 
between language and behavior that may be missed in commonly used neuropsychological testing. The 
identification of unique speech and language patterns linked to atrophy patterns typical of bvFTD and 
sbvFTD opens new avenues in understanding these conditions. Our study showed that digital language 
markers from a brief speech production task are useful for detecting FTD and for differentiating underlying 
atrophy patterns, which are typically unknown early on. Clinically, speech analysis could be used as a non-
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invasive and cost-effective screening tool, which could be particularly beneficial in settings where access 
to neuroimaging techniques is limited. Moving forward, digital innovations elevate the potential of 
automated speech analysis to become a quick, non-invasive, remote, scalable, and low-cost cognitive tool 
to enhance FTD diagnosis.  
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Data availability 
The conditions of our ethics approval do not permit public archiving of anonymized study data. Data 
generated by the UCSF MAC are available upon request. Data requests can be submitted through the 
UCSF MAC Resource Request form: http://memory.ucsf.edu/resources/data. Access will be granted to 
named individuals in accordance with ethical procedures governing the reuse of sensitive data. All 
requests will undergo UCSF regulated procedure thus requiring submission of a Material Transfer 
Agreement (MTA) which can be found at https://icd.ucsf.edu/material-transfer-and-data-agreements. 
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Table 1. Details of the linguistic and acoustic features extracted for speech and language analysis 
 

Feature Description Interpretation Extraction Tool 

Pause rate Ratio of the number of silent pauses (threshold 
>750ms) to the speech sample’s total duration 

Reflecting the relative frequency with which the speaker takes a long 
pause indicating difficulties with word retrieval and sentence planning44 

Adapted code from the Python 
library MyProsody25 

Average syllable 
pause duration 

The mean length of filled pauses (“uhm”s), i.e., 
long stable syllables pronounced at a low pitch, 
measured in milliseconds 

Reflecting interruptions in speech flow; longer filled pauses indicate 
more disfluency in speech 

Adapted code from the Python 
library MyProsody25 

Number of 
restarts 

The instances where a speaker starts a word or 
phrase, stops, and then restarts, often to repair 
the sentence or choose a different word 

Reflecting hesitations or corrections; more restarts indicate more 
disfluency in speech 

Custom script based on Transcription 
Guidelines of the Linguistic Data 
Consortium45 

Noun/verb ratio The ratio of nouns to verbs used Reflecting the richness and complexity of language use; a lower ratio 
indicates difficulty with retrieving nouns and a stronger reliance on verbs 
in simpler sentence structures 

Parts-of-speech extracted using the 
Python library spaCy;24 ratios 
calculated with custom script 

Adpositions/total 
words ratio 

The ratio of adpositions (prepositions and 
postpositions) to the total number of words 

Reflecting the use of grammatical structures that show relationships 
between words; a lower ratio indicates a shift toward simpler, less 
complex language 

Parts-of-speech extracted using the 
Python library spaCy;24 ratios 
calculated with custom script 

Content/function 
word ratio 

The ratio of content words (nouns, verbs, 
adjectives, adverbs) to function words (pronouns, 
prepositions, conjunctions, auxiliary verbs) 

Reflecting the balance between meaning-carrying words and 
grammatical words; a lower ratio suggests a reliance on function words 
that carry less semantic weight 

Parts-of-speech extracted using the 
Python library spaCy;24 ratios 
calculated with custom script 

Thing words ratio The ratio of non-specific ‘thing’ words (i.e., thing, 
something, anything) to the total number of words  

Reflecting word-finding difficulties; a higher ratio suggests issues with 
semantic memory to access specific knowledge about objects, people, 
and events, leading to reliance on non-specific terms 

Custom script based on Clarke et al. 
(2021)17 

Age of 
acquisition  

The mean age at which the words used are 
typically learned 

Reflecting lexical richness; the use of words with an earlier age of 
acquisition indicates a preference for simpler, more easily accessible 
vocabulary 

Custom script based on linguistic 
database by Kuperman et al. (2012)46 

Familiarity The average rating of how familiar the words are 
to the general population 

Reflecting lexical richness; the use of words with higher familiarity 
indicates a preference for simpler, more easily accessible vocabulary 

Custom script based on linguistic 
database by Brysbaert et al. (2019)47 

Lexical frequency The mean lexical frequency of the words used, i.e., 
how often these words are generally used in daily 
language 

Reflecting lexical richness; the use of words with higher lexical frequency 
indicates a preference for simpler, more easily accessible vocabulary 

Custom script based on linguistic 
database  by Brysbaert et al. (2009)48 

Arousal The average level of emotional intensity of the 
words used 

Reflecting the overall level of emotional intensity of the words used; a 
deviation of neutral arousal in a description task indicates emotional 
alterations 

Custom script based on linguistic 
database by Warriner et al. (2013)49 

Valence The mean emotional value (positive or negative) of 
the words used 

Reflecting the overall sentiment of the words used; a deviation of neutral 
valence in a description task indicates emotional alterations 

Custom script based on linguistic 
database by Warriner et al. (2013)49 

Number of T-
units 

The total number of T-units (shortest 
grammatically allowable sentence), i.e., a main 
clause and any subordinate clause(s) 

Reflecting syntactic complexity; a lower number of T-units indicate an 
overall decrease in speech output 

Tool for the Automatic Analysis of 
Syntactic Sophistication and 
Complexity (TAASSC 1.3.8)26 

Average T-unit 
length 

The mean length of T-units in terms of words Reflecting syntactic complexity; shorter T-units indicate simpler 
sentences 

Tool for the Automatic Analysis of 
Syntactic Sophistication and 
Complexity (TAASSC 1.3.8)26 
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Number of 
content units 

The total count of expected key information units 
for the WAB Picnic Description Task 

Reflecting the completeness and informativeness of the picture 
description; a lower number of content units indicates a less complete 
description 

Custom script based on Josephy-
Hernandez et al. (2023)50 

Informativeness 
ratio 

The ratio of relevant content units to the total 
number of words 

Reflecting the efficiency and focus of the description in conveying 
important information; a lower ratio indicates less efficiency 

Custom script based on Josephy-
Hernandez et al. (2023)50 
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Table 2. Participant Characteristics 

Demographic measures Controls Frontal atrophy rATL atrophy p-value 
 n = 22 n = 16 n = 24   

Age 72.82 (7.47, 53-88) 64.38 (10.01, 48-77) 66.83 (8.7, 47-87) 0.010 

Sex/gender (men) 9 (40.9%) 6 (37.5%) 14 (58.3%) 0.342 

Years of education 17.45 (2.09, 12-20) 15.69 (2.87, 9-20) 15.92 (2.7, 12-21) 0.060 

Race       0.627 

   Black/African American 1 (4.5%) 0 (0%) 0 (0%)   
   Hispanic 0 (0%) 0 (0%) 0 (0%)  
   Mixed 1 (4.5%) 0 (0%) 1 (4.2%)   
   Non-Hispanic White 20 (90.9%) 16 (100%) 23 (95.8%)   
Handedness       0.167 

   Ambidextrous 0 (0%) 0 (0%) 2 (8.3%)   
   Left 4 (18.2%) 0 (0%) 3 (12.5%)   
   Right 18 (81.8%) 16 (100%) 19 (79.2%)   
MMSE 29.45 (0.67, 28-30) 23 (5.73, 8-29) 25.62 (4.34, 12-30) <.001 

CDR Box Score 0.03 (0.11, 0-0.5) 3.78 (2.78, 0-9) 4.5 (2.55, 1.5-10) <.001 

Boston Naming Test (15-item) 14.76 (0.56, 13-15) 10.44 (3.98, 3-15) 8 (3.58, 2-15) <.001 

CVLT Short Delay 12.15 (2.98, 6-16) 4.33 (2.61, 0-9) 4.75 (2.17, 0-8) <.001 

CVLT Long Delay 11.45 (3.35, 5-15) 3 (3.32, 0-9) 3.25 (2.64, 0-8) <.001 

Note. MMSE = Mini-Mental State Examination; CDR = Clinical Dementia Rating; CVLT = California Verbal Learning Test 
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Table 3. Voxel-based morphometry: neural correlates of selected speech and language features 

Feature Hemisphere Lobe Brain region Peak MNI coordinates Peak-level inference Cluster-level inference     
x y z t-value p-value (uncorr) Cluster sizea p-value (FWE) 

Adpositions right frontal gyrus rectus 3 65 -17 5.395 <0.001 27517 <0.001  
left frontal pars orbitalis (IFG) -41 24 -5 5.158 <0.001 

  

 
left frontal pars triangularis (IFG) -45 38 0 4.999 <0.001 

  

 left frontal precentral -44 -3 58 4.518 <0.001 852 0.031 
Arousal right temporal insula 45 5 -6 5.089 <0.001 23464 <0.001  

right frontal anterior cingulate 8 12 -21 5.033 <0.001 
  

 
right temporal middle temporal gyrus 57 6 -21 4.978 <0.001 

  

 
left temporal temporal pole -33 11 -48 4.796 <0.001 7915 <0.001  
left temporal fusiform gyrus -30 -18 -32 4.788 <0.001 

  

Content units left temporal inferior temporal gyrus -45 -6 -32 6.875 <0.001 71888 <0.001  
right temporal/frontal amygdala; gyrus rectus 21 5 -14 6.760 <0.001 

  

 
left temporal temporal pole -29 8 -29 6.724 <0.001 

  

Frequency left temporal inferior temporal gyrus -50 -8 -26 6.664 <0.001 71618 <0.001  
left frontal middle frontal gyrus -33 36 21 4.726 <0.001 771 0.041 

Syllable pause duration left frontal pars triangularis (IFG) -38 21 17 5.046 <0.001 1212 0.010 
 right frontal pars triangularis (IFG) 34 26 12 4.392 <0.001 1506 0.004 

Thing words right temporal fusiform gyrus 38 -36 -20 4.758 <0.001 4097 <0.001 
 right temporal middle temporal gyrus 58 -46 -3 4.005 <0.001 1467 0.005 
 right temporal inferior temporal gyrus 66 -39 -18 3.672 <0.001   

Composite score right temporal fusiform gyrus 40 -32 -28 5.20 <0.001 13226 <0.001 
 right temporal middle temporal gyrus 48 2 -22 4.95 <0.001   
 right temporal temporal pole 57 9 -9 4.58 <0.001   

Note. aUsing a cluster-forming voxelwise threshold of p<0.001 uncorrected; results displayed with a cluster size of minimum 100 voxels at peak-level p<0.001 
uncorrected that survived Family-Wise Error (FWE) correction at cluster level at p<0.05; IFG = inferior frontal gyrus; uncorr = uncorrected 
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Figure 1. Participant selection flowchart 
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Figure 2. ROC curves and confusion matrices 
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Figure 3. Performance on selected speech and language features across diagnostic groups; the composite score includes the optimal set of five 

features to distinguish between frontal and rATL atrophy: adpositions/total words ratio, arousal, syllable pause duration, restarts, and thing words. 
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Figure 4. Peak locations of brain-behavior associations between features and atrophy; images are for illustration only, detailed results are 
summarized in Table 3. 
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