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Abstract: Strontium titanate (STO), the dielectric material, has caught the world’s attention due
to its outstanding properties, such as high permittivity, high refractive index, and low loss in the
terahertz band. Its permittivity is relevant to the environment temperature. Herein, a multifunctional
meta-surface composed of a dielectric-metal hybrid antenna array has been demonstrated, which is a
single-layer STO elliptic cylinder. On the one hand, when the environment temperature is 300 K, the
proposed meta-surface can achieve perfect absorption and polarization conversion in the frequency
range from 0.1 to 0.25 THz; particularly, the meta-surface absorptance can reach 99.97% and 99.92%
at a frequency of 0.103 and 0.13 THz respectively, and while it is used as a polarization conversion
device, the degree of circular polarization and the ellipticity angle can reach 0.986 and 44.5◦ at a
frequency of 0.228 THz. On the other hand, when the environment temperature changes from 300 to
450 K, the absorption peak changes with the temperature, and the average absorptance reaches 96%
at resonance frequency. The proposed meta-surface can be applied in many fields, such as optical
sensing, imaging, and energy harvesting. Moreover, it provides a potential solution to research the
integrated device in a complex electromagnetic environment.

Keywords: optical antenna; perfect absorber; polarization converter; terahertz device

1. Introduction

In recent years, both scientific and engineering applications have been greatly en-
couraged for their great potential in electromagnetic (EM) wave manipulation [1,2]. Meta-
surface, as a two-dimensional (2D) plane structure of metamaterial, can be conveniently
used to modulate the amplitude, phase, and polarization of EM waves [3,4]. At present,
a relatively novel meta-surface design method is to use algorithm optimization (Particle
Swarm Optimization, PSO) to obtain the optimal unit structure to design the required meta-
surface. As mentioned in Reference [5], an artificial magnetic conductor with 29% fractional
bandwidth was designed at an operating frequency of 12 GHz via the PSO algorithm, and
in Reference [6], a second-order bandpass frequency selective surface at 10 GHz with 20%
fractional bandwidth was proposed and realized by using the PSO algorithm. There is also
a meta-surface design method for directivity improvement, and in Reference [7], an effec-
tive technique was come up with for radiation patterns’ improvement of the Fabry–Perot
cavity antenna by improving the near-field phase distribution, that led to a 5.6 dBi increase
in the peak directivity of the antenna. Additionally, based on the operation method for
changing the structure and arrangement of meta-atoms [8], lots of meta-surfaces with differ-
ent functions have been proposed and designed, such as polarization manipulation [9–11],
abnormal reflection [12,13], focusing lens [14–16], and absorber [17–19], etc. Although
these meta-surfaces have been designed well, the function of these proposed meta-surfaces
is mostly single, which is not suitable for the high-integration electromagnetic system
and the complex optical integration system; hence, multifunctional meta-surfaces are
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proposed and have gradually become a research hotspot. In Reference [20], based on
VO2 and graphene materials, a multifunctional meta-surface with perfect absorption and
polarization conversion functions has been designed by changing the temperature and
voltage. In Reference [21], the multifunctional meta-surface composed of VO2 and metal
has shown anisotropic or isotropic characteristics at different temperatures to realize the
functions of perfect absorption and polarization conversion. In References [22–24], the
proposed meta-surface has achieved many modulation capabilities via adding a circuit
system to control the working status of active devices in the structure. However, an array
of the mentioned multifunctional meta-surfaces are composed of complex sandwich or
multilayer structures, which make the structure complex and the preparation process
difficult. Additionally, it is even necessary to change the environment conditions or add
the active devices to realize polarization conversion and perfect absorption, which not only
increases the complexity of the operation, but also limits the flexibility and applicability of
the multifunctional meta-surface.

The optical antenna can localize the electromagnetic (EM) waves in a sub-wavelength
structure and realize the conversion between the free space electromagnetic field and the
local field by utilizing the characteristics of surface plasmon [25–27]. Meta-surface has
been widely used in the field of the optical antenna. For example, EM meta-surfaces have
recently been successfully used to manipulate the near-field of aperture antennas for a
higher gain and beam steering, as explained in the all-metal wideband meta-surface for
near-field transformation of medium-to-high gain electromagnetic sources, and also the
single-layer polarization-insensitive frequency selective surface for beam reconfigurability
of monopole antennas [28,29]. In terms of meta-surface design approach, there are many
different design ideas, such as the method of using all-dielectric structures, printed layers,
or all-metal [29–31]. However, as for the research of optical antennas, it has mainly focused
on precious metal materials, such as gold and silver. There is a large intrinsic loss in precious
metal materials, which can lead the application of plasmon antennas on optical integration
systems to be limited [32–34]. High refractive index dielectric materials not only maintain
the resonance characteristics, which are similar to metal particles, but also have higher
efficiency than metal nanoparticles. This type of material provides a new idea for the design
of a low-loss optical antenna [35]. Strontium titanate (STO) has some unique properties in
the terahertz band, including high permittivity, high refractive index, low dielectric loss,
excellent insulation, and stable chemical stability [36,37]. With such excellent properties,
STO may become a new material for designing the optical antenna, and there is another
characteristic for STO whereby its permittivity could be dynamically adjusted via changing
temperature, which indicates that it may be designed as a temperature-tunable device.

Based on the STO material, we propose a multifunctional meta-surface composed
of the dielectric-metal hybrid single-layer antenna array structure that can realize perfect
absorption as well as the polarization conversion function in the frequency range from
0.1 to 0.25 THz, without adjusting the environment temperature, changing the structure,
or adding active devices. Especially, when the temperature is controlled at 300 K, the
absorptance can reach up to 99.97% and 99.92% at 0.103 and 0.13 THz respectively, and the
degree of circular polarization and ellipticity angle can reach 0.986 and 44.5◦ respectively, at
the frequency of 0.228 THz. When the temperature changes from 300 to 450 K, the proposed
meta-surface can work well as an absorber, and even the average value of absorptance of
resonance frequency is still over 96%.

2. Materials and Methods

We have mentioned that the STO material has a high refractive index in the terahertz
band. Here, we will discuss the complex relative permittivity and refractive index of STO
in detail. Firstly, the frequency-dependent complex relative permittivity of STO can be
described by [36–38]:

εw = ε∞ +
f

w2
0 − w2 − iwγ

(1)
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where ε∞ = 9.6 is the high-frequency bulk permittivity, f = 2.3 × 106 cm−2 is a temperature-
independent oscillator strength, and ω is the angular frequency of the incident THz wave.
In addition, w0 and γ are the soft-mode frequency and soft-mode damping factor, which
can be respectively written as:

w0(T)[cm−1] =
√

31.2(T − 42.5) (2)

γ(T)[cm−1] = −3.3 + 0.094T (3)

where T is the temperature (K).
Obviously, the real and imaginary parts of the relative permittivity (Re(ε), Im(ε)) of

STO material are associated with ambient temperature, while the frequency of the incident
THz wave has been fixed. As shown in Figure 1a,b, the Re(ε) and Im(ε) are changeable
at a frequency ranging from 0.001 to 0.25 THz when the ambient temperature has been
changed from 300 to 450 K. In the lower frequency range, from 0.1 to 0.25 THz, the values
of Re(ε) and Im(ε) have almost changed with the decrease of temperature, which indicates
that the complex relative permittivity of STO material is extremely sensitive to the change
of ambient temperature, suggesting potential application in the temperature-tunable inte-
grated devices. Meanwhile, the frequency-dependent complex relative refractive index of
STO can be described by:

n =
√

εrµr (4)

where n is the refractive index, εr is the relative permittivity of STO, and µr~1 is the
relative permeability for the most nonmagnetic materials. Therefore, the n of STO can be
obtained under different temperatures, as shown in Figure 2, which indicates that STO
is a high refractive index material in the range of 0.001 to 0.25 THz. In Reference [39], it
is also proven that the STO is a high refractive index material at the terahertz band, via
related experiments.
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Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. The relative refractive index, n, of strontium titanate. 

Figure 3 shows the schematic diagram of the designed multi-functional meta-surface 
consisting of the dielectric-metal hybrid single-layer antenna array. As shown in Figure 
3a, the three-dimensional (3D) view of the structure, the meta-surface comprised one layer 
of the elliptical STO antenna on the metal substrate (Au); furthermore, the two arrows 
represent linearly polarized lights with different frequencies. What it expresses is when 
the two linearly polarized lights with different frequencies pass through the meta-surface, 
one linearly polarized light with frequency f1 is converted into circularly polarized light, 
and another linearly polarized light with frequency f2 is absorbed. The upper layer of the 
meta-surface is comprised of the STO elliptical antenna with the same major axis a, minor 
axis b, and height h. Figure 3b,c present the single-layer antenna structure composed of 
one STO elliptical antenna on the upper sides of the metal substrate. 

 
Figure 3. (a) The schematic diagram of the designed multifunctional meta-surface composed of the 
dielectric-metal hybrid single-layer antenna array. (b) Side view of the single-layer antenna. (c) Top 
view of the single-layer antenna. 

When transmitting through an elliptic cylinder structure, the light polarized along 
the major axis and that along the minor axis both experience phase shifts (the two phase-

shifts are assumed as '
x  and '

y , respectively). Due to the chromatic dispersion pro-
duced by a combination of the material dispersion and the waveguide dispersion, the re-

fractive index for the light polarized along the major axis (assumed as ( )xn, where   is 
the optical frequency) and that for the light polarized along the minor axis (assumed as 
( )yn  ) both vary with the wavelength of the incident light field [14]. Therefore, the differ-

ence between the phase shift of the light linearly polarized along the major axis and that 
along the minor axis, i.e.,  

Figure 2. The relative refractive index, n, of strontium titanate.



Nanomaterials 2021, 11, 2862 4 of 12

Figure 3 shows the schematic diagram of the designed multi-functional meta-surface
consisting of the dielectric-metal hybrid single-layer antenna array. As shown in Figure 3a,
the three-dimensional (3D) view of the structure, the meta-surface comprised one layer
of the elliptical STO antenna on the metal substrate (Au); furthermore, the two arrows
represent linearly polarized lights with different frequencies. What it expresses is when
the two linearly polarized lights with different frequencies pass through the meta-surface,
one linearly polarized light with frequency f1 is converted into circularly polarized light,
and another linearly polarized light with frequency f2 is absorbed. The upper layer of the
meta-surface is comprised of the STO elliptical antenna with the same major axis a, minor
axis b, and height h. Figure 3b,c present the single-layer antenna structure composed of
one STO elliptical antenna on the upper sides of the metal substrate.
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Figure 3. (a) The schematic diagram of the designed multifunctional meta-surface composed of the
dielectric-metal hybrid single-layer antenna array. (b) Side view of the single-layer antenna. (c) Top
view of the single-layer antenna.

When transmitting through an elliptic cylinder structure, the light polarized along the
major axis and that along the minor axis both experience phase shifts (the two phase-shifts
are assumed as ϕ′x and ϕ′y, respectively). Due to the chromatic dispersion produced by a
combination of the material dispersion and the waveguide dispersion, the refractive index
for the light polarized along the major axis (assumed as nx(ω), where ω is the optical
frequency) and that for the light polarized along the minor axis (assumed as ny(ω)) both
vary with the wavelength of the incident light field [14]. Therefore, the difference between
the phase shift of the light linearly polarized along the major axis and that along the minor
axis, i.e.,

∆ϕx,y = ϕ′x − ϕ′y =
{

nx(ω)− ny(ω)
}ω

c
L′, (5)

is wavelength-dependent. In Equation (5), c is the light velocity in the vacuum, and L′ is
the propagation distance. Herein, we first designed an antenna structure with polarization
conversion and a perfect absorption function under the room temperature T = 300 K.
In order to find the expected antenna structure, we utilized the three-dimensional finite
difference time domain (FDTD) method to optimize the geometric parameters of the
antenna. For the example shown in Figure 3b,c, the period of each unit structure is
Px × Py = 700 µm× 700 µm, the unit structure is designed as an elliptic cylinder, the
operating frequency is assumed to be f0 = 0.228 THz, and the height of the elliptic cylinder
is 480 µm. To construct the antennas which function as a quarter-wave plate and function
as a dual-band perfect absorber at a frequency ranging from 0.1 to 0.25 THz, the major and
minor axes of elliptic antennas should be optimized first.
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In Figure 4a,b, we obtained the phase difference by changing the lengths of major and
minor axes, i.e., the difference between the phase shift of a light linearly polarized along
the major axis (ϕx) and that along the minor axis (ϕy):

∆ϕ = ∆ϕx − ∆ϕy (6)
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minor axes. The temperature is T = 300 K, and the operation frequency is f0 = 0.228 THz.

In the simulation, the spatial mesh grids are set as ∆x = ∆y = ∆z = 1 µm. The
boundary condition along the z axis is the perfectly matched layer (PML), and the periodic
boundary condition is used along the x and y axis.

By reading the data shown in Figure 4a,b, we found that, at the point A (a = 290 µm,
b = 48 µm, h = 480 µm, the corresponding cell structure is defined as U), the phase
difference and the reflectance approximate well to π/2 and 0.7234, respectively. In addition,
in Figure 5, we illustrate the phase difference for U at a broadband spectrum of 0.15−0.25
THz. The results further prove that the antenna structure can be regarded as quarter-wave
plates for the operating frequency.
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Figure 5. The simulated phase difference for U at a frequency ranging from 0.15 − 0.25 THz. The
temperature is T = 300 K.

Furthermore, the simulated reflectance and absorptance spectrum for U is obtained
at the frequency range from 0.1 to 0.15 THz via the three-dimensional FDTD method.
The absorptance is calculated by A(ω) = 1− R(ω)− T(ω), where R(ω) represents the
reflectance coefficient R, and T(ω) is the transmittance value that is equal to 0. From
Figure 6, the numerical simulation result indicates that the reflectance rate of U under room
temperature T = 300 K is decreased to 0.63% and 0.21% at 0.119 and 0.144 THz, and the
corresponding absorptance is up to 99.37% and 99.79%, respectively. Obviously, from these
results, we can acknowledge that U can realize polarization conversion and the perfect
absorption function at a broadband spectrum of 0.1–0.25 THz under the room temperature
T = 300 K.
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The temperature is T = 300 K.

Then, we also analyzed the variation of the absorptance and reflectance spectrum
under different polarization and incidence angles at T = 300 K, as shown in Figures 7 and 8.
From Figure 7a,b, we can see that the absorptance becomes lower and lower at resonance
frequency with the decreasing polarization angle, which means that it is sensitive to the
polarization state of the incident wave. Since there is a phase difference between the
major and minor axes, it means that the absorption effect is related to the polarization; of
course, we can also assume that this is caused by the shape of the sub-element structure.
However, the absorptance can also reach more than 90% when the incidence angle is
0–50 degrees, as shown in Figure 8a,b, which indicates that the antenna has the effect of
wide-angle absorption.
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From the analysis, we know that the permittivity of STO is sensitive to the environment
temperature, which indicates that the absorbance spectra of the designed meta-surface
may change with the change of temperature. When changing T from 300 to 450 K by
a step of 50 K at a broadband frequency of 0.1–0.15 THz, we obtained the absorptance
and reflectance spectrum, as shown in Figure 9a–d. From the result, we can find that the
resonance frequency will shift when the environment temperature changes. Furthermore,
according to the LC circuit model, the resonance frequency of the meta-surface can be
expressed equivalently by f0 ∝ 1√

LC
and 1√

LC
∼ 1

l
√

εr
, where L is the loop inductance, C is

the capacitance, and l is the metallic patch length. We can acknowledge that the absorber
frequency is inversely proportional to the value of l · √εr; in other words, if the metallic
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patch length, l, is fixed, the absorber frequency should only be inversely proportional to
the permittivity, εr. In our theoretical analysis, εr is equal to the Re(ε), so there is no doubt
that εr will be different when the environment temperature changes, resulting in a shift in
the resonance frequency, as shown in Figure 9.
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3. Results

In order to better illustrate that the antenna structure has a perfect polarization con-
version effect at T = 300 K, the degree of circular polarization, χ, and the ellipticity angle,
ζ, from Stokes’ Formula is quoted, which can be described as χ = V

I and ζ = 1
2 arcsin(V

I )
respectively, where V = 2ExEy sin(∆ϕ) and I = E2

x + E2
y [40,41]. In addition, Ex and Ey

are amplitudes of two orthogonal vectors, and ∆ϕ is the phase difference caused by the
meta-surface. More specifically, when χ is equal to 1 or −1, it means that the measured
polarized light is left or right circularly polarized light, and ζ is close to ±45◦, which means
that the reflection light is perfectly circularly polarized light [42–44]. Figure 10 shows the
values of χ and ζ in the frequency range of 0.15 to 0.25 THz. From Figure 10, we can see that
the value of χ is close to 1 (about 0.986), while the value of ζ is close to 45◦ (about 44.5◦), at
the frequency of 0.228 THz. The reflection coefficients of x- and y-polarized reflected waves
are defined as co-polarization reflection coefficient Rxx and cross-polarization reflection
coefficient Rxy (Rij denotes j-polarized reflection from i-polarized incidence), respectively.
As is known, when the angle θ is equal to 90◦ between the light vector of incident x(y)-
polarized light and the major (minor) axis of the quarter-wave plate, most of the reflection
light is x(y)-polarized light. Therefore, we can see that Rxx and Ryy are infinitely close to
1, and Rxy and Ryx are infinitely close to 0 at the frequency ranging from 0.15 to 0.25 THz,
while the x(y)-polarized light has passed through U with θ = 90◦. This further indicates that
the antenna structure has a perfect polarization conversion function under a temperature
of T = 300 K.
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There are two types of surface plasmons: one is localized surface plasmon (LSP),
which usually appears on the surface of metal nanoparticles, and the other is propagating
surface plasmon polaritons (SPPs), which usually appear at the interface of metal and
dielectric materials. In the case of surface plasmon resonance (SPR), we found that there are
many charges and a strong field energy on the surface of the metal structure, which exhibits
a strong scattering or absorption peak in the scattering spectrum; meanwhile, when the size
of metal particles is less than the wavelength of incident light, it is easy to produce local
surface plasmon resonance on the metal surface. We conclude that the localized surface
plasmon resonance (LSPR) has occurred on the surface of the STO elliptical cylinder. The
reasons for this are as follows: (1) STO material has a high refractive index in the terahertz
band that has metalloid properties, (2) the operation wavelength is larger than the size of
the unit structure, and (3) we have observed the galvanic couple resonance on the surface
of the STO elliptical cylinder and the magnetic dipole resonance. To further understand
the working mechanism while it is regarded as a perfect absorber at T = 300 K, the electric
field distribution and magnetic field distribution are shown in Figure 11a,b, and the vector
distribution of the electric field and magnetic field are shown in Figure 11c,d in the range
of 0.1–0.15 THz. From Section 2, we know that the antenna composed of dielectric-metal
particles is also regarded as a plasmon optical antenna, and when the dielectric is a high
refractive index material, it is easy to cause the LSRP effect on the surface of the dielectric
particle. By analyzing the distribution of the electromagnetic field on the surface of the
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STO elliptic cylinder, we can see that there is electric dipole resonance and magnetic dipole
resonance, as shown in Figure 11a–d, which can further explain that the LSPR effect really
occurred on the surface of the STO antenna. As a result, an enhanced local field is produced,
which can make incidence photons effectively manacled in the sub-wavelength region of
the STO antenna surface.
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y-polarized.

4. Prospects for Future Work

Our group proposed a new optical antenna array that can realize the polarization
conversion and perfect absorption in a special frequency range without adjusting the
environment temperature, changing the structural parameters, or adding active devices.
When the external temperature is changed, the proposed antenna array can work well
as a temperature-controlled tunable absorber. This work proves that the realization of
multifunctional metamaterials does not need the complex structure or too many additional
external factors. In the future, we will attempt to design the multifunctional metamaterials
with richer functions and simpler structures; of course, the functions are not limited to
polarization conversion or perfect absorption.

5. Experimental Feasibility

We have proposed an experimental measurement scheme, and the experiment devices
is shown in Figure 12. The meta-surface was placed on the temperature controller; in this
case, the reflectance and absorptance of the meta-surface at different temperatures could
be measured via the optical detector. In another case, we could rotate the polarizer for one
cycle, and if there are two extinction phenomena observed by the optical detector, it can
indicate that the polarization state of reflected light is circularly polarized. Thus, it can
be tested whether this proposed meta-surface has the functions of perfect absorption and
polarization conversion.
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6. Conclusions

Based on STO material, we have proposed and designed a single-layer multifunctional
meta-surface composed of a dielectric-metal hybrid antenna array. It can realize multiple
functions without adding active devices, adjusting the temperature, or changing the struc-
ture. In particular, the meta-surface can achieve the functions of perfect absorption and
polarization conversion when the temperature is constant (T = 300 K). In addition, we have
discussed the relationship between temperature and absorption when the temperature is
changeable from 300 to 450 K. All working frequencies were set in the range from 0.1 to
0.25 THz. Numerical simulation results showed that, in the state of perfect absorption,
the maximum absorptance can reach up to 99.97%, and in the state of polarization conver-
sion, the degree of circular polarization and the ellipticity angle can reach 0.986 and 44.5◦,
respectively. The single-layer optical antenna revealed the practicability to configure a
multifunctional meta-surface without adding active devices, adjusting the temperature, or
changing the structure, enabling novel optical applications in the complex electromagnetic
environment, such as in optical sensing, imaging, and energy harvesting.
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