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ABSTRACT Training set size is an important determinant of genomic prediction accuracy. Plant breeding
programs are characterized by a high degree of structuring, particularly into populations. This hampers the
establishment of large training sets for each population. Pooling populations increases training set size but
ignores unique genetic characteristics of each. A possible solution is partial pooling with multilevel models,
which allows estimating population-specific marker effects while still leveraging information across
populations. We developed a Bayesian multilevel whole-genome regression model and compared its
performance with that of the popular BayesA model applied to each population separately (no pooling) and
to the joined data set (complete pooling). As an example, we analyzed a wide array of traits from the nested
association mapping maize population. There we show that for small population sizes (e.g., ,50), partial
pooling increased prediction accuracy over no or complete pooling for populations represented in the
training set. No pooling was superior; however, when populations were large. In another example data set
of interconnected biparental maize populations either partial or complete pooling was superior, depending
on the trait. A simulation showed that no pooling is superior when differences in genetic effects among
populations are large and partial pooling when they are intermediate. With small differences, partial and
complete pooling achieved equally high accuracy. For prediction of new populations, partial and complete
pooling had very similar accuracy in all cases. We conclude that partial pooling with multilevel models can
maximize the potential of pooling by making optimal use of information in pooled training sets.
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Genomic selection (Meuwissen et al. 2001) in animal and plant breed-
ing rests on the accurate prediction of genomic breeding values
(GEBVs). An important determinant of prediction accuracy is the size
of the training set (Daetwyler et al. 2010). In animal breeding, assem-
bling large training sets is relatively straight forward for large dairy
breeds like Holstein Friesian, where genomic selection is applied most
successfully to date (Hayes et al. 2009b). For smaller dairy cattle
breeds and in particular for beef cattle breeds, however, assembling

sufficiently large training sets within each breed is often not possible
(Weber et al. 2012). The creation of multipopulation training sets by
pooling several breeds is therefore of great interest and subject of
current research (De Los Campos and Sorensen 2014; Lund et al.
2014).

A similar situation exists in plant breeding, which is characterized
by a high degree of structuring (Albrecht et al. 2014). This structuring
results from the importance of keeping distinct heterotic groups for
maximum exploitation of heterosis (Melchinger and Gumber 1998),
from the predominance of distinct biparental populations (Mikel and
Dudley 2006), and the need for specialized breeding programs target-
ing specific traits or environments (Windhausen et al. 2012). This
requires that the phenotyping and genotyping resources available to
a breeding program have to be allocated to multiple populations, which
prevents the creation of sufficiently large training sets for each pop-
ulation. Several studies therefore investigated the merit of pooled train-
ing sets combining populations (Asoro et al. 2011; Heffner et al. 2011;
Lorenz et al. 2012; Riedelsheimer et al. 2013; Lehermeier et al. 2014) or
even heterotic groups (Technow et al. 2013; Lehermeier et al. 2014).
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However, pooling training sets is complicated by the unique
genetic characteristics of populations, that arise because of differences
in linkage disequilibrium or allele frequency, (Weber et al. 2012;
Windhausen et al. 2012; Riedelsheimer et al. 2013; Technow et al.
2014b), quantitative trait locus (QTL) by background interaction
(Blanc et al. 2006; Melchinger et al. 2008), and presence of population
specific QTL alleles (Buckler et al. 2009; Giraud et al. 2014). This
might be the reason why using pooled training sets failed to increase
prediction accuracy in some applications in plant (Desta and Ortiz
2014) and animal breeding (Lund et al. 2014).

Therefore, Brøndum et al. (2012) proposed to use separate training
sets for each population but to derive genome position specific priors
from estimation results in the other population. In this way, unique
genome properties of each population could be accounted for while
still using information from other populations. A similar, but perhaps
more formal, approach is partial pooling, facilitated by Bayesian
multilevel models (Gelman and Hill 2006; Gelman and Pardoe 2006;
Gelman 2006a). In multilevel models, specific marker effects are esti-
mated for each population. However, the prior means of these specific
marker effects, which might be interpreted as overall or unspecific
marker effects, are estimated from data of all populations, simulta-
neously with the specific marker effects. Because the specific marker
effects are shrunk toward the overall effects, the former are still in-
formed by data from the other populations to a certain degree. Partial
pooling thus strikes a middle ground between no pooling (specific
marker effects estimated from data of the specific population only)
and complete pooling (common marker effects estimated from pooled
training sets).

Our objectives were to (i) demonstrate the use of Bayesian
multilevel whole-genome regression models for genomic prediction
and (ii) investigate scenarios in which partial pooling might be
superior over no or complete pooling of training sets. Our inves-
tigations were based on two publicly available maize breeding data sets
and supported by a simulation study.

MATERIALS AND METHODS

Multilevel whole-genome regression model
The model fitted to the data were as follows:

yij � N
�
mij;s

2
e

�

mij ¼ b0 þ
P
k
zijkujk;

(1)

where yij was the observed phenotypic value of the ith individual
from the jth population and mij its linear predictor. The pheno-
typic data yij was centered to mean zero and scaled to unit var-
iance. The Normal density function, which was used as likelihood
function, was denoted as N with s2

e denoting the residual vari-
ance component. The common intercept was b0. Finally, ujk
denoted the additive effect of the kth biallelic single-nucleotide
polymorphism (SNP) marker in population j. The genotype of
individual i from population j at marker k was represented by
zijk, which was the number of reference alleles, centered by twice
the reference allele frequency. Which of the alleles was chosen as
reference allele depended on the data set and is described below.
Effects ujk were only estimated when the corresponding marker
was polymorphic in population j. Otherwise it was set to 0 and
treated as a constant.

The hierarchical prior distribution setup will be explained next. A
graphical display is shown in Figure 1A. The prior of ujk was

ujk � N �
uk; g

2
k

�
; (2)

where uk was the overall effect of the kth marker and variance pa-
rameter g2

k quantified the deviations of the specific effects ujk from
uk. Note that all else equal, the shrinkage toward uk is the stronger
the smaller g2

k.
Both parameters were associated with prior distributions them-

selves and estimated from the data. For uk this was uk � Nð0;s2
kÞ.

Here, the variance parameter s2
k controls the amount of shrinkage

toward 0. It was associated with a scaled inverse x2 prior with 4.001
degree of freedom and scale parameter S2. The prior for uk thus
corresponded to the well-known “BayesA” prior (Meuwissen et al.
2001). The prior for the intercept b0 was a Normal distribution with
mean 0 and a very large variance.

For the variance parameter g2
k, we specified

gk � N �
m; d2

�þ
(3)

which is a Normal distribution prior on gk with mean parameter m
and SD d, left truncated at zero. Note that the mean of the trun-
cated distribution Nðm; d2Þþ, which is a function of m, d, and the
truncation points, can be interpreted as the “typical” deviation of
the specific marker effects ujk from uk. Greater values of this mean
indicate larger deviations and vice versa. This parameter might
therefore be used to quantify population divergence. We chose
a truncated Normal as prior distribution because it is straightfor-
ward to specify and interpret its hyperparameters and to poten-
tially include prior knowledge. It is also our experience that
a truncated Normal prior can be more robust and improve con-
vergence compared to other potential choices such as Gamma
distributions.

A Uniform distribution prior Unið0:001; 0:5Þ was used for the
hyperparameters S2, m, and d. For the residual variance s2

e we
specified a Uniform distribution prior over the interval [0, 1] on
se, which agrees with recommendations for uninformative priors
on variance components (Gelman, 2006b). We used Uniform dis-
tributions because they allow us to convey prior ignorance while
still bounding the parameters to a sensible value range. The latter
feature can improve robustness and convergence. In contrast to
other choices for uninformative priors, such as improper distribu-
tions, the implications of Uniform distributions also are readily
apparent to researchers less familiar with Bayesian statistics.
Gelman (2006b) state further reasons for why a proper Uniform
distribution might be preferable over improper uniform distribu-
tions. However, we note that our choice of prior distributions
differs from those commonly used for Bayesian whole genome
regression, which are chosen mainly for their conjugacy and com-
putational efficiency. Although we see several advantages in choos-
ing Uniform and truncated Normal distribution priors, their lack
of conjugacy is a drawback and can be associated with computa-
tional performance penalties.

Samples from the posterior distribution were drawn with Gibbs
sampling, implemented in the JAGS Gibbs sampling environment
(Plummer 2003). The total number of samples was 1000, drawn
from a single chain with burn in of 10,000 and thinning intervals of
500. These settings ensured convergence and an effective sample
size (ESS) of . 100 for all parameters (ESS of uk and ujk were
typically . 500).

The ESS was calculated with the R (R Core Team 2013) package
CODA (Plummer et al. 2006), which was also used to monitor con-
vergence using diagnostic plots.
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Conventional whole-genome regression model
We used the popular Bayesian whole-genome regression method
“BayesA” (Meuwissen et al. 2001), with the modifications of Yang and
Tempelman (2012) pertaining to the hyperparameter S2 (see Figure
1B for a graphical representation). The linear model was

yi � N �
mi;s

2
e

�
mi ¼ b0 þ

P
k
zikuk; (4)

which is principally the same as in (1), with the difference that
the population index j was dropped. For no pooling, the model
was applied to each population in turn, for complete pooling to
the joint data set. For s2

e we used an improper scaled inverse x2

prior with 21 degrees of freedom and scale equal to zero. This is
equivalent to an improper uniform prior density on se (Gelman
2006b; Yang and Tempelman 2012), which is similar to the
proper Uniform density that was used for the multilevel model
but exploits conjugacy.

The BayesA Gibbs Sampler was implemented as a C routine
compatible with the R statistical software environment. Again we
drew a total number of 1000 samples from a single chain with burn in
of 10,000 and thinning of 500.

Estimation, prediction, and testing procedure
Let P denote the set of P populations represented in the training set
and the set of Np training individuals from a population in P as Lp,
where p indexes the population in P. A graphic representation is
presented in Figure 2. Further, let those individuals from a population
in P that are not in Lp be denoted as �Lp and the set of populations
not in P as �P. Populations in �P will be referred to as “new” pop-
ulations. The training set thus comprised all individuals belonging to
Lp, for p 2 P. The test set used for calculating prediction accuracy,
comprised individuals in �Lp from populations inP and all individuals
from populations in �P. The phenotypic observations of test individ-
uals were masked in the estimation procedure. The separation of
populations into P and �P and of individuals within a population
into Lp and �Lp was done at random.

Within each population, prediction accuracy was computed as the
correlation between GEBVs and observed phenotypic values of
individuals in the testing set. The within population prediction
accuracies were subsequently averaged for populations in P and �P.
These average within population prediction accuracies will henceforth
be denoted as rP and r �P . Thus, rP and r �P correspond to the pre-
diction accuracy for populations represented and not represented in
the training set, respectively.

When using partial pooling, GEBVs of individuals in �Lp were
predicted using the posterior means of the marker effects estimated
for the corresponding population (i.e., ujk). GEBVs of individuals
from populations in �P were predicted using the posterior means of
the overall (unspecific) marker effects uk.

When using complete pooling, GEBVs of all individuals in the test
set were predicted from the posterior means of marker effects uk
estimated from the joint data set with model (4).

Finally, when using no pooling, GEBVs of individuals in �Lp were
predicted using the posterior means of the marker effects uk obtained
after applying model (4) to the training data from the corresponding
set Lp. The no pooling approach does not provide a direct way of
predicting GEBVs of individuals from populations in �P. Thus, r �P was
not evaluated for the no-pooling approach.

Application to nested association mapping (NAM)
maize populations
The NAM data set was obtained from http://www.panzea.org. It com-
prised 4699 recombinant inbred lines from 25 biparental crosses be-
tween a genetically diverse set of maize inbred lines and line B73 as
common parent (McMullen et al. 2009). The average population size
was 188 (range 126–196). The recombinant inbred lines were geno-
typed with 1106 polymorphic SNP markers covering the whole ge-
nome. The non-B73 allele was defined as the reference allele. We
confirmed that all SNP were biallelic and thereby that the reference
allele corresponded to the same nucleotide in all 25 populations. To
facilitate computations, we used a thinned set of 285 markers, chosen
in such a way that there was one marker per 5-cM interval, on
average. A previous study showed that a density of one marker per
10-cM interval is sufficient for genomic prediction in the NAM pop-
ulation (Guo et al. 2012). We analyzed the traits days to silking (DS),
ear height (EH), ear length (EL), southern leaf blight resistance (SLB),
near-infrared starch measurements (NS) and upper leaf angle (ULA),
which were phenotyped in multienvironment field trials. The pheno-
typic records used for fitting the models were averages over the single
environment phenotypes. The number of environments were 10, 11,
8, 3, 7, and 9 for DS, EH, EL, SLB, NS, and ULA, respectively. The
traits chosen represent the major trait categories available: yield com-
ponent (EL), agronomic (EH), disease resistance (SLB), flowering
(DS), quality (NS), and morphology (ULA).

To investigate the effect of total number of lines N, number of
populations P, and number of lines per population Np in the training
set on prediction accuracy and the relative performance of the pooling
approaches, the following combinations of P and Np were considered:
P = 5 and Np = 50 and 100, P = 10 and Np = 25, 50, and 100, P = 20
and Np = 12.5, 25, and 50. For P = 20 and Np = 12.5, we sampled 19
populations with 12 individuals and one with 22, which results in an
average Np of 12.5. The P and Np combinations thus gave rise to N of
either 250, 500, or 1000. For each combination of trait, P and Np, 50
estimation-testing data sets were generated by repeating the sampling
of P and Lp as described previously. Throughout, the three pooling
approaches were applied to the same data sets. The sampling variation
between different data sets thus does not enter the comparisons
among pooling approaches.

To provide measures of the consistency of differences between
pooling approaches under repeated sampling, we plotted the

Figure 1 Graphic visualization of the multilevel
model (A) and the conventional BayesA model
(B).
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prediction accuracies observed for one pooling approach against those
observed for the other in the same 50 data sets. In addition, we
conducted paired t-tests to assess statistical significance of pairwise
differences between pooling approaches.

We conducted an analysis of variance (ANOVA) to assess the
overall significance of influencing factors and of interactions between
factors on prediction accuracies. For this we fitted a linear model with
the main effects of pooling approach, trait, P and Np and all possible
interactions among them (P and Np were fitted as numerical predictor
variables) and the replication as blocking factor.

To investigate the response to increased marker density, we
repeated the analyses using 575 markers, which corresponds to
a marker density of 2.5 cM21. Because of the considerably increased
central processing unit (CPU) time, particularly for partial pooling
(Supporting Information, Figure S10), this was only done for a subset
of the traits (EH, EL, and SLB). To facilitate computations for partial
pooling, it was also necessary to reduce the length of the thinning
interval from 500 to 50 and the number of stored samples from 1000
to 500. The thinning interval length and the number of stored samples
for no and complete pooling were not changed, however.

For the purpose of gauging the CPU time requirements with
increasing number of markers, we ran the multilevel Gibbs sampler
for partial pooling as well as the no and complete pooling BayesA
algorithm with numbers of markers from 100 to 1000 in steps of 100.
This was done for trait SLB with P = 20 and Np = 25. Because we were
only interested in measuring computation time, the Gibbs samplers
were run for only 1000 iterations. The whole process was repeated 50
times for each number of markers.

Application to interconnected biparental (IB)
maize populations
This data set was obtained from the supplement of Riedelsheimer
et al. (2013). It comprised 635 doubled haploid (DH) lines from five
biparental populations with average size of 127 (range 43–204). The
populations were derived from crosses between four European flint
inbred lines. For all DH lines, 16,741 SNP markers polymorphic

across populations were available. We replaced missing marker gen-
otypes with twice the frequency of the reference allele, which was the
allele with the lower frequency. When analyzing the data we used
a thinned set of 285 markers. Because the data set did not include
a map of the markers, the markers were chosen randomly.

The DH lines were phenotyped in multienvironment field trials for
Giberella ear rot (GER) severity, a fungal disease caused by Fusarium
graminearum, deoxynivalenol (DON) content (major mycotoxin pro-
duced by the fungus), ear length (EL), kernel rows, and kernels per
row (KpR). A more detailed description of this data set can be found
in Riedelsheimer et al. (2013) and Martin et al. (2012).

As described previously, populations were randomly split into Lp

and �Lp. However, because there were only five populations in total, we
did not exclude any populations from P. Set �P was thus empty and
we did not evaluate r �P .

The sets Lp comprised 25%, 50%, and 75% of the lines in each
population, which corresponded to an average Np of 31, 63, and 95,
respectively. For each trait and percentage value of estimation indi-
viduals, 100 estimation-testing data sets generated, each time re-
sampling the subset of 285 markers, too.

Application to simulated data set
We conducted a simulation study to specifically investigate the
performance of the pooling approaches under increasing levels of
differences in QTL effects among populations. The basis for the
simulation were the marker genotypes of the lines in the NAM
populations. To simulate genetic values, we first randomly chose 20
marker loci as QTL, which were subsequently removed from the set of
observed markers. We drew additive overall effects aq from a standard
normal distribution. Then population specific QTL effects ajq were
sampled from Nðaq; t2qÞ. The variance parameter t2 was chosen such
that the relative SD (rSD), i.e., tq=aq, was equal to 2, 1, 0.5, 0.25, and
0.0. The greater rSD, the less similar the population specific QTL
effects are. True genetic values were obtained by summing QTL effects
ajq according the QTL genotypes of each individual. Finally, pheno-
typic values were simulated by adding a normally distributed noise
variable to the true genetic values. The variance of the noise variable
was chosen such that the heritability across populations was equal to
0.70. The average within family heritability necessarily increased with
decreasing rSD, and was 0.53, 0.58, 0.64, 0.68, and 0.70 at rSD 2, 1, 0.5,
0.25, and 0.0, respectively.

Set P comprised P = 10 populations and sets Lp had size Np = 25.
For each rSD value 50 training-testing data sets were generated. The
QTL positions and effects were randomly generated anew for each
data set. Also in this case we used a thinned set of 285 markers.
Because the true genetic values were known, rP and r �P were com-
puted as the correlation between true genetic values and GEBVs.

RESULTS

NAM maize populations
Trends typically held across traits. The results presented and discussed
therefore apply to all traits, unless otherwise mentioned. We will also
present results for 285 markers first and then contrast these with those
obtained with 575 markers.

Increasing Np, while keeping N constant (i.e., having fewer but
larger populations in the training set) generally increased rP and de-
creased r �P (Figure 3 and Table S1). However, the increase in rP was
much more pronounced than the decrease in r �P .

When increasing Np with constant P or when increasing P with
constant Np (i.e., increasing N), both rP and r �P increased. However,

Figure 2 Graphic visualization of the testing strategy for evaluating
prediction accuracy. The training set comprises L1 and L2 from pop-
ulations P1 and P2 (set P). The prediction accuracy of lines from pop-
ulations represented in training set (rP ) was computed from �L1 and �L2,
the prediction accuracy of lines from populations not represented in
training set from lines in P3 and P4 (set �P).
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while in the first case, rP and r �P increased in similar magnitudes, the
increase in rP was much smaller than the increase in r �P in the second
case, in particular when Np was high. Per definition, the accuracy of
no pooling is not expected to change as long as Np remains constant.

For low P and high Np, e.g., P = 5 and Np = 100, no pooling
achieved the greatest rP and complete pooling the lowest. For high
P and low Np, e.g., P ¼20 and Np = 25, partial pooling achieved the
greatest rP . Here no pooling resulted in the lowest rP . The only
exception to this was trait DS, where no pooling had a rP equal or
higher to partial and complete pooling also for low Np. Practically
relevant differences among the pooling approaches (e.g., .0.01) were
statistically significant (p , 0.05, Table S1) and consistent in repeated
sampling (Figure S1, Figure S2, Figure S3, Figure S4, Figure S5, Figure S6).

Partial and complete pooling achieved practically identical pre-
diction accuracies r �P for new populations. In general, r �P of a partic-
ular pooling approach was considerably lower than the corresponding
rP . The differences between rP and r �P tended to be larger for high Np.

In the ANOVA, all main effects and interactions were found to
have effects on prediction accuracy that were significantly different
than zero (p , 0.05), which was expected given the large amount of
residual degrees of freedom (Table S2).

Results when using 575 markers were similar to those obtained
with 285 markers (Figure 4, Figure S7, Figure S8, Figure S9, Table S3
and Table S4) and we did not observe a consistent increase in pre-
diction accuracy. Averaged over traits and P and Np combinations, the
difference between 285 and 575 markers were statistically not signif-
icant (p . 0.05) for rP of no and complete pooling and for r �P of
partial and complete pooling. The only significant difference was

observed for rP of partial pooling, which dropped by 0.01 points when
increasing the number of markers to 575. It is possible that increased
Monte-Carlo error because of the reduced chain length complicated
these comparisons, particularly for partial pooling.

CPU time increased linearly with the number of markers for no
and complete pooling, but exponentially for partial pooling (Figure
S10). Thus, the relative differences between partial pooling on the one
hand and no and complete pooling on the other hand increased with
increasing number of markers. At 100 markers, the average CPU
times for generating 1000 samples were 54, 23, and 2 sec for no,
partial, and complete pooling. At 300 markers the corresponding
CPU times were 144, 159, and 7 sec and at 1000 markers 503,
1627, and 23 sec.

IB maize populations
The prediction accuracy rP increased with increasing Np, for all traits
and pooling approaches (Figure 5 and Table S5). Averaged over traits,
the increase was largest for no pooling, where the accuracy increased
from an average of 0.35 at Np = 31 to 0.48 at Np = 95. The accuracies
for the partial and complete pooling approaches increased from 0.39
and 0.38, respectively, at Np = 31 to 0.48 at Np = 95.

At Np = 31, partial pooling had the greatest rPfor traits EL, KpR,
complete pooling for traits DON and kernel row. For GER both had
the same accuracy. The no pooling approach had the lowest rP , except
for EL and KpR, where it had the same accuracy as complete pooling.
For the greatest Np of 95, the accuracy differences among the pooling
approaches decreased. Partial pooling still had the greatest accuracy
for EL and KpR and the same as complete pooling for DON and GER.

Figure 3 Average prediction accuracy in the
nested association mapping population using
285 markers. The number of populations repre-
sented in the training set is P and the number of
individuals per population is Np. The three left-
most columns in each subplot show the accuracy
for no, partial, and complete pooling for popula-
tions represented in the training set (rP ). The two
rightmost columns in each subplot show the ac-
curacy for partial and complete pooling for pop-
ulations not represented in the training set (r �P ).
The red bars over each column indicate the stan-
dard errors of the averages. The traits are: days
to silking (DS), ear height (EH), ear length (EL),
NIR starch measurements (NS), southern leaf
blight resistance (SLB), and upper leaf angle
(ULA).
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While never better than partial pooling, no pooling had higher pre-
diction accuracy than complete pooling for EL and KpR.

Prediction accuracy differences between the pooling approaches
were not only statistically significant (p , 0.05, Table S5) but also
practically relevant (e.g., .0.01) and consistent in repeated sampling
(Figure S11, Figure S12, Figure S13, Figure S14, Figure S15). All main
effects and interactions were found to have effects on prediction ac-
curacy that were significantly different from zero (p , 0.05) in the
ANOVA (Table S6).

Simulated maize populations
For all pooling approaches, rP increased with decreasing rSD (Figure
6 and Table S7). The increase for no pooling, however, was compar-
atively small and a result of the increasing within family heritability
with decreasing rSD. The relative performance of the pooling
approaches also depended on rSD. For the greatest rSD value consid-
ered, no pooling had the highest rP , for the intermediate rSD value of
1.0 partial pooling (Figure S16). For the lower rSD values complete
and partial pooling achieved similarly high rP .

Also r �P for both partial and complete pooling increased strongly
with decreasing rSD and the differences to rP decreased. Partial and
complete pooling achieved almost identical r �P .

All main and interaction effects of factors on prediction accuracy
were found to be significantly different from zero (p , 0.001) in the
ANOVA (Table S8) and prediction accuracy differences between
methods were statistically significant (p , 0.05, Table S7), practically
relevant and consistent in repeated sampling (Figure S16).

The mean of the truncated Normal distribution prior Nðm; d2Þþ
for parameter gk increased with increasing rSD. Its average values
were 0.0111, 0.0153, 0.0190, 0.0269, and 0.0296 for rSD of 0.0, 0.25,
0.5, 1.0 and 2.0, respectively. The regression coefficient of the regres-
sion of the mean of Nðm; d2Þþ on rSD was significantly different
from zero (P , 0.001).

DISCUSSION

Comparison of pooling approaches
Partial pooling allows estimation of population specific marker effects
while still facilitating the “borrowing” of information across popula-
tions. It is therefore a compromise between no pooling, which models
unique characteristics of each population but ignores shared informa-
tion, and complete pooling, in which the opposite is the case.

When population sizes Np are sufficiently large, borrowing infor-
mation from other populations is not required for achieving high
prediction accuracy of new individuals from the same population
(rP). Further enlarging training sets by pooling with other populations
might then even be detrimental (Habier et al. 2013; Riedelsheimer
et al. 2013). This explains why no pooling was the most accurate
approach when Np was large (e.g., $50), particularly in the NAM
population, and why it profited most from increases in Np. Therefore,
pooling of training sets is most promising if Np is small due to budget
or other constraints. We indeed observed that pooling was more
accurate than no pooling when Np was small (e.g., ,50). The superi-
ority of either pooling approach over no pooling also increased with
increasing P, because information from more populations was avail-
able, which is not used in no pooling. Thus, pooling is expected to be
most advantageous when P is relatively high and Np low. Whether
partial or complete pooling is the better approach will then also de-
pend on the similarity of the pooled populations. The greater the
similarity, the relatively better complete pooling is expected to per-
form, because the ability to estimate population specific marker effects
becomes less important. In this situation partial pooling might even be
of disadvantage, because it requires estimation of many more effects
which might lead to problems associated with nonidentifiability
(Gelfand and Sahu 1999). The parents of the IB populations are from
the same breeding program (Riedelsheimer et al. 2013), whereas the
noncommon parents of the NAM populations were chosen to be
maximally diverse and comprise temperate, tropical and specialty
(sweet and popcorn) maize germplasm (McMullen et al. 2009). Ac-
commodating for unique characteristics of the populations is therefore
more important in NAM than in IB, which might explain why com-
plete pooling was always inferior to partial pooling in the former but
often equal or even superior in the latter and also why no pooling never
achieved the greatest prediction accuracy in IB, even for large Np.

The relative performance of the pooling approaches was very
stable across traits in the NAM data set, with the exception of
DS. For this trait the no pooling approach was generally
superior, even at high P and low Np. Buckler et al. (2009) found
evidence for an allelic series at the QTL identified for DS in the
NAM population. Thus, although the positions of the QTL are
conserved across populations, their effects might have differed
strongly. Possible reasons are presence of multiple alleles or QTL
by genetic background interaction. In this situation, pooling of
data are not expected to have an advantage over no pooling. This

Figure 4 Average prediction accuracy in the
nested association mapping population using
575 markers. The number of populations repre-
sented in the training set is P and the number of
individuals per population is Np. The three left-
most columns in each subplot show the accuracy
for no, partial, and complete pooling for popula-
tions represented in the training set (rP ). The two
rightmost columns in each subplot show the ac-
curacy for partial and complete pooling for pop-
ulations not represented in the training set (r �P ).
The red bars over each column indicate the stan-
dard errors of the averages. The traits are: ear
height (EH), ear length (EL) and southern leaf
blight resistance (SLB).
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example also shows that decisions about whether to pool data or
not have to be made on a by trait basis and should incorporate
prior knowledge about genetic architecture, if available.

The dependence of the relative performance of the pooling
approaches on the similarity of populations was also reinforced by
the results from our simulation study. There we also observed that the
mean of Nðm; d2Þþ, the prior distribution of gk, which quantifies the
deviations of specific marker effects ujk from the overall effect uk,
increased with increasing simulated differences among population
specific QTL effects. This was expected, but demonstrates that the
data were informative for the high-level hyperparameters. Averaged
over P and Np, this mean was largest for DS and ULA in NAM (results
not shown). This might reflect the noted differences between popula-
tion specific QTL effects for DS. Trait ULA, however, did not diverge
from the pattern observed for the remainder of traits and there does
not seem to be any strong indication of an allelic series as in DS (Tian
et al. 2011). There was also no obvious relation between the mean of
Nðm; d2Þþ and performance of the pooling approaches in IB (results
not shown).

We observed clear trends for the relative performance of the
different pooling approaches with regard to changes in P and Np.
However, the results showed that factors such as trait and degree of
similarity of genetic effects among populations do have an influence
on the relative performance. Therefore, deciding a priori which pool-
ing approach will be superior for a particular P and Np combination in
a given scenario remains challenging and would require substantial
prior knowledge about trait architecture and the germplasm.

Modeling unique characteristics of populations requires that these
populations are represented in the training set. Prediction of
individuals from new populations in �P therefore has to rely on the
overall, unspecific marker effects uk, in both partial and complete
pooling. It was thus expected that both achieved very similar predic-
tion accuracies r �P for new populations.

Our results demonstrate that partial pooling is able to model
unique characteristics of populations within the training set without
compromising on the ability of prediction of individuals from new
populations. Thus, our results are consistent with the conclusion of
Gelman (2006a), stating that the greatest potential of partial pooling
with multilevel models is in predictive applications.

We exemplified the use of multilevel models for partial pooling in
the context of multiple populations, a scenario of high relevance for
plant (Lehermeier et al. 2014) and animal (Lund et al. 2014) breeding.
However, the concept is readily applicable in a wide array of scenarios.
Examples are pooling data across multiple top-cross testers or environ-
ments, as is of particular relevance in plant breeding (Albrecht et al.
2014). Extending the models to more than two levels is straightforward,

too, for example for pooling multiple populations from multiple
heterotic groups or breeding programs.

Computational considerations
For sake of brevity, we will focus on comparing the computational
requirements of partial and complete pooling. The CPU time for no
pooling could be substantial, and at low number of markers it was
even higher than for partial pooling. However, no pooling lends itself
to “embarrassingly” parallel computation, because each population is
analyzed independently. While parallel execution of analyses in no
pooling would not improve total CPU time, it reduces wall time
approximately by a factor of P. The wall time would then be compa-
rable to complete pooling.

The CPU time for obtaining a certain number of posterior samples
was considerably larger for partial pooling than for complete pooling
for all numbers of markers investigated. This is partly a consequence
of the much greater complexity and dimensionality of multilevel
models, in which P + 1 effects (specific effects for all population plus
the overall effects) have to be estimated for each marker, together with
the corresponding variance components. In contrast to no pooling,
partial pooling with multilevel models is also not easily parallelized.
Most of the prior distributions of hyperparameters used in our multi-
level model were not conjugate. This required computationally more
demanding sampling techniques such as Metropolis-Hastings within
Gibbs. Thus, the choice of prior distributions might have also con-
tributed to the increased computation time.

The software implementation is responsible for the differences in
computation time, too. The BayesA algorithm was implemented in the
compiled computer language C, while the multilevel model was
implemented in JAGS. JAGS, and similar software like BUGS
(Thomas et al. 2006), are computing environments dedicated to Gibbs
sampling and allow straightforward and flexible implementation of
novel and complex models. This makes them an ideal choice for re-
search. JAGS, however, is an interpreted language which means pro-
gram execution is much slower compared to compiled languages.
Because the CPU time increased exponentially with increasing num-
ber of markers, partial pooling with multilevel models would currently
be computationally very intensive for high numbers of markers (i.e.,
greater than 500).

The populations we studied were all derived from biparental
crosses. Previous studies showed that for these types of populations
the gain in prediction accuracy is marginal once the number of
markers reaches 200–300 (Guo et al. 2012; Combs and Bernardo 2013;
Hickey et al. 2014; Zhang et al. 2015). Consequently, we did not
observe a significant increase in prediction accuracy for any pooling
approach when increasing the number of markers from 285 to 575

Figure 5 Average prediction accuracies in inter-
connected biparental maize populations for pop-
ulations represented in the training set (rP ). Np

denotes the average number of individuals per
population in the training set, the number of
populations was 5. The red bars over each col-
umn indicate the standard errors of the averages.
The traits are: ear length (EL), deoxynivalenol
content (DON), Giberella ear rot severity (GER),
kernel rows (KR), and kernels per row (KpR).
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(i.e., increasing marker density from 5 cM21 to 2.5 cM21) in the
NAM populations.

There are three main reasons why estimating population specific
marker effects might be beneficial: (i) inconsistent marker-QTL LD
among populations; (ii) QTL by background interaction (Blanc et al.
2006; Melchinger et al. 2008; Wang et al. 2014); and (iii) the presence
of genuinely different QTL alleles (Buckler et al. 2009; Giraud et al.
2014). Of these, only the first is sensitive to increasing marker density.
Capturing the genetic variability induced by the other two phenomena
requires the use of genetic models that allow marker effects to vary
across populations. This can explain why no pooling (when Np is
large) or partial pooling (when Np is small) had an advantage over
complete pooling also for biparental populations, in which marker
density might not be the limiting factor.

Biparental crosses are by far the most common source of
recombinant germplasm in commercial plant breeding programs. A
study by Mikel and Dudley (2006), for example, revealed, that 88% of
commercial maize inbred lines developed for the US corn belt between
1980 and 2004 were derived from either F2 populations (77%) or
backcrosses (11%). The parents of these crosses were in most cases
elite and often related inbred lines, with some of them being parent in
a disproportionately large number of crosses (Mikel and Dudley
2006). The most prominent example of these is B73, the common
parent in the NAM populations. Such key ancestor lines were also
identified for the European maize germplasm (Technow et al. 2014a).
Thus, genomic prediction in sets of biparental populations is of great
relevance to plant breeding, and for these types of populations, partial
pooling with multilevel models is computationally feasible and can
increase prediction accuracy, as we showed.

Nonetheless, there are scenarios where marker density is expected
to be a limiting and more decisive factor, for example for pooling
dairy cattle breeds (Hayes et al. 2009a; Erbe et al. 2012) and other
types of random mating populations encountered in animal breeding.
Application of partial pooling with multilevel models in these cases is
more challenging and would require computationally more efficient
model formulations and software implementations.

Alternative approaches to partial pooling
There are alternatives to multilevel models for partial pooling.
Brøndum et al. (2012) leveraged information across populations by
using results obtained from one population to derive genome position
specific priors for the analysis of another. For example, when there
were two populations A and B, then A was analyzed first and the

obtained result used as prior information when analyzing B. One
disadvantage of their approach is that because analyses are done se-
quentially, information is not shared simultaneously among popula-
tions. In the example above, information from A is used for B but not
vice versa. To use information from B for A, the analyses had to be
repeated in reverse order. It is also not obvious how the approach of
Brøndum et al. (2012) can be generalized to more than two popula-
tions or to prediction of individuals from new populations. Another
potential source of concern is that the priors derived from population
A are too informative to allow substantial Bayesian learning, especially
when population B is small (Gelfand and Sahu 1999; Gianola 2013).

Our multilevel model is similar to models that simultaneously fit
main and interaction marker effects (Schulz-Streeck et al. 2012; De
Los Campos and Sorensen 2014). The main difference to our ap-
proach is that both effects are on the same hierarchical level, such
that the genetic value of an individual is modeled as the sum of main
and interaction effects. Nonetheless, both formulations could be
viewed as introducing a marginal prior distribution of marker effects
that has zero mean and compound symmetric covariance structure
(De Los Campos and Sorensen 2014). In multilevel models, however,
the overall marker effect uj acts as the prior mean toward which
population specific marker effects ujk are shrunk. The magnitude of
the shrinkage thereby depends on g2

k (the strength of the prior) and
on Np (the “strength” of the data). For very large Np, the data are
expected to diminish the influence of the prior and thereby the shrink-
age toward uj.

Phenotypic observations from different populations could be
treated as different traits and pooled data sets analyzed with multi-
trait models (De Los Campos and Sorensen 2014; Lund et al. 2014).
This facilitates simultaneous sharing of information across popula-
tions through covariances. Multi-trait extensions of the GBLUP
method (i.e., genomic best linear unbiased prediction), which make
a strong assumption of uniform variances and covariances of marker
effects across the genome (Lund et al. 2014), are straight-forward to
implement and their performance was evaluated in a dairy cattle
breeding context by Karoui et al. (2012) and Olson et al. (2012).
Multitrait extensions of methods like BayesA or BayesB, which would
allow for varying covariance structures across markers, are principally
conceivable, too (De Los Campos and Sorensen 2014; Lund et al.
2014). However, estimating marker specific, unstructured covariance
matrices can be expected to be computationally challenging. This is
the case particularly when the number of populations is large, because
of the increased dimensions of the matrices. In addition, with

Figure 6 Average prediction accuracy in simu-
lated maize populations. The three leftmost
columns in each subplot show the accuracy for
no, partial and complete pooling for populations
represented in the training set (rP ). The two
rightmost columns in each subplot show the ac-
curacy for partial and complete pooling for pop-
ulations not represented in the training set (r �P ).
The red bars over each column indicate the stan-
dard errors of the averages. rSD is the relative
SD of simulated population specific quantitative
trait locus (QTL) effects. The number of popula-
tions represented in the training set was 10 and
the number of individuals per population 25. The
number of markers used was 285 and the num-
ber of simulated QTL 20.
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multitrait models, prediction of performance of individuals from pop-
ulations not represented in the training set would not be possible
directly.

Composition of training set
Increasing the number of individuals from a population in the
training set (Np) always increased prediction accuracy for untested
individuals from the same population (rP), regardless if the training
set was further enlarged by individuals from other populations (partial
and complete pooling) or not (no pooling).

However, because plant breeding programs have to operate
under budget constraints, optimum allocation of resources is of
great importance for maximizing the potential of genomic
selection (Lorenz 2013; Riedelsheimer and Melchinger 2013). With
a fixed budget for phenotying that is proportional to N, the number
of populations P and the number of individuals per population Np

have to be optimized under the constraint that N ¼ P � Np. Such an
optimization could be accomplished using basic theory about re-
sponse to selection (Falconer and Mackay 1996) and accounting
for the different prediction accuracy for populations represented
and not represented in the training set (rP and r �P , respectively), as
exemplified by Technow et al. (2013). A key point hereby is that rP
will increase with increasing Np but it will apply to fewer popula-
tions because of the decrease in P. This is exacerbated by the de-
crease in r �P that we observed was associated with decreasing P.
Thus, if the total number of populations is large, as is typically the
case in plant breeding programs, having very low P is likely to be
undesirable. In the context of plant breeding this and other studies,
most recently Lehermeier et al. (2014), showed that pooling data
across populations can at least partly compensate for low Np if
populations are related and there is evidence for the merit of pool-
ing very divergent germplasm too (Technow et al. 2013). Using
pooled training sets therefore has the potential to allow for high P
without compromising too much on rP . We showed that partial
pooling with multilevel models can further enhance this potential
by making optimal use of the information in pooled training sets.
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