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ABSTRACT Escherichia coli Stbl4 is widely used as a laboratory strain for heterologous
expression of large gene clusters. Since no genome sequence has been publicly available,
we here report the draft sequence of Stbl4, including its F-plasmid. It should serve as a
useful reference for researchers working with Stbl4.

Historically, strain Stbl4 represents an advancement of Stbl2, which is derived from
JM109/J5 (1). The latter strain was in turn constructed from strain DH1 (2, 3) via JM106 to

JM108 (4). DH1 itself stems from the parent strain lineage strains MM294 (5), 1100 (6, 7), 1000
(7) and HfrCxW208 (8) from the original K-12 wild-type strain (8), which was isolated from the
stool of a convalescent diphtheria patient in 1922 (9). The strain Stbl4 (shortcut for “stable 4”)
is recommended for cloning of unstable DNA mediated by the introduction of repetitive
DNA, retroviral sequences, or large inserts which otherwise would lead to undesired DNA
rearrangements (10–12). For the latter reason, Stbl4 is also used as a host for the discovery of
complex secondary metabolites (12).

During a heterologous expression study of a biosynthetic gene cluster (BGC) using
Stbl4, we experienced unexpected cross talk between the inserted gene cluster and an
existing BGC and needed detailed information about the genetic architecture of the host
to investigate this phenomenon. Therefore, we describe the complete genome sequence
of Stbl4.

ElectroMAX Stbl4 competent cells were purchased from Invitrogen and streaked onto
Luria-Bertani (LB) agar plates containing tetracycline (12.5 mg/ml). After 16 h of incubation at
37°C, two single colonies were picked and inoculated into liquid LB at 37°C on a rotary shaker
(200 rpm) until saturation. Genomic DNA extraction and PacBio library preparation were con-
ducted as previously described (13). The 6-kb library was sequenced on a PacBio Sequel instru-
ment using one single-molecule real-time (SMRT) cell. An aliquot of the same DNA preparation
was used to create a genomic Nextera XT paired-end library for sequencing using an Illumina
NovaSeq platform. The results of both sequencing platforms enabled a de novo hybrid assem-
bly. The PacBio data were processed and filtered using the SMRT Link software suite, whereby
subreads shorter than 50 bp were discarded. The remaining PacBio long reads were
assembled using SMRT Link v7.0.1 and HGAP4 (14, 15). The initial quality assessment of
the Illumina data was based on data passing the Illumina Chastity filter. Afterwards, reads
containing a PhiX control signal were removed, and reads containing adapters were
clipped. Further quality assessment was based on the remaining reads using the FASTQC
tool v0.11.8 (16). Subsequently, the Illumina data were aligned to the abovementioned
HGAP4 assembly genome using BBMap v36.77 (https://sourceforge.net/projects/bbmap/).
Finally, assembly errors and the nucleotide disagreements between the Illumina reads
and scaffold sequences were corrected using Pilon v1.21.1 (17). All software settings were
kept at their defaults except for the HGAP4 genome size estimate parameter, which was
set to 4.7 Mbp. Overall, the hybrid de novo assembly resulted in a nucleotide draft
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sequence consisting of two contigs, representing one chromosome and its F-plasmid
(18, 19). The assembled contigs were annotated using the PGAP v5.2 pipeline (20, 21), while
an automated secondary metabolism analysis was conducted employing antiSMASH v6.0.1
(22). The essential genome features are summarized in Table 1.

Data availability. The genome sequences of both contigs have been deposited in
the NCBI GenBank database under accession numbers CP076043.1 and CP076044.1 for the
chromosome and plasmid, respectively. The SRA accession numbers are SRX11660715 and
SRR15358205 for the PacBio and Illumina reads, respectively.
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