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Abstract

Background: Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting
away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability
properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language
(SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics
taking into account all the main features available in SBGN-PD had been proposed so far.

Results: We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general
semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general
semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of
SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained
qualitative models can be checked against dynamical properties and therefore validated with respect to biological
knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes)

modeling the regulation of the cell cycle by RB/E2F.

Conclusion: The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative
models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have
a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by
enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative
semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can

be exploited to further refine them.
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Background
A full understanding of a biological process requires its
investigation from two points of view: a functional point
of view, and a mechanistic point of view. From the func-
tional point of view, discovering the structures and the
functions taking part in the biological process is of crucial
importance, while from the mechanistic point of view, the
focus is on deciphering the mechanisms underlying these
functions.

Cellular processes are mostly studied at the molecular
scale. In that case, describing a cellular process from the
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functional point of view consists in describing the molec-
ular activities that underpin it, as well as the influences
these activities have on each other. Such descriptions are
generally represented in the form of influence graphs.
Describing cellular processes from the mechanistic point
of view involves describing the molecular entities and the
molecular processes that take part in the cellular process.
These descriptions are mainly represented in the form of
reaction networks. In reaction networks, nodes represent
molecular entities (e.g. a molecule, a complex, an ion) and
arcs represent reactions or influences of some molecular
entities on reactions. Reaction networks allow to model a
large variety of biological processes, such as metabolic [1]
or signaling processes [2]. The majority of available com-
prehensive reaction networks model metabolic processes
(see [3] for an example of a comprehensive metabolic
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network). Yet, comprehensive networks modeling signal-
ing processes with several hundreds of nodes have been
built during this last decade [4-6].

Standardized representations of molecular networks
(and in particular reaction networks) have arose with the
continuously growing available biological knowledge. One
of the main standards is the Systems Biology Graphical
Notation (SBGN) [7].

Molecular networks such as influence graphs and reac-
tion networks are static representations. One of the main
motivations for establishing dynamical semantics on a
static map is the ability to verify if the knowledge gathered
by the map is sufficient to reproduce known behaviors.
Indeed, analyzing the dynamics of the cellular processes
they describe requires building formal dynamical models
that can then be either analyzed exhaustively or auto-
matically checked against dynamical properties of inter-
est (referred to as model-checking). Influence graphs are
conveniently interpreted using qualitative semantics (e.g.
automata networks [8], Boolean networks [9]) whereas
reaction networks are usually interpreted using quan-
titative semantics (e.g. Ordinary Differential Equations
(ODEs)).

In this paper, we are interested in qualitative seman-
tics for modeling reaction networks expressed in the
Systems Biology Graphical Notation Process Descrip-
tion Language (SBGN-PD) using asynchronous automata
networks. In the rest of this section, we first present
SBGN-PD. We then give an overview of the standard tech-
niques usually used to model reaction networks, before
presenting the asynchronous automata network formal-
ism. Finally we motivate the two qualitative semantics
introduced in this article.

SBGN process description
SBGN consists of three complementary languages: Pro-
cess Description (SBGN-PD), Activity Flow (SBGN-AF)
and Entity Relationship (SBGN-ER). Each of these lan-
guages allows us to represent biological knowledge at a
different level of abstraction: SBGN-PD at the reaction
level, SBGN-AF at the more abstract activity level and
SBGN-ER at the conceptual influence level. These lan-
guages rely on the Systems Biology Ontology (SBO) [10]:
each glyph of the three languages is associated to a term
from SBO. Therefore, SBGN is more than a standard way
to represent reaction networks. It also allows to standard-
ize the concepts and vocabulary used to model biological
processes. As we are interested in modeling reaction net-
works, we focus on SBGN-PD in this paper.

SBGN-PD has four main classes of glyphs, that form
together the nodes and arcs of any SBGN-PD map:

e Entity Pool Nodes (EPN): An EPN represents a pool
of molecular entities, a perturbing agent, a source or
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a sink. Source nodes (resp. sinks nodes) are used
when one does not want to specify the molecular
entities from (resp. into) which a particular EPN is
synthetised (resp. degraded). There are four subtypes
of EPNs: unspecified entity, simple chemical,
macromolecule and nucleic acid feature.

® Process Nodes (PN) and Flux Arcs: A PN represents
a molecular process. Flux arcs, that link EPNs to PN,
represent consumption and production of EPNs by
processes. There are six subtypes of processes:
process, omitted process, uncertain process,
association, dissociation, and phenotype.

® Modulation Arcs: Modulation arcs, that link EPNs to
PN, represent the possible effects EPNs have on
processes. There are five subtypes of modulations:
modulation, stimulation, catalysis, inhibition and
necessary stimulation.

e Logical Operators and Logic Arcs: The AND operator
represents necessary conditions for modulations to
be performed, the OR operator sufficient conditions
for modulations to be performed, and the NOT
operator the non-existence of a modulation. Logic
arcs link EPNs to logical operators, or logical
operators to other logical operators.

SBGN-PD contains five additional types of glyphs: com-
partments, clone markers, reference nodes, equivalence
arcs and submaps. The compartment glyph is used to rep-
resent compartments, whereas the other four glyphs are
used to refer to other nodes already present in the map.
Each of these glyphs will not be interpreted per se in the
semantics presented in the next section as they do not
have any meaning when considering the dynamics of the
network. However, the location of an EPN into a specific
compartment is taken into account: two EPNs that share
exactly the same attributes but are in different compart-
ments are considered as different EPNs. Then, since we
focus on qualitative semantics, we do not consider the sto-
ichiometry of processes. Also, the semantics of the NOT
operator given in the specification has no meaning regard-
ing dynamics of networks: hence, we will not take into
account this operator. Finally, reversible processes are not
taken into account as their representation (and therefore
their detection) is based on the spatial localisation of their
reactants/products. However, a reversible process can be
taken into account by rewriting it into two processes (one
forward and one backward process) in the map.

The correspondence between the different glyphs of
SBGN-PD and the biological concepts they represent is
given in Fig. 1. Real-life examples of SBGN-PD maps are
given in Figs. 5 and 9. SBGN maps can be stored and
exchanged in the SBGN-ML format [11] and edited by
a variety of software (e.g. VANTED’s add-on SBGN-ED
[12], CellDesigner [13]).



Rougny et al. BMC Systems Biology (2016) 10:42

Page 3 of 24

Entity Pool Nodes Auxiliary Units Process Nodes Connecting arcs
>‘D’< process E— consumption
unspecified entity pre:labeli— unit of information
omitted process —E—» production
. q state variable
simple chemical Torget )
>‘E|’< uncertain process <> modulation
LABEL o stimulation
LABEL | macromolecule >—‘ association
clone marker
ABEL) —O catalysis
4©—< dissociation
LABEL [|nucleic acid feature
N / — inhibition
< LABEL > phenotype
—H> necessary stimulation
ﬂ perturbing agent LABEL LABEL 2
Container Nodes Cogical
. ogica ;
multimers _ logic arc
LABE
source (N:2] [N:2]
sink ) LABEL I compartment LABEL @ equivalence arc
- | Logical Operators
Reference Nodes
and operator
<
(- o
<]
tag
complex submap not operator

Fig. 1 Reference card of the SBGN-PD language from [7]. Every glyph of SBGN-PD is associated to the biological concept it represents

In the rest of the article, we will refer to an EPN linked to
a PN by a consumption arc (resp. production arc, modu-
lation arc, stimulation arc, catalysis arc, inhibition arc and
necessary stimulation arc) as a reactant (resp. product,
modulator, stimulator, catalyzer, inhibitor and necessary
stimulator) of the process represented by the PN.

For the sake of simplicity, we will use the same terms
for the glyphs and arcs of SBGN-PD and the concepts
they represent. For example, we use the term “EPN” to
refer to the node just as well as to the entity pool it rep-
resents; the term “stimulation” refers to a stimulation arc
and to the stimulation it represents. Also, terms “EPN’,
“process” and “modulation” refer to the associated con-
cept (or glyph) as well as to all concepts that are subtypes
of these concepts. For example, the term “modulation”
also refers to a stimulation, and the term “process” also
refers to a phenotype.

Qualitative dynamics of reaction networks

The dynamics of reaction networks is usually mod-
eled with quantitative semantics such as population
(stochastic) semantics [14—19], or continuous determin-
istic semantics (ODEs) [18-22]. These models rely on

multiple parameters, including reaction kinetics, that are
often difficult to measure, thus limiting their applicability.

Formalisms that do not rely on kinetic parameters, such
as Flux Balance Analysis [23], are also widely used to
model reaction networks. However, these formalisms are
based on the steady-state assumption and do not allow to
model the dynamics of networks.

We can find in [24] a classification of the main mod-
eling formalisms for reaction networks (and in particular
metabolic networks) depending on whether they lead to
quantitative or qualitative models. In this study, authors
also propose a unified framework to integrate these differ-
ent formalisms by means of graph transformations.

In addition, let us mention qualitative formalisms such
as Boolean or discrete networks, that are used to model
the dynamics of molecular networks and do not consider
any kinetic parameters. This type of modeling introduces
a notion of threshold for the number of molecules (popu-
lation) of the modeled chemical species. To each chemical
species is assigned a number of thresholds and the popu-
lation of each species is quantized following its thresholds.
Species are then modeled by variables with finite domains,
and the changes in the values of the different variables
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are no longer considered as continuous phenomena but
discrete transitions.

Qualitative modeling has primarily been introduced by
S. Kauffman in order to model the dynamics of gene reg-
ulatory networks, and are now also used to model the
dynamics of other types of networks, such as signaling
networks. Several formalisms have been proposed in that
respect, depending on the type and the size of the domains
considered for the variables: Boolean networks [9, 25],
multi-valued models [26, 27], bounded Petri nets [28] or
fuzzy logic [29]. The dynamics of qualitative models is
coarser than the one of the quantitative models, but it
helps the tractability of the analysis of attractors, that are
the final states of the system, and reachability properties
while abstracting away kinetic parameters. On medium-
size models, the computation of the exhaustive dynamics
is possible, whereas methods to handle large-size qualita-
tive models are emerging [30-32].

Qualitative formalisms have also been applied to model
the dynamics of reaction networks where, in addition to
influences, consumption and production of molecules are
taken into account. The main contribution to this field
is the Biological Abstract Machine (BIOCHAM) modeling
environment [19], that allows to analyze reaction net-
works using a Boolean semantics, and that we present
hereafter.

Boolean semantics of BlocHAM

In the BIOCHAM Boolean semantics [19] each molecu-
lar entity of the network can be either absent or present.
Each compound is associated to a Boolean variable whose
binary value represents its state (false or 0 for absent and
true or 1 for present). In BIOCHAM, a reaction A + B —
C + D is interpreted by four different Boolean transitions
(where A denotes the AND logical operator):

AANB—->AABACAD

AANB—> —-AANBACAD
AAB—-AA—-BACAD
AAB— —AAN-BACAD

Occurrences of variables A and B in the left-hand side
of the transition express the fact that all reactants must be
present for the reaction to occur; occurrences of C and D
in the right-hand side express the fact that the occurrence
of the reaction causes the presence of all the products;
finally the combination of variables A and B or of their
negation in the right-hand side expresses the fact that
reactants may or may not be completely consumed by the
reaction.

This semantics can take into account stimulation (and in
particular catalysis) by adding the stimulator to the reac-
tion as both a reactant and a product. The corresponding
transitions can then be fired only if the stimulator is
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present, and this stimulator remains present as it appears
among the products of the reaction.

The Boolean semantics of BIOCHAM is an over-
approximation of the quantitative population semantics
[33], in the sense that every trace of the quantitative
semantics has a corresponding trace in the Boolean
semantics. Hence the absence of a behavior in the Boolean
semantics guarantees the absence of this behavior in the
population semantics.

Asynchronous automata networks
An automata network (AN) is defined as a set of finite-
state automata, where each automaton has a finite set
of exclusive states called local states. At any time, each
automaton has one and only one local state active, and
the global state of an AN is the set of the active local
states of its automata. Transitions between local states of
each automaton are conditioned by the local state of other
automata in the network.

More formally, an AN is defined as a triple (%, S, T)
where

e Y is a finite set of automaton names;

® Foralla € X, S(a) = {a;, - - - , a;} is the finite set of
local states of automaton a. We note § = [[ o5 S(a)
the set of all the global states of the AN.

e TC {ai L ajlaes,aeS@a),aeSa),lcC

Upex s 2aS (b)} is the finite set of local transitions
with conditions (£).

Figure 2 gives an example of AN. This AN is defined by
the triple (%, S, T') as follows:

Y ={a,b,c}
S(a) = {ao, a1, a2}
S(b) = {bo, b1}
S(c) = {co, c1}

T { {b1) {e1)
=140 — ad1,a41 —> ay,

by

{ao,co} {a1} }
e bo,CO —> (1

Given a (global) state s € S of an AN, there is a transition

to a state s € S iff there exists a local transition a; £
aj € T such that the automaton « is at state 4; in s, and
all local states in ¢ are present in s. The state s’ is then the
state s where the local state a; of automaton a has been
replaced with a;. Such dynamics are called asynchronous
as one and only one local transition is applied at a time.
Note that from a state s, there may exist several applicable
local transitions leading to non-deterministic dynamics.
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Fig. 2 An example of asynchronous automata network and its
transition graph. Top: an asynchronous automata network composed
of the 3 automata g, b and c. Automata are represented by labeled
boxes, and their local states by circles identified with the ticks. For
instance, the circle ticked 1 in the automaton a is the state 1 of g,
noted a;. Local transitions are represented by directed labeled edges,
where the labels indicate the set of conditions that have to be
satisfied for firing the transition. The local states in blue represent a
potential global state of the automata network: the state ag, b1, Co.
Bottom: the transition graph of the asynchronous automata network,
from the global initial state represented in blue. This graph represents
all transitions that can be successively fired from the global initial
state. For example, from the global initial state, it is possible to fire the
transition labeled /5, or the transition labeled /. One of these two will
be fired non-deterministically. Firing transition /s, will change the
state of a from 0 to 1, hence replacing ag with a; in the global state of
the network, becoming ay, b1, co. Firing transition /5 will change the
state of b from 1 to 0, hence replacing by with by in the global state of

the network, becoming (ao, bo, co)

More formally, given an AN (%, S, T), the global asyn-
chronous transition relation — included in S x S is defined
by:

A ¢
s—>s Sda;>ajeT:a;es, L Cs,a s
Vep €sicp#a; = cp€s

In the scope of the article, we consider only the asyn-
chronous update scheme for ANs, widely integrated in
software. Other update schemes can be of interest in
the scope of reaction networks, in particular the gen-
eral update scheme which mixes asynchronous and syn-
chronous automata transitions.

Figure 2 shows an asynchronous AN and all the tran-
sitions that can be applied from a global initial state,
resulting in a so-called state transition graph.

Relation of automata networks with petri nets

Asynchronous AN are very close to so-called I-bounded
Petri nets [34] (at most one token per place): one can
encode an AN into Petri net with one place per local
state of the automata, one transition per local transition,
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having one incoming, one outgoing arc and any number of
read-arcs, and where places have at most one token [35].
Therefore, all semantics formalized with ANs, and in par-
ticular the semantics we propose in the following sections,
can be encoded with Petri nets. An example of such an
encoding for the AN of Fig. 2 is given in Additional file
1 with an illustration of the differences between the two
approaches.

The stories semantics we introduce merges sets of
SBGN-PD entities into components: a component aims at
representing a molecular entity whose current state cor-
responds to one of the EPNs composing it. Therefore,
we distinguish three features in our models: the compo-
nents, their local states, and the transitions (processes). 1-
bounded Petri nets have only two features, places (for local
states/EPNs) and transitions, and therefore cannot repre-
sent explicitly components. Only computations on their
structure and dynamics allow to uncover mutual exclu-
sive places, delimiting components. On the other hand,
AN directly offer the adequate model structure: automata
(components), local states (EPNs), and transitions.

Moreover, in order to address large SBGN-PD maps
in the Application to the RB/E2F map section, we rely
on scalable computational techniques that are currently
defined only for AN, as they exploit the explicit modeling
in automata.

More elaborated encodings in general Petri nets of qual-
itative models such as multi-valued networks have been
proposed [28], but they cannot be used straightforwardly
for the general ANs we consider here: local states of
automata are not necessarily ordered, i.e., there can be
local transitions between any local states of each automa-
ton (e.g., one can change from a; to az without having to
go through ay). Petri nets extensions such as colored Petri
nets [36] could provide an alternative encoding, but for
the sake of notation simplicity, the AN formalism has been
preferred in this paper.

Motivation

So far, no qualitative semantics taking into account the
main features of SBGN-PD has been proposed. To rem-
edy it, we introduce two qualitative semantics, namely the
general semantics and the stories semantics, that both take
into account the main features of SBGN-PD. These two
semantics are formalized using asynchronous automata
networks, that is a simple yet expressive formalism to
formalize dynamical systems.

While the general semantics extends BIOCHAM’s
Boolean semantics by taking into account the main fea-
tures of SBGN-PD, the stories semantics proposes a dif-
ferent interpretation of reaction networks. The stories
semantics allows to focus on physical states (e.g. unphos-
phorylated/phosphorylated) of molecular entities rather
than on the entities themselves. Applied to a reaction
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network, this semantics collapses the different physical
states of a given molecular entity into a unique abstract
entity, called story. This leads to models that are more
understandable and closer to the way experts apprehend
biological processes, while still considering all the detailed
mechanisms depicted in reaction networks. In addition,
by lumping several entities in so-called stories, the stories
semantics reduces the dimension of the dynamics (num-
ber of variables and number of states), which may increase
the scalability of its analysis.

The rest of this paper is organized as follows. In the
‘Results’ section, we define the general semantics and the
stories semantics, and illustrate them with a large-scale
map of the cell cycle centered on the RB/E2F dynamics
(RB/E2F map for short). In the ‘Discussion’ section we
compare stories to related work, and discuss the applica-
bility of the stories semantics to various types of reaction
networks, as well as the application of model-checking
to the resulting dynamical models. Finally, the ‘Methods’
section gives the formal definitions and encodings in asyn-
chronous automata networks of our qualitative semantics.

Results

In this section, we propose two different qualitative
dynamics semantics for SBGN-PD networks expressed
in the asynchronous automata network framework. First
we propose a general semantics that takes into account
all the main features of SBGN-PD maps. Then we intro-
duce a completely new qualitative dynamics semantics
that we call the stories semantics. Finally, we illustrate both
semantics on a cell cycle detailed map.

General semantics
In the general semantics, we consider that an EPN can
be either present or absent in the system. Therefore, in
this context, we choose to interpret EPNs by Boolean val-
ues rather than by bounded-integers as we do not have
any a priori information on differential effects EPNs may
have based on (relative) quantities. Analogously to EPNS,
a process can be either occurring or non-occurring, and
a modulation either active or inactive. Occurrence of a
process (i.e., its transition from a non-occurring to an
occurring state) is conditioned by the presence of all its
reactants, and the activity of all its modulations.

The general semantics extends the Boolean semantics of
BIOCHAM by taking into account inhibitions as well as the
AND and OR logical operators.

Dealing with modulations

The input of a modulation can either be a single EPN or a
set of EPNs structured by a logical function (represented
in SBGN-PD by logical operators and arcs). A modula-
tion is said to be active if its input is satisfied, and inactive
otherwise. If the input is a single EPN, satisfaction of the
input means that the EPN must be present; if the input
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is a logical function, satisfaction of the input means that
the states of the modulators that form the function must
satisfy it.

A single process may be targeted by more than one mod-
ulation. In this particular case the mechanism underlying
the global modulation of the process is unknown (or not
specified), otherwise it would be structured by some log-
ical function. Hence, for the dynamics to be as general as
possible while taking into account the effects of modu-
lations, we choose to consider that a process can change
from a non-occurring to an occurring state only if the
following two conditions are satisfied:

e all its necessary stimulations are active and
e at least one of its stimulations (including catalyses) is
active or at least one of its inhibition is inactive.

With this interpretation, a process modulated by both
a stimulator and an inhibitor can occur if its stimulator
and its inhibitor are both present, both absent, or if its
inhibitor is absent and its stimulator present.

This weak constraint (but meaningful in terms of biol-
ogy) ensures that the obtained dynamics includes all
dynamics that would be obtained with more restric-
tive conditions, and in particular the one that would be
obtained from the model built with the (unknown) accu-
rate logical functions. Therefore, if a process can get
activated with a stronger constraint (for example: all inhi-
bitions must be inactive), it can get activated considering
our weak constraint. Note that we do not take into account
modulations that are neither stimulations nor inhibitions,
as we do not know their effect on the processes.

From SBGN-PD to automata networks under the general
semantics

The semantics we propose in this paper are expressed in
terms of asynchronous automata networks (AN). Recall
that asynchronous automata networks gather a set of
automata with a certain number of local states, and a set
of local state transitions within each automaton that can
be constrained with conditions on the active local states
of other automata in the network.

In the scope of the general semantics of SBGN-PD
maps, each EPN is associated to one automaton hav-
ing two local states labeled 0 (for absent) and 1 (for
present). Similarly to EPNs, each process is associated
to one automaton having two local states labeled 0 (for
non-occurring) and 1 (for occurring).

Local state transitions are built as follows:

e aprocess can change from its non-occurring to its
occurring state iff all its reactants (that are not source
EPNs) are present, all its necessary stimulations are
active, and at least one of its stimulations is active or
one of its inhibition is inactive;
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® a process can change from its occurring to its
non-occurring state iff all its products (that are not
sink EPNs) are present;

e an EPN can change from an absent to a present state
iff there is an occurring process that produces it;

e finally an EPN can change from a present to an absent
state iff there is an occurring process that consumes
it and all the products of this process are present.

Note that as we do not have a priori information on
the equilibrium of the different processes of the map we
model, full consumption of reactants by an occurring pro-
cess is not made mandatory, exactly as in BIOCHAM’s
Boolean semantics. This is achieved by encoding transi-
tions as presented above, and by considering asynchrony:
the transition that consumes an EPN may or may not be
triggered before the process becomes non-occurring.

Figure 3 shows how a unique process can be mod-
eled by an AN under the general semantics. The full
formalization of the general semantics for SBGN-PD
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maps by asynchronous automata networks is given in the
‘Methods’ section.

An initial state defined on a map is a set of EPNs of
that map that are considered as being present at time Z.
An initial state of a map can be straightforwardly encoded
into a global initial state of an AN built under the general
semantics: for each EPN of the initial state of the map, we
add the present state of that EPN to the global initial state
of the AN.

The exhaustive dynamics of an AN is obtained by com-
puting all transitions from a given global initial state of
the model. It results in a finite graph called a state tran-
sition graph whose nodes are the global states of the
AN. This graph may contain cycles indicating oscilla-
tions and a node may have several successors, indicating a
non-deterministic choice between two transitions.

Stories semantics
SBGN-PD has been designed in order to model, among
others, changes of physical states or locations of molec-
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Fig. 3 A SBGN-PD process modeled by an asynchronous automata network under the general semantics. Top: An example of SBGN-PD map. The
legend of the map is given by the SBGN-PD reference card reproduced in Fig. 1. Bottom: the asynchronous automata network modeling the
SBGN-PD map under the general semantics, with the different automata and for each transition, its firing conditions. The global initial state

(a1, atpy, b1, m1,aPoy, adpo, Co, po, o) is represented in blue
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ular entities. For instance, an unphosphorylated protein
and its phosphorylated form are two states of the same
protein that are represented in SBGN-PD by two differ-
ent EPNs, and linked together by a process that changes
one EPN into the other. Similarly, a molecule involved
in an association process can have a free state and a
bound state, and a molecular entity involved in a translo-
cation process can have two states, one for each com-
partment involved. A single molecular entity can be the
target of several of those changes, and therefore have
several different states, each represented by a different
EPN.

A particular state of a molecular entity might corre-
spond to an active state of the molecular entity, meaning
a state where the entity performs a function. For exam-
ple, in signaling, a kinase often performs its function
only once it gets phosphorylated. Such a kinase activ-
ity (for a given molecular entity) will be represented by
one kinase activity node in an influence graph, and mod-
eled by one variable that can take two values under a
Boolean semantics: 0 (off) when the activity is not per-
formed and 1 (on) when the activity is performed. Hence,
within this setting, a kinase will be either active or inac-
tive, but not both at the same time. We say that both
states (active and inactive) are mutually exclusive. Since,
in our example, the active state of the kinase corresponds
to its phosphorylated state and the inactive state to its
unphosphorylated state, this way of modeling implies
that physical states of the kinase are also made mutually
exclusive.

The stories semantics aims at modeling changes of state
of a molecular entity from this perspective. It constrains
the general semantics by ensuring that all EPNs represent-
ing different states of the same molecular entity are mutu-
ally exclusive, meaning that they will never be present at
the same time.

Stories

Given a molecular entity, we define a story as a set of EPNs
(different from a sink EPN), each representing a different
physical state of that molecular entity. Given an SBGN-PD
map, a story must respect the following constraints:

(i) for any two distinct EPNs of the story, there exists a
path in the map between the two EPN’s such that all
the edges of the path are flux arcs and all the EPNs of
the path belong to the story;

(i) ifan EPN of the story is a product of a process, then
at least one reactant (that can be a source EPN) of
that process belongs to the story;

(iii) for two EPNs of the story, there exists no process that
consumes both of them;

(iv) for two EPNs of the story, there exists no process that
produces both of them.
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Constraint (i) considered together with constraints (iii-
iv) ensures that all EPNs of a story represent the different
states of a given molecular entity that appear by transfor-
mation of that entity. Constraints (ii-iv) allow to define a
semantics where the EPNs of a story are mutually exclu-
sive: Constraint (ii) ensures that no process can produce
an EPN belonging to a story without first consuming an
EPN of that story. Constraint (iii) ensures that, for a given
process, all its reactants can be present at the same time,
so that it can be triggered. Finally, constraint (iv) ensures
that a given process can produce all its products.

Two EPNs that are different states of the same molecular
entity often share a common SBGN-PD label, that names
the molecular entity. Hence an optional constraint (v)
allows to ensure that all EPNs of a story represent different
states of the same molecular entity:

(v) all EPNs of the story have the same (SBGN-PD) label
(whether it is the label of the EPN itself, or of an
element of the EPN in the case where the EPN is a
complex).

Figure 4 shows an SBGN-PD map together with all
its stories containing two or more EPNs, computed with
constraints (i-iv).

It is worth noticing that, despite the above constraints,
the EPNs of a story are not necessarily mutually exclusive
in the general semantics. Stories are not emerging prop-
erties from the net, and as such, are different from usual
structural properties of Petri nets (e.g., siphons, traps,
places/transitions invariants; see [37] for a comprehensive

4=

Set of non-singleton stories
{{a7 aP},{a,c},{a, adp}, {aP, atp},
{b7 C}v {adpv atp}7 {a7 aP, C}7 {a’ adp, C}}
Maximal valid sets of stories
{{aP, atp},{a,c}}; {{adp, atp},{a,c}},
{{adp7 atp},{a,aP, c}}; {{a, adp, c},{aP, atp}};

)

Fig. 4 Stories of an SBGN-PD map. Top: The SBGN-PD map of Fig. 3.
Bottom: the set of possible (non-singleton) stories respecting
constraints (i-iv) and the maximally valid sets of stories. Final sets are
colored in blue, and epn-maximal sets are colored in green. Each of
the constants a, b, ¢, adp and atp denotes the EPN whose label equals
that constant. Constant aP denotes the phosphorylated
macromolecule labeled “a”
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survey) which reflect specific dynamical properties of the
system. Since the EPNs of a stories are enforced to be
mutually exclusive in the stories semantics, they form
places invariants (the number of active places is a con-
stant) in this semantics: it is a property of the stories
semantics but not a property of the initial map.

An SBGN-PD map may focus on several molecular enti-
ties of interest and thus contain several stories. We are
therefore interested in characterizing combinations of sto-
ries. Since the EPNs of a story are intended to be mutually
exclusive, two stories cannot share a same EPN as it would
exist in both stories independently. We define a set of
stories as valid if its stories do not intersect pairwise.
Given a map, we are interested in finding one meaning-
ful valid set of stories in order to model that map under
the stories semantics. The requirement for a set of sto-
ries to be valid might induce a necessary choice between
two alternative stories sharing the same EPN. In particu-
lar, association processes might lead to alternative stories,
one for each compound of the resulting complex, that
share the same EPN (the complex). Figure 4 gives all maxi-
mally valid sets of stories of the SBGN-PD map introduced
previously.

Although computing individual stories is scalable with
the map size, the number of valid combinations of stories
can be very large, as it depends on both the number of
EPNs and the number of individual stories of the map.

In order to drastically reduce the number of candidate
valid sets, we define two progressive maximality con-
straints. (1) A set of stories S is said to be final iff (i) it is
valid and (ii) there exists no valid set of stories S # S such
that for every story of S, there exists a story of S’ that is a
superset of that story. Note that all final sets are also max-
imally (in the sense of inclusion) valid. (2) A set of stories
S is said to be epn-maximal iff (i) it is valid and (ii) there
exists no valid set of stories S’ # S such that the total num-
ber of EPNs in § is greater than the total number of EPNs
in S. Note that all final sets of stories are maximally valid,
and that all epn-maximal sets of stories are final. Figure 4
shows final sets of stories in blue, and epn-maximal sets of
stories in green.

Furthermore, additional constraints can be specified
following expert knowledge. This requires to focus on
particular molecular entities relevant for the biological
application.

Finally, in order to apply the stories semantics, the
choice of the valid set of stories should be guided by expert
knowledge and the specific biological question.

Illustration on the AT14R-mediated ERK activation
map Figure 5 shows the ATj4R-mediated ERK activa-
tion map that was introduced in [22]. It represents the
two main pathways responsible for the AT;4R-mediated
(and more generally 7TMRs receptors-mediated) ERK
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activation. The AT14R receptor activates the (classical) G
protein pathway to reach ERK but also the less known -
arrestins pathway. These pathways are tightly regulated by
the presence of molecules called G-protein coupled recep-
tor kinases (GRK2/3 and GRK5/6), which act directly on
the phosphorylation of the receptor.

In order to illustrate the concept of stories and of valid
sets, we computed all final sets of stories considering con-
straints (i-iv). There were only two final sets of stories: one
including one story for each S-arrestin, and one including
a story focusing on the receptor. This illustrate the nec-
essary choice between alternative stories induced by the
property of validity: as B-arrestins can associate with the
receptor, one should choose between a story focusing on
the receptor and stories focusing on the S-arrestins. Sto-
ries focusing on the EPNs of the rest of the map were the
same in the two sets, namely: a story for protein G, one for
PIP2/DAG, one for PKC, and one for ERK.

The set containing a story focusing on the receptor is
represented in Fig. 5. This set includes a story that con-
tains all EPNs of the map related to the receptor (i.e. that
contains the label "HR"), each representing a particular
state of the receptor: unbound, phosphorylated (on either
of two sites), bound to B-arrestin 1 or B-arrestin 2. Hence
such a story allows to model the succession of physical
states of the receptor, and some of these physical states
are also active states: for example, the free receptor can
activate protein G when phosphorylated on its first site,
and it loses this capacity when associated to any of the
B-arrestins.

Note that the story containing PIP2 and DAG, repre-
sented in blue in Fig. 5, does not respect constraint (v)
while it has a biological meaning: this constraint is too
stringent for processes that transform small molecules
that always have different labels (unlike proteins, for
example).

From SBGN-PD to automata networks under the stories
semantics
The stories semantics differs from the general one only
in the modeling of EPNs that belong to stories. Instead
of modeling each of those EPNs by dedicated automata,
a single automaton is declared for each story with one
local state per non-source and non-sink EPN of the story.
Each automaton of a story also possesses a special local
state, referred to as the empty state. Each local state of the
automaton associated to a story but the empty state cor-
responds to a physical state of the molecular entity related
by the story. As for the empty state, it corresponds to the
absence of this molecular entity.

Local state transitions for stories are built as follows:

e astory can change from a (possibly empty) local state
to another (not empty) local state iff an occurring
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»

HR

GRK23

GRK56

Fig. 5 AT 4R-mediated ERK activation map. This map represents the two main pathways responsible for the AT;4R-mediated (and more generally
7TMRs receptors-mediated) ERK activation. The AT14R receptor activates the (classical) G protein pathway to reach ERK but also the less known
B-arrestins pathway. These pathways are tightly regulated by the presence of molecules called the G-protein coupled receptor kinases (GRK2/3 and
GRK5/6), which act directly on the phosphorylation of the receptor. This map is represented using the SBGN-PD language. EPNs with bold borders
constitute the initial state of the map. Every colored EPN belongs to a story, and each color is assigned to a different story. The story in pink focuses
on the receptor HR and comprises seven different physical states of this receptor: unbound, phosphorylated (on either of two sites), bound to
B-arrestin 1 or B-arrestin 2. The other stories focus on ERK (in yellow), on protein G (green), on PIP2 (blue), and on PKC (gray)

process consumes the EPN to which corresponds the
first local state and produces the EPN to which
corresponds the second local state;

® astory can change from a local state to the empty
local state iff an occurring process consumes an EPN
to which corresponds the local state and does not
produce any EPN belonging to that story.

Since processes of an SBGN-PD map consume and
produce EPNs, and because the semantics of processes
and modulations in the general semantics is built upon
the presence and absence of EPNs, the notions of pres-
ence and absence for EPNs of a story is defined as

follows: an EPN of a story is present if the automa-
ton associated to the story containing that EPN is in
the state corresponding to that EPN; this EPN is absent
otherwise.

In order to avoid conflicts between processes acting on a
same story, we impose the exclusivity between the occur-
rence of such processes. Therefore, a process acting on a
story can occur only if no other process acting on the same
story is occurring.

Figure 6 shows how a simple SBGN-PD map is modelled
under the stories semantics. The complete formalization
of the stories semantics for SBGN-PD maps into automata
networks is provided in the ‘Methods’ section.
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tr = {p:} ly = {q1,5¢}

Fig. 6 A SBGN-PD map modeled by an asynchronous automata
network under the stories semantics. Top: the SBGN-PD map from

Fig. 3. We chose a final set of two stories s and t, whose EPNs are
colored in yellow or blue, respectively. Bottom: The corresponding
asynchronous automata network using the stories semantics with the
stories s = {a,aP, c} and t = {adp, atp}. Each of the constants a, ¢, adp
and atp denotes the EPN whose label equals that constant. Constant
aP denotes the phosphorylated macromolecule labeled “a". The
global initial state <ﬁg,ta[p,b],m‘\,p0,qo> is represented in blue. Note
that here, p#q. Therefore go € |, and po € g

Given a map and a set of stories, an initial state of
that map must respect the following constraint: two EPNs
that belong to the same story cannot be both in the ini-
tial state. This constraint is needed so that the initial
state does not contradict the property of mutual exclu-
sivity of the EPNs belonging to stories. An initial state
of a map can be straightforwardly encoded into a global
initial state of an asynchronous AN modeling that map
under the stories semantics. All EPNs of the initial state
that do not belong to a story are encoded the same way
as for the general semantics. For each EPN of the initial
state that belongs to a story, we add to the global ini-
tial state of the asynchronous AN the local state of the
automaton associated to the story that corresponds to that
EPN.
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Relation between the general and the stories semantics

The stories semantics offers a more constrained dynam-
ics than the general semantics, notably by enforcing the
mutual exclusiveness of EPNs within a story. In particular,
the stories semantics forces the total consumption of the
reactant EPNs within stories: considering a process trig-
gering a transformation A — A’, the general semantics
allows to produce A’ while keeping A present (its degra-
dation is optional), whereas the stories semantics replaces
in one step the activity of A with A’. Intuitively, it results
that the stories semantics produces a sub-dynamics of the
general semantics.

To each global state x in the stories semantics corre-
sponds one global state [x ]in the general semantics where
each EPN embedded in a story is in a present state if and
only if it is the current local state of its associated story.
The two semantics satisfy the following relationships:

Property 1. Let x,x’ be states where no process is active.
If &' is reachable from x in the stories semantics, then [ x|
is reachable from [ x ] in the general semantics.

Property 2. Let x,x" be states where no process is active.
If [ %] is reachable from [ x ] in the general semantics,
then x' is not necessarily reachable from x in the stories
semantics.

The detailed sketches of proof are in Additional file
2. Property 2 is proved with a counter-example; we give
here the main arguments for Property 1. By definition,
the occurrence of processes in the stories semantics is
more constrained than in the general semantics (due to
the additional constraint of exclusivity between the occur-
rences of processes acting on identical stories). Therefore,
if a process occurs in the stories semantics, it can occur
in the general semantics. Similarly, if a process stops
occurring in the stories semantics, it can stop occurring
in the general one as the constraints are equivalent (all
the products are present). The application of a process
differs in the stories semantics: when the local state of
a story changes, it corresponds to a simultaneous pro-
duction and consumption of the product and reactant
EPNs; whereas in the general semantics, the products
have to become present first, prior to the (optional)
consumption of the reactants. However, as at most one
process acting on a story can occur at the same time,
this difference in the order of production/consumption
cannot introduce spurious transitions in the dynamics:
the process has to be fully applied before the implied
EPNs can be used for triggering the occurrence of other
processes.

Property 2 allows to conclude that cyclic attractors in
the stories semantics are not necessarily attractors in the
general semantics, although, by Property 1, there is a
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corresponding transient cycle. Moreover, one can derive
that if a state [ x ] is a fixed point in the general semantics,
then «x is a fixed point in the stories semantics; the con-
verse is not true when a story embeds a source EPN (see
Additional file 2 for a counter example).

Figures 7 and 8 show the state transition graphs of the
ANs modeling our SBGN-PD map example under the gen-
eral semantics (see Fig. 3) and the stories semantics (see
Fig. 6), respectively. States that are point attractors are
circled.
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The state transition graph of the model built under the
general semantics is composed of 88 states. It has nine
attractors, that are all fixed points. Five of these attrac-
tors include both local states aP; and cj, meaning that
in those states, EPN aP and EPN c are both present at
the same time. Hence in the model built under the gen-
eral semantics, it is possible to produce both aP and ¢,
one after the other. There are two possibilities to pro-
duce both of them: either process p occurs first and is
followed by process ¢, or g occurs first and is followed by

Fig. 7 Transition graph for a dynamical model built under the general semantics. Transition graph of the asynchronous automata network of Fig. 3,
modeling the SBGN-PD map of Fig. 3. Each node represents a global state of the asynchronous automata network. There is a directed edge from a

state Sto a state §' iff §' is reachable from S. Circled states are point attractors. States colored in blue are all states present in the transition graph of
the asynchronous automata network modeling the same map under the stories semantics (Fig. 8)
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Fig. 8 Transition graph for a dynamical model built under the stories semantics. Transition graph of the asynchronous automata network of Fig. 6,
modeling the SBGN-PD map of Fig. 6. Each node represents a global state of the asynchronous automata network. There is a directed edge from a
state Sto a state S’ iff S is reachable from S. Circled states are point attractors

p. Either way, the process that occurs first only consumes
a partially, leaving a present so that the second process
can occur. Two of the other attractors contain local states
aPy and ¢g, and the last two ones aPy and c;. The for-
mer are reached when process p occurs first and the latter
when process g occurs first. In all four cases the first pro-
cess to occur consumes completely a4, leaving a absent
(in the state ag) and preventing the other process from
occurring.

The model built under the stories semantics has only 11
states, three of which are point attractors. This illustrates
how the stories semantics induces a lower dimensional
dynamics. Two of the attractors contain the local state
5¢, meaning that molecular entity « is in the state where
it is bound to b, and only one contains the local state
s,p, meaning that 4 is in a phosphorylated state. As for
the point attractors, no other global state contains both
local states s, and s;p: EPNs ¢ and aP belong to the
same story, hence they are mutually exclusive (i.e. they
cannot be both present at the same time). Among the
two point attractors containing the local state s., one
contains by, and the other b;: when process g occurs,
it can consume b completely or only partially, leaving b
absent or present, respectively, as b does not belong to any
story.

The part of the state transition graph of the general
semantics that correspond to the dynamics of the sto-
ries semantics is highlighted in blue in Fig. 7. It corre-
sponds to the sequences of transitions that lead to total
consumption of EPNs belonging to the delimited sto-
ries. Because the ordering of production/consumption
is different in the stories semantics and requires more
steps in the general semantics, there are more blue states

than states in the state transition graph of the stories
semantics.

Application to the RB/E2F map

In this section, we illustrate how both semantics can be
applied to a large network containing 222 nodes, namely
the RB/E2F map, and how the resulting models can be
checked against interesting dynamical properties.

The RB/E2F map, represented in Fig. 9, was first pub-
lished in [5] and made available by the authors at [38]
under the CellDesigner format in two versions: the whole
map and the map without the transcriptional activations
and inhibitions (i.e. the map restricted to proteins). We
chose to consider the map restricted to proteins for two
reasons: first, CellDesigner’s transcriptional modulations
are not SBGN-PD compliant. Second, the protein and the
gene parts of the complete maps are distinct from each
other, and only the protein part has some effect on the
gene part (the proteins activate/inhibit genes, but there
are no feedbacks of the genes towards proteins). The map
reproduced in Fig. 9 is the map restricted to proteins ini-
tially built in CellDesigner. It describes the regulation of
the cell cycle focusing on the G1 transition monitored by
the retinoblastoma protein (RB) and the E2F transcription
factors. The cell cycle is a succession of four phases (G1,
S, G2 and M) that are tightly regulated by checkpoints.
RB plays a crucial role in ensuring a proper entry into S
phase (DNA replication). Its major function is to inhibit
E2F1. Diverse cyclin dependent kinases (CDKs) intervene
at different moments in the cell cycle and thus play a key
role in its regulation. In particular, CDKs phosphorylate
RB, slowly releasing its hold on E2F transcription fac-
tors. CDKs are only active when associated to their cyclin.
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Fig. 9 RB/E2F map. This map represents the regulation of the cell cycle by E2F/RB. The cell cycle is a succession of four phases (G1, S, G2 and M
phases) that are tightly regulated by so-called pocket proteins, whose main representative is the RB protein. The RB protein major function is to
inhibit transcription factors belonging to the E2F family, and in particular the E2F1 protein. Diverse cyclin dependent kinases (CDKs) play a key role in
the regulation of the cell cycle. In particular, CDKs' function is to phosphorylate the RB protein, decreasing its inhibiting effect on E2F transcription
factors. This map is represented using the SBGN-PD language. EPNs with bold borders constitute the initial state of the map. Every colored EPN

belongs to a story, and each color is assigned to a different story

There are six major CDKs: CDC2 (also named CDK1),
CDK2, CDK3, CDK4, CDK6 and CDK?7. CDC2 is associ-
ated to cyclin B1, CDK2 to cyclin E1 and cyclin A2, CDK3
to cyclin C, CDK4 and CDKG6 to cyclin D1 and CDK?7 to
cyclin H. As for the E2F transcription factors, they can be
divided into two groups: activators (E2F1, E2F2, E2F3a)
and inhibitors (E2F3b, E2F4, E2F5, E2F6 and most likely
E2F7 and E2F8).

The stimulation by growth factors switches the cells
from a quiescent condition (GO) to entry in the cell
cycle. Cyclin D1-CDK4,6 complexes are activated and
start phosphorylating RB which maintains the G1 check-
point. As RB starts to be phosphorylated, it frees E2F1
from the inhibitory complex. E2F1 begins to mediate the
synthesis of major players of the cell cycle. Cyclin E1-
CDK2 complex brings the cells from G1 to the S phase,
where DNA is replicated. Following DNA replication and
mainly under the action of cyclin A2-CDK2, cells enter a
second gap phase, the G2 phase, and finally go through

mitosis in the M phase where cyclin B1-CDC2 seems to
be one of the main regulators.

Models under the general and the stories semantics

We built two models of the RB/E2F map, the one under
the general semantics and the other under the stories
semantics.

The model under the general semantics was built auto-
matically and contained 370 automata.

To build a model under the stories semantics, we first
chose a valid set of stories computed from the SBGN-ML
file as follows. Since E2Fs and CDKs play a key functional
role in the regulation of the cell cycle, we defined one story
for each CDK (resp. E2F), each story containing itself all
EPNs representing a physical state of the CDK (resp. E2F).
We also defined a story beforehand for the p53 protein.
Finally, we chose to compute only epn-maximal sets of
stories in order to reduce the size of the model as much as
possible.
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There were only eight epn-maximal sets of stories
including all stories defined beforehand, due to three
pairs of alternative stories resulting from three differ-
ent association processes with two reactants (namely,
the pairs of reactants {MGA,MAX}, {ATM,NBS1} and
{APC,CDC20}). All eight sets contained 28 stories for a
total of 153 EPNs, out of the 222 EPNs of the map. We
chose the valid set focusing on the molecules MGA, ATM
and APC, and that is represented in Fig. 9, and built
a model under the stories semantics accordingly. This
model contained 243 automata.

The analysis of the dynamics of such large models
requires advanced techniques to avoid the state space
explosion (see the ‘Discussion’ section for more details).
Hereafter, we use Mole for this purpose. We show in the
next sections how both models can be used to answer
biological questions on the network.

Building an initial state

In order to check dynamical properties for both models,
we first built an initial state that represents a quiescent cell
(in GO phase) just after it has been stimulated by a growth
factor (i.e. with CDK4 and CDK6 present). We included
in the initial state all EPNs that are inputs of the map. We
also included two EPNs that can be produced but belong
to cycles: the E2F4 protein in the cytosol and the pRB-
E2F1-DP1 complex in the nucleus. The EPNs included in
the initial state are shown with a thick black border on the
map of Fig. 9.

Study of the succession of phases

To illustrate how models built under either semantics can
be used to check some interesting dynamical properties
on the underlying biological model, we studied the suc-
cession of the different phases of the cell cycle in both
models. For this sake, we used the software Mole [39].
Mole is a concurrent model analyzer that allows to check
for reachability properties in large models where multi-
ple transitions can occur independently, such as those we
considered in this work.

Phases markers We associated to each phase of the cell
cycle a set of EPNs that are markers for this phase. We
assume that the system is in a given phase of the cycle at
a given time if any of the markers associated to that phase
is present at that time. For example, we associated phase
G2 to the set of EPNs that represent a complex cyclin B1-
CDC2 of the cytosol, with CDC2 phosphorylated or not.
G1 and S phases are separated into two periods, early and
late, to better characterize transitions.

We define a phase as reachable if there exists a state
reachable from the initial state such that at least one
marker of the phase is present in that state. In a model, a
phase marker can be disabled by removing all transitions
ingoing or outgoing the local state corresponding to the
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present state of the marker. As for a phase, it can be dis-
abled by disabling all its markers. Hence a phase that has
been disabled is no longer reachable.

Phases succession in prior-knowledge models In order
to check whether the different phases are reached succes-
sively in both models, we first checked if each phase was
reachable from the initial state using the Mole tool. As all
phases were reachable from the initial state for both mod-
els, we checked whether each phase was still reachable
when E2F1 was blocked to its initial state. As E2F1 has a
central role in the regulation of the cell cycle, preventing
any changes in the state of E2F1 should also prevent some
phases (if not all) from being reachable in both models. It
appeared that all phases but late G1 were still reachable
under these conditions in both models.

To test further the validity of our models, we inves-
tigated the succession of the different phases in both
models. We expected that, apart from early G1, all phases
should necessarily be reached successively. Hence we
checked, for each phase, whether it was still reachable
when its previous phase was disabled. All phases but late
G1 and M were still reachable in both models. The fact
that early G1 was still reachable under those conditions
was expected: indeed, dividing cells can go through multi-
ple cycles without going through GO. However, the models
could not reproduce the expected behavior for some of the
other phases.

This result shows that the succession of phases observed
during the cell cycle cannot be reproduced by the only
molecular processes of the map. Indeed, in the obtained
dynamical model, the different phases can be reached
independently from each other. The sequentiality of
phases might be possibly achieved, for instance, by consid-
ering the kinetics of processes, or by taking into account
additional processes that would enforce synchronization
between the pathways of the different phases.

In the scope of this article, we propose to take
into account transcriptional effects and investigate the
obtained qualitative dynamics by checking if it does repro-
duce the expected succession of cell cycle phases.

Phase succession in models with transcriptional
effects In order to model adequately the succession of
phases, we enriched both models by adding known effects
of E2F1 on the transcription of some genes whose proteins
play a major role in the regulation of the cell cycle. For
example, E2F1 is known to upregulate the transcription
of CDC2 [5]. As the particular form under which E2F1 is
able to regulate CDC2’s expression is not known, we first
considered that E2F1 could upregulate CDC2 when asso-
ciated only to DP1 or when associated to a phosphorylated
form of RB, as we know that unphosphorylated RB is an
inhibitor of E2F1. We modeled this effect in both models



Rougny et al. BMC Systems Biology (2016) 10:42

by adding a transition from a state where the molecular
entity CDC2 is absent to a state where the CDC2 EPN is
present and such that it could be triggered only when E2F1
is in one of the states mentioned above. We added this
type of influences on four main regulators of the cell cycle
(cyclin E1, cyclin A2, CDC2 and cyclin B1) [5, 40]. Note
that these transcriptional effects are not present as such
in the CellDesigner version of the map that contains the
transcriptional modulations, as these modulations only
state that some molecular entities (e.g. E2F1) stimulate or
inhibit the transcription of some genes. Hence the phys-
ical state under which these molecular entities perform
their effect is not specified in this map, and there is no
explicit processes linking genes to their corresponding
RNA or proteins.

All phases were still reachable from the initial state in
the models augmented with transcriptional effects. Yet, no
phases but early G1, late S and G2 were reachable when
disabling, for each phase, its previous phase. The reach-
ability of late S could be prevented when narrowing the
forms of E2F1 able to upregulate the cyclin A2 gene to
the complexes where E2F1 is associated only to DP1 or
associated to DP1 and RB phosphorylated three times.
This suggests that the increase of cyclin A2 after phase
G1, that leads to the replacement of cyclin E1 by cyclin
A2 in complexes formed of CDK2, might be triggered by
the phosphorylation of RB on a third site by the complex
cyclin E1-CDK2. As for the succession between late S and
G2, it could have been restored in the model by adding a
positive influence of cyclin A2-CDK2 on the activation of
cyclin B1-CDC2. Such an effect has strong evidence (see
[41] for more details), but the precise mechanism remains,
to our knowledge, unknown. Hence, adding some tran-
scriptional effects of E2F1 allowed to restore a correct
succession for the majority of phases.

Finally, we checked in both augmented models whether
two distinct phases of the cell cycle could be reached
simultaneously. For each pair of phases, we checked
whether there existed a reachable state containing at the
same time one marker of the first phase and one marker
of the second phase. In the model built under the general
semantics, all pairs of phases could be reached simulta-
neously whereas the couples (early S, late S) and (G2, M)
could not be reached simultaneously in the model built
under the stories semantics.

The difference observed between the two models is
due to the property of mutual exclusiveness of the EPNs
of a story. If two markers associated to two different
phases belong to the same story, the two phases might
not be simultaneously reachable. This last analysis illus-
trates how the stories semantics can help reasoning about
biological processes where successive functional states of
some key molecular entities can be linked to biological
events that situate at a macro-scale.
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Discussion

Related work

Notions bearing some similarities with stories can be
found in the literature. In [42], authors present a semi-
automatic algorithm in order to find components in a
given pathway. For them, a molecular component corre-
sponds to a biological entity that can appear in the form
of different molecular species in the pathway. Hence a
component is a species name associated to a set of molec-
ular species that share that name. Their algorithm for
inferring pathway components relies on the law of mass
conservation, and proceeds iteratively as follows:

e pick arbitrarily a reaction of the pathway not
examined yet;

® associate each reactant of the reaction to a different
product or to a product split in two parts (by adding
new symbols), and memorize these new associations
and splits;

e update the associations in the other reactions
according to the new associations found and the new
splits.

In case of ambiguity when associating the reactants and
the products, their algorithm asks the user for the right
association.

Stories respecting constraints (i-iv) and molecular com-
ponents both aim at modeling the changes of states of a
particular molecular entity. The main difference between
stories and components is that elements of a component
are not required to be mutually exclusive. Hence they
are not built upon dynamical constraints as for stories,
and cannot directly be used within a qualitative seman-
tics in the general case. Let us illustrate this difference on
a small example. We consider a pathway containing two
processes: the first process is a reaction that transforms A
into B, and the second process is an association between
A and B to form a complex C. There would be only
one possible story respecting constraints (i-iv): {4, C}. On
the same pathway, the algorithm presented in [42] would
automatically find a unique component associated to the
set {A,B, C4,Cg} where C4 and Cp are the parts origi-
nating from the split of C. This component would not
be relevant within a dynamics semantics: associated to a
unique automaton whose local states would be the ele-
ments of the component, A and B would never be both
present at the same time. Hence, the association process
would never occur. Therefore the notion of component is
not adequate from a dynamics qualitative semantics point
of view.

In [5], the authors decompose the RB/E2F map into 16
network modules using the Cytoscape plugin BiNoM [43]
as follows. First, modules are built by decomposing the
RB/E2F map network into subnetworks, each focusing on
a particular molecular entity. The resulting subnetworks
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that have more than 30 % overlap are then merged auto-
matically. Finally, the newly-built modules are modified
manually to give a biological meaning to each of the net-
works, which, in most of the cases, corresponds to the
different forms that protein can take (phosphorylated,
acetylated, in complex, etc.) along with their modifiers
(kinases, phosphatases, etc.). The influences between the
modules are derived by integrating the influences between
the individual molecules within the modules. The result-
ing network is a modular map of the initial comprehen-
sive map, analogous to an influence graph. Thus, the
BiNoM approach focuses on the structure of the complex
and detailed network, the SBGN-PD map, by abstract-
ing and simplifying it into an influence network in order
to identify possible motifs, such as negative or posi-
tive feedback loops, that may be responsible for certain
dynamics, but without providing the dynamics. In our
case, the stories semantics conserve the level of details
of the SBGN-PD model while adding constraints of its
dynamical semantics.

Two semantics to model different types of networks

The general semantics extends BIOCHAM’s semantics by
taking into account inhibitions. This semantics can be
applied to all biological networks for which precise molec-
ular processes, such as reactions or translocations, are
known. That is usually the case for metabolic processes,
and for some signaling pathways, such as those presented
in the ‘Results’ section.

As for the stories semantics, it can be applied only
on networks where physical states of molecular enti-
ties can be defined and gathered into stories, that are
mainly signaling networks. Using the stories semantics
to model metabolic networks would certainly make less
sense in general since these networks hardly contain
molecules that can be in different states (other than
absent/present). Yet modeling some particular metabolic
networks under the stories semantics could be imag-
ined. For example, part of the photosynthetic process in
plants is based on consecutive electron transfers between
molecules. One could then build a story focusing on elec-
trons, by regrouping all molecules of unique chains of
transfers.

Hence, the general semantics has a broader applica-
tion range than the stories semantics, as it can be eas-
ily applied to metabolic networks. However, as shown
for the RB/E2F map, the stories semantics allows to
build more compact models that are still able to repro-
duce expected behavior. Moreover, by pruning large por-
tions of the state space entailed by the general seman-
tics, the stories semantics may lead to more realis-
tic models for biological processes that include suc-
cessive discrete events, such as the phases of the cell
cycle.
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Relation between the stories semantics and the Boolean
semantics applied to SBGN-AF maps

The stories semantics suits well to signaling networks,
where products of reactions are modulators of other reac-
tions, transducing and amplifying an initial signal in this
way.

Most molecules of such networks are proteins that can
be defined by two states, active and inactive, correspond-
ing in most cases to a normal and a post-translationally
modified state (e.g. a phosphorylated state), respectively.
These kinds of networks are often represented by influ-
ence graphs, where nodes are activities of molecules and
arcs are influences between these activities. SBGN-AF
is one standard to represent such influence graphs, and
a semi-automatic method has been proposed to trans-
late any SBGN-PD map into an SBGN-AF map [44].
Given an SBGN-PD map representing a signaling net-
work, each molecular entity of this network might appear
in the form of two different EPNs (representing two dif-
ferent physical states of the same molecular entity) and
can be modeled by a story of these two EPNs. Hence
the number of automata of the model would be approx-
imately half the number of EPNs of the map. We can
then presume that modeling the signaling cascades of a
SBGN-PD map representing a signaling network under
the stories semantics is analogous to modeling its corre-
sponding (translated) SBGN-AF influence network under
a classical Boolean semantics. However, if for simple sig-
naling cascades, modeling the network under the stories
semantics might be equivalent to modeling in a more
classical way the corresponding influence network, it is
not the case for more complicated signaling networks or
other types of networks. The AT14R-mediated ERK acti-
vation map might well illustrate this difference between
modeling simple cascades and more complicated path-
ways under the stories semantics. The protein G pathway
is a simple cascade with reversible processes where one
reactant is transformed into one product, and the product
of each forward process stimulates the next downstream
process. Translating this pathway into SBGN-AF would
result in a linear pathway of activities, each of which
having a positive influence on the next downstream activ-
ity. Modeling this pathway under the stories semantics
with three stories of two EPNs as done in the ‘Results’
section would be equivalent to modeling the correspond-
ing SBGN-AF pathway under a Boolean semantics. By
contrast, the S-arrestin pathway is not a simple cas-
cade, and its translation into SBGN-AF results in a more
complicated map than a simple linear pathway. Hence
a model of the resultant SBGN-AF pathway built under
a Boolean semantics will not be equivalent to a model
of the SBGN-PD map built under the stories semantics.
The relationship between the stories semantics applied
to SBGN-PD maps and the Boolean semantics applied to
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the corresponding SBGN-AF maps for signaling networks
should be deepened in a future work.

Model-checking, state transition graph, and dynamical
properties

Our approach builds dynamical models, i.e., models of
state transitions, from SBGN-PD maps. On the result-
ing models, one can straightforwardly apply generic
algorithms for the analysis and inference of dynami-
cal properties, as on any other dynamical model. Most
of dynamical analyses have a theoretical computational
cost that makes their application to large networks chal-
lenging, even though more and more techniques allow
to increase their tractability. In the remaining of this
section, we give an overview of the use of model-checking
and dynamical analyses in systems biology, with men-
tions to recent computational methods to tackle large
models.

Model-checking refers to a wide range of computer
science techniques to verify the absence or presence of
behaviors within dynamical models. The dynamical prop-
erties are typically specified using temporal logic [45],
which allow a high-level description of either a trace
(succession of transitions), or an execution tree (choices
between transitions). Then, generic algorithms have been
designed to verify the accordance of a dynamical model
with a dynamical property, expressed in temporal logic
[46]. Model-checking has been extensively applied to the
analysis of biological systems, for instance for gene regu-
latory networks [47], signalling pathways [48], and mod-
els of the circadian clock and the cell cycle [49, 50].
Examples of dynamical properties relevant for biologi-
cal systems include the reachability of a state where a
given molecule is active (e.g., a transcription factor), the
reachability of a given differentiated state after a pertur-
bation, the existence of sustained oscillations and their
period. All these properties can be analyzed from our
models.

Dynamical analyses also allow to make predictions. For
instance, the inference of intervention strategies (e.g., the
combination of mutations) in order to control the behav-
ior of the system. Recent works have designed algorithms
for predicting mutations to prevent or enforce the reacha-
bility of particular cell states [30, 51], and methods relying
on model-checking for deciphering the reprogramming
capability of T-helper cells by determining the inputs of
signalling pathways that trigger a change of the cell type
[52]. These prediction methods can also be applied to our
models.

The computational complexity of model-checking lim-
its, in theory, its applicability to large networks: verifying
classical temporal logical formulas, including reachability
properties, is PSPACE-complete [53], meaning in practice
it is exponential with the number of interacting molecules.
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A few algorithms for model-checking rely on computing
the state transition graph, i.e. all the state transitions spec-
ified by the dynamical model. For large systems, such a
graph may be too large to fit in memory. Therefore, tech-
niques relying on symbolic representations [54] or partial
order reductions [55] of such a graph allow to support
larger models. Efficient model-checkers (such as NuSMV
[56], ITS [57], Mole [39], or PRISM [58]) shipping those
techniques are available and can be applied to a large
variety of dynamical models, including those introduced
in this paper.

Numerous recent works improve the tractability of algo-
rithms for the analysis of biological systems, for instance
by exploiting the concurrency (parallelism) of transi-
tions [35], or using abstract interpretation [59], as well
as methods to reduce the model size while preserving
properties of interest (e.g., [60]). Aforementioned appli-
cations of model-checking to systems biology tackle net-
works ranging from dozens to thousands of interacting
molecules.

Size of the stories and size of the state space

The computation of a valid set of stories for the RB/E2F
map suggests that there exists a tradeoff between the
number of stories of a valid set and the size of the sto-
ries of the set. Indeed, we computed a valid set of stories
maximizing the total number of distinct EPNs involved in
a story for the RB/E2F map. This set contained 42 sto-
ries for a total of 167 EPNs, to be compared to the 28
stories for 153 EPNs of the valid set computed by defin-
ing stories beforehand (see the ‘Results’ section). Hence,
in this example, increasing the total number of EPNs
involved in a story led to smaller stories. This tradeoff
can be illustrated on a simple example. Let us consider a
map with two processes that model the reactions A —
B and B + C — D. Given constraints (i-v), the map
has two maximally (in the sense of inclusion) valid sets
of stories: {{A,B}, {C, D}} and {{A,B, D}}. Only the first
set maximizes the total number of EPNs (i.e. contains
four EPNs). However, its ratio EPN/stories is smaller than
for the second set: it contains two stories, compared
to the second set that contains only one story of three
EPNEs.

Building models under the stories semantics induces a
reduction of the number of automata and subsequently
a large reduction of the size of the state space. Hence
dynamics that may be intractable for an exhaustive anal-
ysis under the general semantics may become tractable
under the stories semantics.

Considering the stories semantics as an abstraction
of the quantitative population semantics [14], its prop-
erty of mutual exclusiveness of the EPNs of a story
comes down to force synchronous transitions between all
molecules of a population (or to have populations made
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of only one molecule). Hence the stories semantics prunes
all the traces of the (abstracted) population dynam-
ics where a molecule can be simultaneously into two
states.

Future work

Adding constraints

Some additional constraints could be considered in order
to define stories. For example, we do not consider the
case where a story contains two EPNs one being a reac-
tant of a process and the other being the only stimulator
of the same process. Modeling a map with such a story
under the stories semantics would prevent the process
from occurring. Hence constraints forbidding such cases
will be added in a future work.

Formalizing models into SBML-qual

The Systems Biology Markup Language (SBML) [61]
is a standard to store and exchange systems biology
models built upon reaction networks. SBML-qual [62]
is an additional package that allows to store qualita-
tive models such as Boolean Networks or Petri Nets.
Models built under the general semantics can be stored
in the SBML-qual format and a tool to convert asyn-
chronous AN models built under the general seman-
tics into this format is under development. However,
SBML-qual does not yet allow to encode models con-
taining variables that take their value onto unordered
domains. Hence automata representing stories cannot
be properly encoded within the current version of
SBML-qual.

Software development

A user-friendly software taking into account the whole
framework presented in this article (see Fig. 10) is under
development.

This software should allow to compute all valid sets of
stories respecting constraints on the content of stories and
on maximality defined by the user thanks to a GUI, and
build AN dynamical models automatically.

Conclusions

In this article we propose two qualitative dynamics
semantics for SBGN Process Description maps, that rep-
resent a particular class of reaction networks. Besides
extending existing generic interpretations of reaction net-
works with Boolean logic, we introduce the new con-
cept of stories, that allows to focus on physical states of
molecular entities rather than on the entities themselves.
The dynamics in stories semantics have a lower dimen-
sion than the general one and prune multiple behav-
iors (which can be considered as spurious) by enforcing
the mutual exclusivity between the activities of the dif-
ferent EPNs of a given story. Moreover, the stories
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Fig. 10 Workflow of the method. Rectangles represent objects and
ellipses tasks. Pink processes are those developed as part of this work;
blue processes are users’ interventions; yellow processes are tools
publicly available that were used for this study

semantics leads to more realistic models when discrete
successive events can be underlined in the biological
process to be modeled. We illustrate these two seman-
tics applying them to a large network. By performing
a dynamical analysis of the RB/E2F pathway, that con-
tains more than 200 nodes, we show how the qualitative
approach allowed us to propose improvement of the initial
model.

Methods

From SBGN-PD to automata networks

We detail here the formal encoding of SBGN-PD to
Automata Networks, with the two semantics (general
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and stories) that we have introduced in this paper. Note
that both semantics can be expressed within the same
encoding: the encoding of the general semantics is a spe-
cial case of encoding of the stories semantics where the
chosen set of stories is empty.

We use the following notations for referring to a given
SBGN-PD model:

e £ ={ey, - ,e,}is the finite set of EPNs;

o P ={p1, -+ ,pm} is the finite set of processes;

e For each process p € P, in(p) (resp. out(p)) denotes
the set of EPNs — except sinks and sources EPNs —
that are reactants (resp. products) of p.

Logic of modulations

As described in the ‘Background’ section, the modulation
of SBGN-PD processes is specified using modulation
arcs that link either an EPN or a logical operator to
the modulated process. Modulations can be split in
three classes: necessary stimulations, denoted by req(p) —
describing conditions that are required for the process
to occur; catalyses and stimulations, denoted by act(p) —
describing conditions that activate the process; and inhi-
bitions, denoted by inh(p) — describing conditions that
inhibit the process. When the effect of a modulation is
unknown, SBGN-PD allows to specify it with a generic
modulation.

To each node # at the origin of a modulation arc, we
associate a Boolean formula logic(n) for the satisfaction of
n. Boolean formulae are constructed with classical AND
(A) and OR (V) logical operators upon literals denoting
the presence of an EPN. Hereafter, in(n) denotes the set of
parent nodes of the node n:

e ifnu=eecf
Nimein(n 109ic(m) if n is an AND node
\/mein(n) logic(m) if n is an OR node

logic(n) 2

Finally, mod(p) defines the Boolean formula that must
be satisfied in order to make the process p to occur. In the
case where process p has multiple modulating arcs, sev-
eral different interpretations can be derived. In the scope
of this paper, we use a permissive interpretation that (i)
requires the satisfaction of all the necessary stimulations;
(i) if any, requires at least one stimulation satisfied, or at
least one inhibition not satisfied: A

If act(p) = inh(p) = @, mod(p) = /\nereq(p) logic(n);
otherwise,

mod(p) 2 Nnereq(p) 109ic()
A (\/neact(p) logic(n) v \/neinh(p) —dogic(n)) .

By convention, /\; = true and \/; = false.

Page 20 of 24

Example. In Fig. 4, the logic of the modulation of process
p is mod(p) = logic(m) = m.

Stories declaration

A story G is a subset of the set of EPNs £ excluding sinks
and sources EPNs satisfying the following conditions (cf.
constraints (i)-(iv) of the ‘Results’ section):

(i) Ve.f e S,e#f,3p,...,p* € P such that:

- Viel{l,...,k—1},3ge G: g€
(out(p)) Uin(ph)) N (out(p*) Uin(p'*h))
— ecin(p') Uout(p!) and f € in(p*) U out(pX).

(ii) Vp e P,out(p) NG # ¥ = (in(p) =
AVvinp) NG £ 0),

(i) VpeP,linp)NG <1,

(iv) VpeP,loutip) NG <1].

A set of stories S = {Sy, ..., 6z} is valid iff the stories
are pairwise disjoint: V&4, Sp € 5, 64NGp = . We note

the union of all the stories US 2 Uees 6, and the set of
stories that are involved in a process p with S(p) = {& €
Slin(p) NG #£ ¥ vout(p) NS # @},

We define a symmetric irreflexive relation # C P x P
(Vp,q € P,p#q = q#p A p # g) such that: for each pair
of two different processes p,q € P, if S(p) N S(q) # 9,
p#q. This relation can be read as conflicts: p#q means that
p and g should not occur simultaneously.

Example. In Fig. 6, S = {s,t} with s = {a,aP,c} and
t = {adp, atp}. US = {a, aP, ¢, adp, atp}; S(p) = {s,t} and
S(q) = {s}. Because S(p)NS(q) = s, p and q are in conflict,
i.e., p#q.

Encoding of automata

(1) For each EPN not belonging to any story e € £\ US
that is neither a source nor a sink EPN, e € X with S(e) =
{eo, e1}.

(2) For each story G € S, we define an automaton s € X,
with S(s) = {se | e € G} U {sy}, where sy represents the
inactivity of story &.

(3) For each process p € P, we define an automaton
p € X, with S(p) = {pg, p1}, except for simple cases where
no additional automaton is required for controlling the
dynamics. It is the case when p has no conflict (3g € P :
p#q) and either in(p) = @ (no consumption); or in(p) =
{e} and out(p) = ¢ (single consumption); or in(p) = {e}
and out(p) = {f} with {e,f} € &, where & € S (simple
change of story state). In those cases, the conditions for
the occurrence of process p are directly embedded in the
transition conditions within automata of the concerned
EPNs.
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Encoding of modulations

The logic of process modulations is translated as follows.
Given a process p € P, having a set of modulations
mod(p), we write DNF(mod(p)) the representation in dis-
junctive normal form of the Boolean formula mod(p).
Hence, DNF(mod(p)) is a set of clauses, where each
clause is a set of literals denoting the presence or absence
(noted —) of the associated EPN. We define Is(x) as the
local states that match with the literal x, and cond(p) the
set of sets of local states that satisfy DNF(mod(p)). We
recall that an EPN belonging to a story is absent if any of
the other EPNs of the story is present:

{e1} ifx=eec&\US
A | {eo} ifx =—e,ec £\ US
Is(x) = {se} ifx=eec6,6¢S5

{s;| feS,f#e}ifx=—eec5 €S

A
cond(p) = UcleDNF(mod(p)) nxecl Is(x).

Encoding of transitions
Transitions are defined for each p € P as follows:

Ifin(p) = ¥ and fig € P : p#q (p has no conflict), for
each enabling condition £ € cond(p), for each f € out(p),

iff belong to a story &, then sy £ s¢ € T, else, fo £ fit e
T.
Otherwise, if out(p) = ¥, in(p) = {e}, and Aq : p#q, for

each £ € cond(p), if e belongs to a story &, then se £

sy € T, else, e —€> eeT.

Otherwise, if in(p) = {e} and out(p) = {f} with e and
f in the same story &, and 3 : p#g, for each £econd(p),
Se —K> sseT.

Otherwise, in the general case, with

ready(p) e {e1 1 e €in(p)\ US}
U{se | In(p) N & = {e},& € S}
U{sg | in(p) = ¥, 0ut(p) NG # 0,6 € S}
U{ao | p#q}

done(p) 2 {e1 | e € out(p) \ US}
U {sf | out(p) N & = {f},& € G}
Ulsy | in(p) NS # 4,
out(p) NS =¥,6 € S},

where s is the automaton of story G,

process activation for each £ € cond(p),
£Uready(p)
Ppo———> pP1eT
production for each f € out(p) such that f ¢ US,
fo M) f1 eT.
consumption for each e € in(p) such that e ¢ US,

{p1}Udone(p)
eg—eeT.
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stories for each & € S:
if there exists e € in(p) N &, if out(p) N & = {f},

P1
Se —> 51 €T}
otherwise (out(p) N & = @), se 2N sgeT.
If in(p) = ¥, and there exists f € out(p) N G, then

P1
Sp — 5f € T.

o . done(p)
process de-activation p; —— pg € T.

The complexity of the encoding is polynomial in the
number of EPNs and processes, and exponential with
the number, per process, of inhibitions belonging to a
story. The combinatorics is due to the negation of the
presence of a story at a particular state, which involves
enumerating all other states of the story. Such a com-
plexity can be drastically reduced by allowing Boolean
formulae for specifying cond(p), instead of lists of local
states.

Identifying stories

Valid sets of stories meeting constraints on the content
of stories or on maximality can be identified automati-
cally from an SBGN-PD map (in the SBGN-ML format).
We use a declarative programming approach, Answer-
Set Programming (ASP) [63] to specify constraints (i-iv)
that stories must satisfy and the following optional addi-
tional constraints: constraint (v), possible seeds of stories,
and epn-maximality. Then, ASP solvers such as [64] allow
a fast exploration of the state space to retrieve all valid
sets of stories considering the compound graph of the
map. Epn-maximality is encoded using the #maximize
keyword available in clingo, that allows to obtain only
answer sets maximizing the number of atoms specified
by the #maximize statement. Finally, final sets of stories
can be retrieved by filtering a posteriori the valid sets of
stories.

Analysis of automata networks dynamics
Given an Automata Network (X, S, T), and using its asyn-
chronous semantics as defined in previous sub-section, we
define the following dynamical features:

State reachability Given two states s,s’ € S, s’ is reach-
able from s, noted s —* s’ iff either s — s’ or there
exists a state s € S such that s — s” and §' is
reachable from s”. By convention, s —* s.

Reachable state space Given a state s € S the reachable
state space X (s) from s is the set of states that can be
reached from s: X(s) = {s € S | s =>* §'}.

Attractors An attractor A C S is a minimal set of states
such that: Vs € A,X(s) € A. If A contains only one
state, A = {s}, s is called a point attractor (or fixed
point); otherwise A is a cyclic attractor.
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Given an SBGN-PD map, an Automata Network
(%,S, T) modeling that map under either semantics and
a global initial state of the Automata Network, we also
define the following additional features that are used
for the analysis of the RB/E2F map (see the ‘Results’
section).

Phase and markers A phase is a set of EPNs of the map,
and these EPNs are called the markers of that phase.

Presence of a marker A marker e is present in a state s €
Siff e1 € sifedoes notbelong to any story, and s, € s
if e belongs to story &.

Phase reachability Given a phase p and astates € S, pis
reachable from s iff there exists at least one marker
e € pand astates’ € Ss.t.s —>* s and e is present
in §'. Phase p is reachable if it is reachable from the
global initial state.

Phases simultaneous reachability Given two phases p
and g and a state s € S, p and q are simultane-
ously reachable from s iff there exist two markers
ec€pf e qgandastates € Ssts —>* §,eis
present in s’ and f is present in s'. Phases p and g are
simultaneously reachable if they are simultaneously
reachable from the global initial state.

We used the software Pint [65] and Mole [39] to com-
pute the various reachability properties. Pint takes as
input models of automata networks (ANs). Pint has been
used to reduce the model dynamics with respect to reach-
ability properties: it guarantees to preserve the traces
for the concerned reachability, but removes unnecessary
transitions, which can reduce considerably the dynam-
ics to explore for the model checking. Then, for each
reduced model, we checked the reachability property
using Mole. The reduction step, relying on the AN frame-
work, was mandatory to make the reachability computa-
tions tractable. Mole takes as input models of (1-bounded)
Petri nets and computes their unfolding, that is a partial
order representation of the possible sequences of tran-
sitions. The Petri nets models have been generated by
Pint using the encoding of [35]. All but one reachabil-
ity property of the RB/E2F map case study are tractable
on a computer with 16GB of RAM. The non-tractable
reachability property is the simultaneous reachability of
the couple (G2, M) for the model built under the sto-
ries semantics and augmented with transcriptional effects.
However, this reachability property is False in the model
built under the stories semantics without transcriptional
effects. Therefore, since the dynamics of the model aug-
mented with transcriptional effects is a restriction of the
dynamics of the model without these effects, this property
is also False for the model augmented with transcriptional
effects.
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Conversion from the CellDesigner format to the SBGN-ML
format

The CellDesigner file for the RB/E2F map was converted
to an SBGN-ML file using the export to SBGN-ML func-
tion of CellDesigner.

Workflow

All commands necessary to carry out the various analy-
ses presented in this article are available at https://github.
com/pauleve/sbgnpd2an-suppl.

Figure 10 presents the workflow of the method intro-
duced in this paper. From any SBGN-PD map stored
in the SBGN-ML format, valid sets of stories can be
computed automatically. Then two models can be built:
a model under the general semantics directly from the
map, and a model under the stories semantics taking as
input the map and a valid set of stories chosen by the
user. The models can then be checked against dynamical
properties using state of the art model checkers, such as
Mole.

Additional files

Additional file 1: Encoding of an asynchronous automata network into
the Petri net formalism. Provides the translation of the AN of Fig. 2 into the
Petri net formalism. Each local state of the AN is encoded into a place in
the Petri net, and each transition of the AN is encoded into one transition
in the PN, with one input and one output arc. Transition conditions of the
AN are encoded under the form of read arcs in the Petri net. (PDF 88.7 kb)

Additional file 2: Relationship between stories and general semantics.

Provides detailed sketches of proof for the properties relating the stories
and the general semantics. (PDF 251 kb)
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