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Abstract

A key challenge in understanding how organisms adapt to their environments is to identify the mutations and genes that
make it possible. By comparing patterns of sequence variation to neutral predictions across genomes, the targets of
positive selection can be located. We applied this logic to house mice that invaded Gough Island (GI), an unusual
population that shows phenotypic and ecological hallmarks of selection. We used massively parallel short-read sequenc-
ing to survey the genomes of 14 GI mice. We computed a set of summary statistics to capture diverse aspects of variation
across these genome sequences, used approximate Bayesian computation to reconstruct a null demographic model, and
then applied machine learning to estimate the posterior probability of positive selection in each region of the genome.
Using a conservative threshold, 1,463 5-kb windows show strong evidence for positive selection in GI mice but not in a
mainland reference population of German mice. Disproportionate shares of these selection windows contain genes that
harbor derived nonsynonymous mutations with large frequency differences. Over-represented gene ontologies in selec-
tion windows emphasize neurological themes. Inspection of genomic regions harboring many selection windows with
high posterior probabilities pointed to genes with known effects on exploratory behavior and body size as potential
targets. Some genes in these regions contain candidate adaptive variants, including missense mutations and/or putative
regulatory mutations. Our results provide a genomic portrait of adaptation to island conditions and position GI mice as a
powerful system for understanding the genetic component of natural selection.
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Introduction
When members of a population display heritable differences
in a trait that affects individual fitness, the trait distribution
can change predictably from one generation to the next. This
process of natural selection is the primary engine of evolu-
tionary change responsible for the adaptation of populations
to new environments. Elucidating the genetic component of
natural selection—the identities and effects of the mutations
that provide the basis for adaptive change—illuminates parts
of the process, including whether different populations take
the same paths to arrive at similar phenotypic optima. Theory
and experimental evolution have usefully outlined the
expected properties of genetic variants involved in selection
(Orr 2005; Good et al. 2017). Field studies have characterized
the intensity and form of natural selection on a variety of
phenotypes (Endler 1986; Kingsolver et al. 2001).
Nevertheless, the number of examples for which the specific
genes and mutations targeted by natural selection are known
is still small.

Recent colonizers of islands are compelling subjects for
understanding natural selection. Colonizers often experience
novel biotic and abiotic environments (Losos and Ricklefs

2009). Shifts in resource availability, predation risk, and com-
petition compared with mainland environments can gener-
ate natural selection favoring larger bodies, reduced
aggression, and higher population densities—characteristics
seen in island populations of vertebrates (Foster 1964; Van
Valen 1973; Lomolino 1985; Stamps and Buechner 1985; Adler
and Levins 1994). Among the multitude of island colonizers,
murid rodents have received considerable attention from
evolutionary biologists and ecologists. Commensalism with
humans has allowed mice and rats to invade islands around
the world, exposing them to a wide range of new selective
regimes on recent timescales. Skeletal phenotypes from island
murids show some of the strongest evidence for rapid phe-
notypic change (Berry et al. 1978; Pergams and Ashley 2001;
Millien 2006; Boell and Tautz 2011). Murid rodents usually
evolve larger body sizes on islands (Adler and Levins 1994;
Meiri et al. 2008), providing multiple compelling examples of
the broader pattern of unusual size evolution in island pop-
ulations, known as the island rule (Foster 1964; Van Valen
1973; Lomolino 1985).

House mice living on Gough Island (GI)—a remote island
in the middle of the South Atlantic—offer a special oppor-
tunity to study natural selection in the context of the island
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rule. GI presents a novel habitat for house mice. There are no
human-made shelters (other than a field station) for mice to
reduce their exposure to inclement weather or find stored
food. There are no predators or interspecific competitors for
mice (Hill 1959). In response to these conditions and others,
mice on GI have evolved unusual morphological, behavioral,
and ecological traits. GI mice are the largest wild house mice
on record (Rowe-Rowe and Crafford 1992; Jones et al. 2003;
Gray et al. 2015), showing substantial, heritable differences
from mainland relatives in growth trajectories (Gray et al.
2015) and skeletal dimensions (Parmenter et al. 2016). The
mice routinely attack and eat endangered seabirds (Jones
et al. 2003; Cuthbert and Hilton 2004)—wounding or killing
millions of chicks per year by some estimates (Wanless et al.
2012; Caravaggi et al. 2019). The peak population density of GI
mice is among the highest known for house mice on islands
(Rowe-Rowe and Crafford 1992; Jones et al. 2003; Cuthbert
et al. 2016). The colonization of a new environment and the
accelerated evolution of striking phenotypic and ecological
characteristics suggest that natural selection has influenced
mice in significant ways since their arrival on GI.

A powerful strategy for understanding natural selection is
to find the genomic regions, genes, and mutations that con-
tribute to adaptive change. Positive selection distorts se-
quence variation linked to beneficial mutations, shifting the
site frequency spectrum of polymorphisms (Tajima 1989;
Braverman et al. 1995), linkage disequilibrium (Przeworski
2002; Kim and Nielsen 2004), and population differentiation
(Charlesworth et al. 1997) in a localized manner. By compar-
ing patterns of sequence variation across the genome to the-
oretical predictions under neutral evolution, the genetic
substrates for positive selection can be located (Haasl and
Payseur 2016). Although this population genetic framework
lacks some of the ingredients necessary for fully demonstrat-
ing natural selection (Endler 1986), it offers the benefit that
potential instances of selection can be discovered without
biases imposed by focusing on certain phenotypes. It also
enables the characterization of genomic properties associated
with selection.

A key determinant of the success of genome-wide scans
for selection is knowledge of the genome. In this regard, GI
mice offer several advantages over most other island popu-
lations. Because these house mice belong to the same sub-
species as laboratory mice (Mus musculus domesticus) (Gray
et al. 2014), a high-quality reference genome sequence
(Waterston et al. 2002), functional annotations for a large
number of genes (Bult et al. 2019), and local recombination
rate estimates across the genome (Cox et al. 2009) are already
available. Genetic mapping in crosses between GI mice and a
mainland strain has identified quantitative trait loci (QTL)
that contributed to the evolution of body size (Gray et al.
2015), providing an opportunity to compare the genomic
locations of targets of positive selection and alleles involved
in phenotypic evolution.

In this article, we characterize positive selection in GI mice
by examining genomic patterns of variation using a
demography-aware approach. We identify genomic intervals
with strong evidence for selection, including known genes

and candidate variants that could have driven adaptation
to the distinct environment on GI. Our findings provide a
rare genomic portrait of natural selection on islands in the
wild relatives of a model genetic organism.

Results

Genome Sequences and Variant Calls
High percentages of GI mouse sequencing reads mapped to
the mouse reference genome sequence (ranging from 99.2%
to 99.6% across individuals), covering high percentages of the
genome (93.3–95.9%) (supplementary table 1,
Supplementary Material online). Average fold-coverage
ranged from 9.02� to 19.59� across mice (supplementary
fig. 1, Supplementary Material online). Most variant calls had
quality scores >100.

Demographic History
To formulate a reasonable null model for genome-wide scans
for selection, we reconstructed major aspects of demographic
history for GI mice. We focused our demographic inference
on 8,248 5-kb windows on the autosomes and 364 5-kb
windows on the X chromosome that were chosen to mini-
mize effects of selection at linked sites (see Materials and
Methods). Across this set of windows, GI mice show reduced
nucleotide diversity (GI average p/site ¼ 0.0022; Germany
average p/site ¼ 0.0026; P< 2.2 � 10�16, paired t-test), a
stronger skew toward common alleles (GI average Tajima’s
D¼ 1.23; Germany average Tajima’s D¼ 0.43; P< 2.2 �
10�16, paired t-test), and higher pairwise linkage disequilib-
rium (GI average R2 ¼ 0.56; Germany average R2 ¼ 0.48;
P< 2.2 � 10�16, paired t-test), compared with German
mice (fig. 1). These patterns are consistent with one or
more recent reductions in population size since the ancestors
of GI mice left western Europe and colonized the island (Gray
et al. 2014).

Among the three primary demographic models we con-
sidered (supplementary fig. 2, Supplementary Material on-
line), approximate Bayesian computation (ABC) analyses
identified a single colonization event followed by a low rate
of migration as the most likely scenario (supplementary table
2, Supplementary Material online). Under this model, poste-
rior distributions are distinct from prior distributions for all
parameters (supplementary fig. 3, Supplementary Material
online) and the likelihood of the data exceeds the likelihood
of retained simulations (P> 0.999), indicating patterns of var-
iation were informative about demographic history. Estimates
of posterior modes suggest mice first colonized GI close to
1,900 generations ago with an initial effective population size
of 145 that later expanded into the thousands (table 1). We
estimated a low rate of continuous migration to the island
(0.00079 per generation) following initial colonization. Given
the remoteness of GI, we interpret these findings as evidence
that our sample of mice is descended from multiple coloni-
zation events. The exact geographic sources of these events
are unclear, though they were probably in western Europe
(Gray et al. 2014).
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Genomic Targets of Positive Selection—Broad
Patterns
We used simulations assuming the best-fit demographic his-
tory to identify 5 kb windows that depart significantly from
neutral expectations separately for each summary statistic.
Although all tests yield low P values for many windows, using
the false discovery rate to account for multiple testing across
the genome leaves a small percentage of significant windows
(using genome-wide q< 0.01 as the threshold) for most

statistics (table 2). One exception is Fst: 8% of tested windows
on the autosomes and 16.8% of X-chromosomal windows
show higher population differentiation between GI mice
and German mice than expected under neutrality
(q< 0.01). This result probably reflects a higher false-
positive rate for Fst; inter-locus variance in Fst fit our demo-
graphic model less well than other summary statistics used
for ABC inference (data not shown). Fay and Wu’s H (on the
autosomes) and SweeD (on the X chromosome) are the only
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FIG. 1. GI mice show reduced nucleotide diversity, a stronger skew toward intermediate frequency alleles, and higher linkage disequilibrium than
German mice. Histograms display nucleotide diversity, Tajima’s D, and pairwise R2 in the two populations at the 8,248 5-kb autosomal windows
and 364 5-kb X-linked windows used for demographic analyses.

Table 1. Parameter estimates for the demographic history of GI mice from the best-fitting model.

Parameter Priors Posteriors (Arithmetic Scale)

Distribution Minimum Maximum Mode Mean Median 50% Lower
Confidence Limit

50% Upper
Confidence Limit

Colonization time (generations) Log-Uniform 1.6 3.7 1,896 1,248 744 204 1,832
Colonization effective population size Log-Uniform 0.3 3.7 145 359 112 36 316
GI effective population size Log-Uniform 3.0 5.0 3,181 18,648 7,529 3,050 23,903
Migration rate following colonization Uniform 2.5e-6 1.3e-3 7.9e-4 6.9e-4 6.9e-4 4.1e-4 9.4e-4
Mainland effective population size Log-Uniform 4.0 5.7 206,814 175,397 174,341 97,154 241,652
Mainland bottleneck strength Log-Uniform 24.0 21.0 6.1e-4 1.9e-3 7.3e-4 4.9e-4 1.3e-3
Mainland bottleneck duration

(generations)
Log-Uniform 3.0 4.2 5,672 5,484 5,006 2,943 7,581

Mutation rate Log-Uniform 29.5 27.0 6.4e-9 1.4e-8 7.3e-9 5.5e-9 1.2e-8
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other tests that detect appreciable percentages of windows as
departing from neutrality after multiple test correction. The
full list of summary statistics, P values, and genome-wide q-
values for each individual test of neutrality (along with nu-
cleotide diversity) for every window is accessible through
Data Dryad (supplementary table 3, Supplementary
Material online).

To boost power and combine evidence for selection across
different aspects of variation, we used the machine learning
approach SWIF(r) (Sugden et al. 2018) to estimate posterior
probabilities of positive selection for 5 kb windows under the
hypothesis of a complete selective sweep. We focus on find-
ings from this approach for the remainder of the Results. We
subsequently refer to genomic intervals with strong evidence
for positive selection based on SWIF(r) analyses as “selection
windows.” 97.9% of windows across the genome have poste-
rior probabilities�0.01. A quantile–quantile plot of posterior
probabilities from the data versus those from neutral simu-
lations revealed a modest inflation in the data (supplemen-
tary fig. 4, Supplementary Material online), suggesting that
posterior probabilities should be interpreted with caution.
Posterior probabilities for every window can be found in
Data Dryad (supplementary table 3, Supplementary
Material online).

To identify broad genomic patterns of positive selection in
GI mice, we first consider the set of 1,375 autosomal windows
and 88 X-chromosome windows with SWIF(r) posterior prob-
abilities �0.9. Neutral simulations suggested that using this

conservative significance threshold leads to a low rate of false
positives at the genome-wide level (Materials and Methods).
Selection windows are more likely to overlap with genes on
the autosomes (P¼ 0.0003; Fisher’s exact test). Among all
autosomal windows that overlap with genes, selection win-
dows are enriched for derived, nonsynonymous variants with
frequencies �0.5 greater in GI mice than in German mice
(P¼ 0.0005). Autosomal selection windows have higher re-
combination rates than nonselection windows (P¼ 3.7 �
10�5 Wilcoxon signed-rank test). Selection windows on the
X chromosome are not enriched for genes (P¼ 1), are not
enriched for nonsynonymous variants with large frequency
differences (P¼ 1), and recombine at a slightly lower rate
(P¼ 0.02). The proportion of selection windows on the auto-
somes and the X chromosomes is not significantly different
(P¼ 0.46). To determine whether selection windows are non-
randomly distributed in the genome with regard to QTL for
body size, we randomized the genomic locations of selection
windows and computed the proportion of them located
62 Mb from estimated QTL peaks for body weight and
growth rate (Gray et al. 2015). This permutation test sug-
gested that fewer selection windows are found near QTL
than expected by chance (P¼ 0.0002; 10,000 permutations).

Gene ontology analysis revealed that the genes found in
selection windows are biased toward certain categories of
biological components, processes, and functions (supplemen-
tary table 4, Supplementary Material online). A neurological
theme is visible among enriched terms, which include

Table 2. Numbers of 5-kb genomic windows identified as candidates for positive selection.

Autosomes X Chromosome

Gough Germany Gough-Specific Gough vs.
Germany

Gough Germany Gough-Specific Gough vs.
Germany

Tajima’s D 22a

(460,141)b
56

(469,515)
22

0.005%c
— 0

(23,509)
0

(26,051)
0
0%

—

Fay and Wu’s H 1,275
(437,200)

7,731
(454,385)

1,152
2.63%

— 0
(19,370)

58
(20,823)

0
0%

—

SweeD 0
(477,679)

0
(477,682)

0
0%

— 1,232
(33,562)

0
(33,562)

1,232
3.67%

—

H12 0
(478,477)

0
(478,477)

0
0%

— 0
(32,968)

0
(32,968)

0
0%

—

iHS 23
(300,057)

5
(298,742)

23
0.008%

— 0
(14,271)

0
(15,132)

0
0%

—

nSL 443
(447,414)

1
(464,843)

443
0.0004%

— 0
(23,036)

0
(24,644)

0
0%

—

OmegaPlus 0
(477,685)

1
(477,685)

0
0%

— 0
(33,563)

0
(33,563)

0
0%

—

Fst — – — 38,287
(478,477)

8.00%

— — — 5,539
(32,966)
16.80%

xpEHH — — — 582
(305,747)

0.19%

— — — 34
(17,748)

0.19%
SWIF(r) — — 1,375d

(480,707)
0.29%

— — — 88
(33,563)

0.26%

—

aCounts are numbers of significant windows identified by conducting neutral simulations of the best-fit demographic history and accounting for multiple testing at a genome-
wide q< 0.01.
bParentheses indicate total windows that could be examined for each test.
cPercentages are percentages of significant windows found in GI mice but not in German mice.
dFor SWIF(r), significant windows were identified as those with posterior probabilities �0.9.
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“synapse,” “synapse part,” “neuron part,” “postsynaptic
density,” “integral component of postsynaptic density,”
“neuronal cell body,” “postsynaptic specialization,” “apical
dendrite,” and “intrinsic component of postsynaptic special-
ization” (supplementary table 4, Supplementary Material on-
line). Some of the highest enrichment values are associated
with these neurological terms. Other themes include protein
binding, membranes, and organelles.

Genomic Targets of Positive Selection—Candidate
Genes and Variants
To gain deeper biological insights into the targets of selection
in GI mice, we examined a subset of genomic regions in detail.
Plots of the SWIF(r) probability of selection along chromo-
somes point to regions of interest (fig. 2), several of which we
highlight here.

Some genomic regions are notable for the spatial extent of
their selection signatures along the chromosome. One region
on chromosome 18 shows particularly striking patterns, with
high SWIF(r) probabilities across approximately 5 Mb (68.5–
73.5 Mb) (fig. 2). Deviations in multiple summary statistics
distinguish this genomic interval (fig. 3). Many windows con-
tain little to no nucleotide diversity in GI mice (but retain

typical levels in German mice). Overall, the strongest signal is
found from approximately 71.5–73.2 Mb, an interval overlap-
ping with only one known gene: Dcc. There are no nonsynon-
ymous variants at this gene in our sample. Potential
regulatory variants include one mutation predicted to affect
splicing and several other intron mutations that show large
frequency differences of the derived allele between GI mice
and German/French mice and are found in sequence ele-
ments significantly conserved across placental mammals
(supplementary table 5, Supplementary Material online).
The DCC protein is an axon guidance receptor that interacts
with translational machinery in neurons (Russell and Bashaw
2018). Mice with disruptions at Dcc exhibit a range of nervous
system defects, including ataxia and corticospinal lesions
(Finger et al. 2002).

On the proximal end of chromosome 11, near the centro-
mere, is another expansive region (3.8–5.5 Mb) containing
many windows with high probabilities of selection (fig. 2).
Variants in or near several genes in this interval show sub-
stantial differences in derived allele frequency and fall within
noncoding sequences that are conserved across mammals
(supplementary table 5, Supplementary Material online).
Disrupting Mtmr3 changes body size (Bush et al. 2012),
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FIG. 2. Evidence for positive selection across the genome. Each dot represents a 5-kb window. X-axis denotes the chromosomal start position of
each window in megabytes. Y-axis shows the probability of selection estimated by SWIF(r).
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making this gene a good candidate for selection in this inter-
val of chromosome 11. Toward the other end of chromosome
11 lies another large area (102–104 Mb) displaying strong
signatures of selection. Three genes in this region each harbor
a single derived amino acid change with large allele frequency
differences between GI mice and German/French mice (ta-
ble 3): Hexim2, Map3k14, and Lrrc37a. Little information
about the phenotypic consequences of disrupting these genes
is available. Other genes in this region contain derived muta-
tions with large allele frequency differences in conserved non-
coding sequence elements (supplementary table 5,
Supplementary Material online), including variants in splice
regions (Atxn7l3, Ubtf), nearby intergenic variants (Tmub2,
Ubtf, Slc25a39, Fzd2, Dcakd, Nmt1), and UTR sequences
(Rundc3a, Fzd2).

The stretch of chromosome 10 from 79.6 to 80.5 Mb is
also of interest (fig. 2). This 900-kb region spans several genes
with established connections to body size and/or behavior.
Mice deficient in Sbno2 have higher bone mass caused by
impaired osteoclast fusion (Maruyama et al. 2013). Disrupting
Gpx4—a gene with a potential downstream regulatory vari-
ant in our sample (supplementary table 5, Supplementary
Material online)—in mice produces a variety of phenotypes,
including loss of neurons in the hippocampus, seizures, and

decreased body weight (Seiler et al. 2008; Yoo et al. 2012).
Hcn2 plays roles in locomotion, balance, and weight accumu-
lation (Chung et al. 2009). Mice without Efna2 have abnormal
neuron differentiation (Holmberg et al. 2005). Fgf22 facilitates
differentiation of excitatory nerve terminals in hippocampal
neurons (Terauchi et al. 2010). Five genes in this region of
chromosome 10 harbor derived missense mutations with
large frequency differences between GI mice and mice from
Germany and France (table 3). One of these variants, located
in Fgf22, is predicted to damage protein function (table 3).

Some genomic regions show spatially narrower signals of
selection that point to single genes. On chromosome 13,
within a broad region displaying evidence for selection that
stretches from approximately 32–34 Mb (fig. 2), lies a more
localized signal (32.2–32.6 Mb). Gmds is the only gene anno-
tated in this interval. Mice with disrupted Gmds have altered
numbers of immune cells and craniofacial morphology (Bush
et al. 2012). Potential regulatory variants with large differences
in derived allele frequency are found in the introns of Gmds
and nearby intergenic sequence elements (supplementary
table 5, Supplementary Material online).

One annotated gene is located within the 100-kb interval
with the strongest signal (91.6–91.7 Mb) (fig. 2) on chromo-
some 12: Ston2. This gene functions in synaptic transmission;
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FIG. 2. Continued.
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synapses from Ston2 knockout mice show impaired short-
term plasticity (Kononenko et al. 2013). Consistent with
this defect, Ston2 knockouts exhibit increased exploration
in an open field test, including faster approach to a novel
object (Kononenko et al. 2013). Two derived, missense var-
iants in Ston2 are fixed in our sample of GI mice; one variant is
absent from the Germany and France samples, and the other
is polymorphic in both (table 3).

A few additional regions showing strong evidence for se-
lection are notable because of their proximity to QTL for body
size evolution in GI mice (Gray et al. 2015). A selection interval
on chromosome 6 (20.0–20.5 Mb) (fig. 2) is located approx-
imately 2 Mb distal from a QTL peak (within the QTL confi-
dence interval). This region features many contiguous
windows with SWIF(r) probabilities of 1. This interval contains
no SNPs that satisfy our criteria for regulatory variants, nor
does it contain annotated genes. Another selection interval is
found on chromosome 8 (83.3–83.4 Mb) (fig. 2), roughly 4 Mb
distal from a QTL peak. Functional information is available for
two genes in this region. Elmod2 affects body fat, cholesterol,
bone mineral content, and gait in mice (Bush et al. 2012).
Mouse mutants for Mgat4d exhibit abnormal morphology of
the esophagus and spleen (Bush et al. 2012). Potential regu-
latory variants in this interval are found in UTR sequences

(Elmod2), downstream intergenic elements (Elmod2), introns
(Mgat4d), and splice sites (Mgat4d). Selection patterns in
these genomic regions and others could help to narrow can-
didate intervals for QTL responsible for the evolution of ex-
treme body size.

Discussion
Mice from GI provide a compelling example of the island rule
(Gray et al. 2015). Compared with their mainland counter-
parts, these mice evolved enormous body sizes, as well as
novel behaviors (Rowe-Rowe and Crafford 1992; Jones et al.
2003; Gray et al. 2015). In previous research, we used genetic
mapping to identify genomic regions involved in morpholog-
ical evolution in GI mice (Gray et al. 2015; Parmenter et al.
2016). In this article, we present evolutionary inferences from
a complementary approach that is unbiased with respect to
phenotype.

Our study is one of the first genome-wide scans for selec-
tion to be applied to an instance of the island rule. Genomic
regions associated with changes in body size in selected lines
of laboratory mice showed reduced variation on an SNP array
in big house mice from the Faroe Islands and St. Kilda (Chan
et al. 2012). In contrast to this work and other population
genomic characterizations of selection in island populations
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that focus on SNP genotyping, exome sequencing, or other
reduced representation methods, our approach considers full
patterns of sequence variation from throughout the genome.

Application of a machine learning approach that integra-
tes patterns of variation while accounting for demographic
history located 1,463 genomic windows showing strong evi-
dence for positive selection, suggesting that adaptive evolu-
tion has been frequent since mice colonized GI. The
nonrandom genomic distribution of selection windows fur-
ther supports the notion that positive selection has left foot-
prints in the genome. We observed stronger signatures of
selection in windows containing genes. Among genic win-
dows, selection windows are enriched for nonsynonymous
variants that are derived and at high frequency (or fixed) in
GI mice. A subset of these variants likely contributed to island
adaptation.

The instances of selection we uncovered probably reflect
responses to diverse aspects of the novel environment faced
by GI mice. The enrichment of genes with neurological func-
tions in selection windows suggests the evolution of new
behaviors. Some of the intervals with the most striking selec-
tion patterns contain genes with established effects on be-
havior, including the willingness and ability to explore novel
environments. For a subset of these genes, the molecular

mechanisms that mediate behavior have already been inves-
tigated. For example, Ston2 is an endocytic adaptor that sorts
proteins in synaptic vesicles in the hippocampus (Kononenko
et al. 2013). The enhanced boldness observed in Ston2 knock-
out mice resembles impulsivity seen in schizophrenia and
Tourette’s syndrome, two disorders that may be associated
with Ston2 variants in humans (Breedveld et al. 2010; Luan
et al. 2011). Our sample of GI mice is fixed for two derived
missense mutations in Ston2; these variants deserve func-
tional characterization. In fact, many genomic regions with
strong evidence for positive selection contain a single gene,
making them good targets for genome editing. More broadly,
the enrichment of neurological genes in selection windows
should motivate the examination of behavioral evolution in
GI mice. We have established inbred lines of GI mice that we
are using for these purposes.

The evolution of extreme body size raises the possibility
that selection stimulated the spread of mutations that in-
crease size in GI mice. We considered this scenario by com-
paring the locations of selection windows with QTL for body
size evolution (Gray et al. 2015). Although we found strong
evidence for selection near a few QTL peaks, selection win-
dows as a group were not enriched for QTL overlap. Perhaps
the relatively low genomic resolution of body size QTL, which
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was mapped to Mb-scale intervals (Gray et al. 2015), obscures
a true relationship between QTL and selection windows.
Many QTL contain selection windows within their confidence
intervals, but uncertainty about the positions of causative
mutations makes it difficult to draw connections across dis-
parate genomic scales. In addition, genetic drift could be re-
sponsible for the evolution of larger bodies, facilitated by a
reduction in the effective population size that accompanied
colonization of the island. This scenario seems less likely be-
cause the body size of GI mice has continued to increase over
time (Rowe-Rowe and Crafford 1992) and the distribution of
QTL effects supports the action of selection on size or traits
correlated with it (Gray et al. 2015). Another possibility is that
the evolution of large body size was caused by selection on
standing genetic variation. Most of the signatures we
searched for—including skews in site frequency spectra, un-
usual haplotype structure, and elevated population differen-
tiation—are predicted when selection targets new beneficial
alleles. In contrast, when selection acts on pre-existing var-
iants that persisted in the population, recombination before
the onset of selection can decouple beneficial and neutral
mutations, substantially weakening detectable patterns in

linked variation (Hermisson and Pennings 2005; Przeworski
et al. 2005). If the evolution of large bodies was driven by
selection on standing variation, we would not expect strong
signatures of selection near most QTL for size. Low power to
find selection targeting standing variation is a limitation of
our study that extends beyond consideration of body size.

Our findings offer additional lessons about genomic scans
for selection. Although analytical approaches that jointly con-
sider multiple measures of sequence variation are becoming
more popular (Grossman et al. 2010; Schrider and Kern 2018;
Sugden et al. 2018), it is still common practice to focus on one
or a few summary statistics. This is true despite the reasonable
expectation that tests of neutrality vary in their statistical
properties, including robustness to neutral departures from
equilibrium and power to detect selection on different time-
scales. The disparate numbers of selection windows we
detected using different tests (table 2) indicate that we would
have reached divergent conclusions about the genomic deter-
minants of selection in GI mice if we had relied on one or a
few tests. This empirical result should help motivate compar-
isons of method performance on common simulated data
sets generated under a diverse range of scenarios
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(Adrion et al. 2020), as well as the application of approaches
that integrate different signals of selection (Grossman et al.
2010; Schrider and Kern 2018; Sugden et al. 2018).

Other caveats accompany our interpretations. Our geno-
mic scans used Germany as a reference population. Although
we were motivated to find targets of selection in GI mice,
selection windows we identified could reflect instances of
adaptive evolution that preceded colonization of the island
(but followed the split between GI and German populations).
Future research with larger samples from the island and ad-
ditional mainland populations could enable estimation of the
timescale of selection. The ability of demographic changes to
produce genomic patterns that resemble selection signatures
raises another caveat. We reconstructed major aspects of
demographic history to control false-positive rates in selec-
tion scans. The simplified nature of the demographic models
we considered likely missed important characteristics of the
true colonization history. For example, because we lacked
specific information about the source population for GI
mice, we treated the colonization of GI and the split of GI
and German populations as simultaneous events. If the GI-
German split happened much earlier than island colonization,
this modeling assumption could have led to overestimation
of colonization time, which in turn could have reduced the
accuracy of neutral predictions for selection scans. Accurate

reconstruction of demographic history remains a challenge,
even with genomic data.

Despite these issues, our results provide an initial portrait
of the genomic landscape of positive selection in an island
population exhibiting substantial phenotypic evolution. The
repeated colonization of islands by house mice and other
murid rodents will make it possible to determine whether
the targets of selection we discovered have been used to
adapt to novel conditions on other islands. This comparative
population genetic approach is appealing, especially given the
common characteristics of phenotypic evolution that char-
acterize adaptation to islands (Foster 1964; Van Valen 1973;
Lomolino 1985; Adler and Levins 1994).

Materials and Methods

Mice
Fifty mice from GI were collected by Henk Louw and Paul
Visser, supervised by Richard Cuthbert and Peter Ryan. Livers
were extracted in the field, stored in 70–100% ethanol, and
transported to the University of Wisconsin – Madison.
Genotypes at 21 dinucleotide microsatellites (Gray et al.
2014) were used to choose a subset of 14 mice that were
not closely related for genome sequencing. These mice were
sampled near a field station on GI. We considered publicly
available genome sequences for eight house mice from

FIG. 3. A region on chromosome 18 shows strong evidence for positive selection. The first panel plots the SWIF(r) probability of selection for the
whole chromosome. Panels 2–4 display the SWIF(r) probability of selection, Tajima’s D, and Fst across the interval.
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Germany (Harr et al. 2016) as a reference sample for compar-
ison in all analyses. Although the source population(s) for GI
mice is (are) not known, mitochondrial DNA sequences and
microsatellite genotypes indicate the mice likely originated in
western Europe (Gray et al. 2014). Additional genome
sequences for eight house mice from France (Harr et al.
2016) were used solely in analyses of selection candidate
variants to improve confidence. All mice used in population
genetic analyses belonged to the Mus musculus domesticus
subspecies (Gray et al. 2014; Harr et al. 2016).

Sequencing
Genomic DNA was extracted from livers of GI mice using a
Qiagen DNeasy blood and tissue kit. DNAs were further
cleaned by phenol and chloroform to meet quality require-
ments for genome sequencing. Genome sequencing was
completed in the University of Wisconsin – Madison
Biotechnology Center. DNA concentration and sizing were
verified using the Qubit dsDNA HS Assay Kit (Life
Technologies, Carlsbad, CA, USA) and the Agilent DNA
1000 chip (Agilent Technologies, Inc., Santa Clara, CA,
USA), respectively. Samples were then prepared using the
TruSeq PCR Free Sample Preparation kit (Illumina Inc., San
Diego, CA, USA), with minor modifications. Libraries were
size-selected for an average insert size of 550 bp using SPRI-
based bead selection. Quality of the finished libraries was
assessed using an Agilent DNA 1000 chip and qPCR quanti-
fication was performed using the Kapa Illumina NGS Library
Quantification Kit (KAPA Biosystems, Wilmington, MA).
Libraries were standardized to a concentration of 2 nM.
Cluster generation was performed using the Illumina Rapid
PE Cluster Kits v2 and the Illumina cBot. Paired-end, 100-bp
sequences were generated using Rapid v2 SBS chemistry on
an Illumina HiSeq2500 sequencer. Images were analyzed using
the standard Illumina Pipeline, version 1.8.2.

Mapping Sequencing Reads and Calling Variants
Sequencing reads were mapped to the mouse mm10 genome
reference sequence (downloaded from http://genome.ucsc.
edu/index.html on 12/11/2014) using bwa-mem (Li and
Durbin 2009) with default settings. Samtools was used to
sort and merge bam files, Picard tools software suite
(http://broadinstitute.github.io/picard/) was used for marking
and removing duplicates, and GATK (McKenna et al. 2010)
IndelRealigner was used for indel realignment. Raw SNP and
indel calls were obtained from the alignment files using GATK
(McKenna et al. 2010) HaplotypeCaller with the following
setting: –genotyping_mode DISCOVERY,–output_mode
EMIT_VARIANTS_ONLY, -stand_call_conf 30. Variants with
QUAL <100 were removed. To improve consistency among
samples, we re-mapped reads to the same reference sequence
and called variants for the German mice and French mice
(Harr et al. 2016) following the same procedures.

Inference of Demographic History
To facilitate genome-wide scans for selection, we first used
patterns of sequence variation to reconstruct the demo-
graphic history of our sample of GI mice. Our primary goal

was to minimize the risk of false positives in genome-wide
selection scans by formulating an improved null (neutral)
model that incorporated major aspects of demographic
history.

We summarized patterns of sequence variation for demo-
graphic inference using statistics designed to capture infor-
mation about levels of variation, the site frequency spectrum,
population differentiation, and haplotypes and linkage dis-
equilibrium. Nucleotide diversity (Nei and Li 1979),
Watterson’s theta (Watterson 1975), Tajima’s D (Tajima
1989), numbers of unique and shared SNPs (in GI mice vs.
German mice) (Wakeley and Hey 1997), Fst (in GI mice vs.
German mice) (Hudson et al. 1992), and average R2 (across
SNP pairs) (Weir et al. 2004) were computed from unphased
genotypes. Summary statistics computed from unphased
genotypes used the same sample size (n¼ 28 for autosomal
loci), regardless of whether some genotypes were missing.
Haplotype number, haplotype heterozygosity, and frequency
of the most frequent haplotype were computed from hap-
lotypes phased using Beagle version 4.1 (Browning and
Browning 2007) over 20 iterations and assuming cM recom-
bination distances estimated from the genetic map for the
laboratory mouse (Cox et al. 2009) (downloaded from http://
cgd.jax.org/mousemapconverter/help/data_resource). For
phased data, missing genotypes were imputed by Beagle.
All summary statistics were computed in nonoverlapping 5-
kb genomic windows. To minimize the effects of selection at
linked sites, windows for analyses of demographic history
were chosen based on the following criteria: at least 100 kb
away from any annotated gene, at least 20 kb away from each
other, local recombination rate at least 0.5 cM/Mb (estimated
from the mouse genetic map) (Cox et al. 2009), and two or
more SNPs so that all summary statistics could be calculated.
This filtering resulted in 8,248 windows on the autosomes and
364 windows on the X chromosome. We used averages and
variances of each summary statistic across these windows
(treating the autosomes and the X chromosome separately)
for demographic inference.

We used ABC (Beaumont et al. 2002) facilitated by
ABCtoolbox (Wegmann et al. 2010) to evaluate the fit of
three models (supplementary fig. 2, Supplementary Material
online) to the data: a single colonization of GI modeled as an
instantaneous population split (with colonization time, colo-
nization effective population size, island current population
size, mainland current population size, mainland bottleneck
time, and mainland bottleneck size as parameters) (Model 1),
a single colonization of GI followed by continuous migration
to the island (parameters for Model 1 plus migration rate)
(Model 2), and two colonization events (parameters for
Model 1 plus second colonization time and colonization
size) (Model 3). Prior distributions for all parameters were
bounded to include likely scenarios (Gray et al. 2014). Prior
distributions were log-uniform, except for migration rate,
which followed a uniform distribution. X-linked loci were
treated the same as autosomal loci, but with 3=4 the popula-
tion size. Simulations were performed using ms (Hudson
2002). To match the data set, we simulated 8,248 autosomal
windows (made up of 10 recombination rates: 0.67, 1.42, 2.38,
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3.38, 4.43, 5.47, 6.49, 7.55, 8.52, and 9.16 cM/Mb) and 364 X-
linked windows (made up of three recombination rates: 0.69,
1.19, and 3.17 cM/Mb) for each parameter combination.

Summary statistics were transformed via partial least
squares in ABCtoolbox (Wegmann et al. 2009). A subset of
PLS components was used by the rejection method imple-
mented in ABCestimator (ABCtoolbox) to infer posterior
distributions for demographic parameters. We assessed
model fit by comparing the likelihood of the observed data
with likelihoods of 1,000 retained simulations in ABCtoolbox.
We compared the fits of the three primary models by com-
puting Bayes factors.

Genome-Wide Scans for Selection
We conducted a wide variety of well-established tests of neu-
trality in all nonoverlapping 5-kb windows in the genome to
which sequences mapped reliably to the reference and which
featured high-quality SNP calls. Tests focused on the site fre-
quency spectrum included Tajima’s D (Tajima 1989), a nor-
malized version (Zeng et al. 2006) of Fay and Wu’s H (Fay and
Wu 2000), and SweeD (Pavlidis et al. 2013), each computed
using unphased data. Tests emphasizing haplotype structure
and linkage disequilibrium included OmegaPlus (Alachiotis
et al. 2012), nSL (Ferrer-Admetlla et al. 2014), iHS (Voight
et al. 2006), and H12 (Garud et al. 2015). Tests of population
differentiation included xpEHH (computed from phased
data) (Sabeti et al. 2007) and Fst (computed from unphased
data) (Hudson et al. 1992). We used software sweed (https://
github.com/alachins/sweed) for SweeD and omegaplus
(https://github.com/alachins/omegaplus) for OmegaPlus, set-
ting the minimum window size to 100, the maximum win-
dow size to 100,000, and the number of windows equal to
chromosome length divided by 5,000. We used selscan
(Szpiech and Hernandez 2014) with default settings for iHS,
nSL, and xpEHH tests. For tests that required polarization of
SNP alleles as derived or ancestral, we assumed that alleles
present in an available genome sequence from Mus spretus
(Keane et al. 2011) were ancestral.

The expected distribution of each statistic under neutrality
was approximated by conducting 1,000,000 simulations in ms
(Hudson 2002). These simulations assumed parameter values
drawn from the modes (with 50% confidence intervals) of
posterior distributions inferred for the best-fitting demo-
graphic model, with six recombination rates for autosomal
windows (0, 1, 2, 4, 8, and 20 cM/Mb) and three recombina-
tion rates for X-linked windows (0, 1, and 3 cM/Mb). For each
window and test, a P value was computed as the proportion
of simulated windows with more extreme values than the
observed value. Tests were one-tailed in the direction
expected for a selective sweep. To account for multiple test-
ing, a q-value for each window and test was calculated from
the genome-wide distribution of P values (treating autosomal
windows and X-linked windows separately) using the q-value
package in R. We called significant windows with q< 0.01.

To jointly consider evidence for selection across tests, we
applied SWIF(r) (Sugden et al. 2018) to each 5-kb window.
SWIF(r) is a probabilistic method that computes the posterior
probability of a selective sweep by learning the distributions

of multiple summary statistics under contrasting evolutionary
scenarios. Using cosi2 (Shlyakhter et al. 2014) (https://soft-
ware.broadinstitute.org/mpg/cosi2/), we simulated 1-Mb ge-
nomic regions, assuming either neutrality or selection
targeting a single beneficial mutation at the center of the
interval. All simulations used demographic parameter combi-
nations drawn from the modes (including 50% confidence
intervals) of posterior distributions from the best-fitting de-
mographic model. The recombination rate was set to 1 �
10�8/bp (for autosomal loci) or 0.75� 10�8/bp (for X-linked
loci). Selection coefficients were calculated according to equa-
tion (4) in Sugden et al. (2018) using estimates of the current
effective population size and the time of colonization drawn
from 50% confidence intervals of posterior distributions. The
resulting selection coefficients ranged from 0.0069 to 0.037.
Selection simulations assumed fixation of the beneficial mu-
tation. Summary statistics from simulations were used to
train SWIF(r) to discriminate between neutral and selective
scenarios. To be conservative, we set the prior probability of
selection in a window at 0.0001 (prior probability of neutrality
¼ 0.9999). To examine the performance of SWIF(r) in a
genome-wide scan like the one we conducted, we applied
SWIF(r) to 480,707 windows simulated using cosi2 and as-
suming the neutral, best-fit demographic history. In neutral
simulations, 99.7% of windows had posterior probabilities
�0.01, and the proportion of windows that had posterior
probabilities �0.9 was 0.00025 (121/480,707). For the identi-
fication of genomic patterns, we conservatively set a posterior
probability threshold at �0.9.

Properties of Selection Windows
To identify broad patterns that characterize genomic targets
of selection, we examined windows with SWIF(r) probability
�0.9. We identified all REFSeq genes (https://ncbi.nlm.nih.
gov) for which at least part of the protein-coding region is
located within a selection window. We used Fisher’s exact
tests to determine whether selection windows are enriched
for genes and to compare the proportions of selection win-
dows on the X chromosome and the autosomes. We used a t-
test to compare recombination rates (Cox et al. 2009) be-
tween selection and nonselection windows. We used gene
ontology analyses implemented in GOrilla (Eden et al. 2009)
to identify biological processes, functions, and components
enriched among genes found in selection windows. We com-
pared ontology terms for genes in selection windows with
terms for all genes in the genome. We focused on ontology
terms with q-values less than 0.05.

Candidate Genes and Variants
To better understand the nature of selection, we examined
candidate genes and variants in genomic regions with espe-
cially strong evidence for selection. We used plots of the
SWIF(r) probability to visually locate regions containing a
series of windows with high selection probabilities (usually
higher than 0.9) and subsequently inspected patterns of di-
versity in these windows. Then we found genes with func-
tional annotations in these windows using the UCSC Genome
Browser (https://genome.ucsc.edu) and the Mouse Genome
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Informatics website (https://informatics.jax.org). We focused
on genes with known connections to specific organismal
phenotypes.

To pinpoint candidate variants, we used the UCSC
Genome Browser to create a custom track containing all
SNPs from our data set for which GI mice carry the derived
allele and the frequency difference of the derived allele is at
least 0.5 in two comparisons: GI mice versus German mice
and GI mice versus French mice (considering French mice
for added confidence). We then used the Variant
Annotation Tool in the UCSC Genome Browser to identify
1) the subset of these variants that are missense mutations
and 2) the subset of these variants that are noncoding with
annotated locations and significant PhastCons conservation
across eutherian mammals (using default settings). We sub-
sequently used the Blosum score (https://www.ncbi.nlm.nih.
gov/Class/FieldGuide/BLOSUM62.txt) (Henikoff and
Henikoff 1992), SIFT (https://sift.bii.a-star.edu.sg) (Sim et al.
2012), and PolyPhen-2 (http://genetics.bwh.harvard.edu/
pph2) (Adzhubei et al. 2010) to predict whether each mis-
sense variant affects protein function.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Data Availability
Summary statistics, P values, q-values, and SWIF(r) posterior
probabilities for all analyzed genomic windows (supplemen-
tary table 3, Supplementary Material online) are accessible
through Data Dryad. Sequencing reads for Gough Island mice
are available via the NCBI Sequence Read Archive (BioProject
accession PRJNA587779). Variant call format (VCF) files for
Gough Island Mice are available through Data Dryad. Scripts
for computational analyses are available through GitHub
(https://github.com/pjing999/GoughSelectionScan).
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