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Mitral valve prolapse (MVP) is a common echocardiographic 
finding in the general population (2–3%) and is characterized 
by morphological and functional abnormalities of the 
mitral leaflets such as valve insufficiency or mitral annulus 
disjunction (1). From a clinical point of view, isolated 
cardiac (or non-syndromal) forms (nMVP) and syndromal 
forms (with extra-cardiac manifestations; sMVP) can be 
distinguished, e.g., in the setting of genetic connective tissue 
disorders such as Marfan, Loeys-Dietz or Ehlers-Danlos 
syndrome (1). Non-syndromal MVP can be subdivided in 
three major subphenotypes: myxomatous MVP, fibroelastic 
deficiency (FED), and Filamin A (FLNA)-MVP (1).  
The term ‘mitral valve prolapse syndrome’ is used when 
ventricular arrhythmia occur in the setting of myocardial or 
papillary fibrosis around the mitral valve. To date, sMVP is 
caused by >10 genes. In addition, genome-wide association 
studies reported several loci associated with mitral valve 
disease (2-6). 

In our study, we focused on sporadic cases with nMVP 
to address the variant frequency in two reported genes 
[Dachsous cadherin-related protein 1 (DCHS1) and Filamin 
A (FLNA)]. Mutations in the DCHS1 gene are involved in 
calcium-dependent cell-cell adhesion (7-9). DCHS1 acts as 
part of the planar cell polarity (PCP) signaling pathway that 
controls cytoskeleton rearrangements, cell migration, and 
plays an important role in morphogenesis (1). Very recently, 
molecular interactions between DCHS1, cytoplasmic 
proteins Lix1-Like (LIX1L) and septin-9 (SEPT9) (DCHS1-
LIX1L-SEPT9 protein complex) were identified. This 

complex interacts with the actin cytoskeleton and promotes 
polymerization of filamentous SEPT9. Disturbance of 
DCHS1-LIX1L-SEPT9 complex results in disruption 
of the actin cytoskeleton, cell-tissue organization, and 
valvulogenesis (10). So far, in Human Gene Mutation 
Database (HGMD®) (http://www.hgmd.cf.ac.uk) only 
30 DCHS1 variants are listed, responsible for different 
phenotypes. Out of these, 22 are listed as ‘questionable 
disease causing’, whereas 8 were ‘disease causing’. Two of 
these variants are directly associated with nMVP. Other 
phenotypic associations were sudden infant death syndrome 
or sudden unexplained death, which might be associated 
with nMVP. 

Together with functional data of Dchs1+/− and Dchs1−/−  
mice (showing abnormal mitral valve formation) and 
knockdown of Dchs1 by morpholino injection in zebrafish 
(showing abnormal atrioventricular development and 
absence of the atrioventricular constriction) the gene has a 
strong pathogenic evidence and disease validity (7). 

In addition to DCHS1, mutations in the X-chromosomal 
filamin A (FLNA) gene, encoding a cytoskeletal actin-
binding protein, known to cause a myxomatous form of 
valvular dystrophy (11) with a more severe phenotype 
in male than in female patients with a polyvalvular 
involvement, mitral leaflet thickening and elongation. Apart 
from a few FLNA mutations in nMVP, the majority of 
FLNA mutations are related to connective tissue disorders 
with skeletal, cardiovascular, and/or gastrointestinal 
manifestations. Filamin A is known to interact with >70 
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proteins to regulate key cell properties such as proliferation, 
differentiation, migration, and extracellular matrix (ECM) 
densification. The pathophysiologic mechanisms how FLNA 
mutations may lead to nMVP are not known exactly, but 
a disturbed mechanotransduction and organization of the 
filamentous actin network together with impaired signaling 
pathways are likely (1). Recently, a FLNA knock-in rat model 
showed that inflammation, epithelial cell migration, or 
mechanical transduction pathways activated in these mitral 
valves might help to understand the pathophysiological 
aspects of nMVP (12).

Since nMVP is associated with various genetic pathways 
and causes a high rate of sudden unexplained deaths (>10%) 
or sudden cardiac death (SCD) event rate (0.14/100 patient-
years in a MVP cohort) (13), we addressed the frequency of 
DCHS1 and FLNA gene mutations in an in-house cohort 
of 40 unrelated patients (34 female vs. 6 male; mean age: 
41±14 years) with nMVP. Out of these, only 3 (7.5%) had 
a positive family history for MVP and 21 (52.5%) had a 
complicated, rhythmogenic course (either by ventricular 
arrhythmia, survived SCD or isolated ventricular premature 
beats; ‘mitral valve prolapse syndrome’) and 4 (10%) 
with QTc prolongation. All coding exons were directly 
sequenced via the Sanger method for rare variants in 
DCHS1 (NM_003737.3) and FLNA (NM_001110556.1). 

Overall, in the FLNA gene in our cohort no mutations 
were detected indicating a minor role for nMVP. In 
DCHS1, two novel non-synonymous, heterozygous 

variants were detected, p.Ala2479Thr (c.7435G>A) and 
p.Ile1069Lys (c.3206T>A). The bioinformatic analysis 
tool VarCards (http://varcards.biols.ac.cn) which uses a 
combination of more than 60 genomic and bioinformatic 
data sources for a comprehensive in-silico assessment of 
the potential pathogenicity was applied, but showed only 
a low strength for pathogenicity (6/23 and 2/23 judged 
as pathogenic; ACMG class 3 [p.Ala2479Thr: PP1, PM1, 
PM2; p.Ile1069Lys: PP1, PM2), variant of uncertain 
significance]. However, this has also been noted for the four 
previously reported causal variants (range: 3/23 till 16/23; 
Figure 1A), which may reflect that these tools still may not be 
sufficient enough in this setting. All variants are listed as very 
rare (<0.05%) in genome Aggregation Database (gnomAD) 
(Figure 1A). In case of p.Ala2479Thr, these variant is 
located near other known DCHS1 mutations which are held 
responsible for MVP (Figure 1B). The DCHS1 gene has a 
z-score of 2.4 and a pLI-score of 1, which indicates increased 
constraint (intolerance to variation) and also loss of function 
events. So the variants found in this study could have an 
impact on the development of nMVP, although the majority 
of predictive programs indicate that this is not the case.  

In conclusion, the genetic or ontogenetic pathogenesis 
of nMVP is largely unclear. Two established disease-causing 
genes FLNA and DCHS1 do not play a dominant role in 
the mainly sporadic affected patient collective examined 
here. Further functional analyses are necessary to show a 
correlation between the newly identified DCHS1 variants 

Figure 1 Structure and known variants of the protein Dachsous Cadherin-Related 1. (A) VarCards prediction analysis of all non-synonymous variants 
(algorithm predicted to be deleterious algorithms D:A; http://varcards.biols.ac.cn). Allele frequencies listed in gnomAD. *, familial MVP mutations. 
(B) Known non-synonymous DCHS1 variants as well as the two novel identified variants (p.Ile1069Lys and p.Ala2479Thr) in DCHS1. The 
protein consists of 27 repetitive, extracellular cadherin domains (green), a specific cytoplasmic domain (orange) and a signal peptide (blue, CD). CD, 
cytoplasmatic domain; gnomAD, genome Aggregation Database; DCHS1, Dachsous cadherin-related protein 1; MVP, mitral valve prolapse.
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and the development of nMVP.
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