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Brain age is an imaging-based biomarker with excellent feasibility for characterizing

individual brain health and may serve as a single quantitative index for clinical and

domain-specific usage. Brain age has been successfully estimated using extensive

neuroimaging data from healthy participants with various feature extraction and

conventional machine learning (ML) approaches. Recently, several end-to-end deep

learning (DL) analytical frameworks have been proposed as alternative approaches

to predict individual brain age with higher accuracy. However, the optimal approach

to select and assemble appropriate input feature sets for DL analytical frameworks

remains to be determined. In the Predictive Analytics Competition 2019, we proposed

a hierarchical analytical framework which first used ML algorithms to investigate the

potential contribution of different input features for predicting individual brain age. The

obtained information then served as a priori knowledge for determining the input feature

sets of the final ensemble DL prediction model. Systematic evaluation revealed that ML

approaches with multiple concurrent input features, including tissue volume and density,

achieved higher prediction accuracy when compared with approaches with a single input

feature set [Ridge regression: mean absolute error (MAE) = 4.51 years, R2 = 0.88;

support vector regression, MAE = 4.42 years, R2 = 0.88]. Based on this evaluation,

a final ensemble DL brain age prediction model integrating multiple feature sets was

constructed with reasonable computation capacity and achieved higher prediction

accuracy when compared with ML approaches in the training dataset (MAE = 3.77

years; R2 = 0.90). Furthermore, the proposed ensemble DL brain age prediction model

also demonstrated sufficient generalizability in the testing dataset (MAE = 3.33 years). In

summary, this study provides initial evidence of how-to efficiency for integrating ML and

advancedDL approaches into a unified analytical framework for predicting individual brain

age with higher accuracy. With the increase in large open multiple-modality neuroimaging

datasets, ensemble DL strategies with appropriate input feature sets serve as a candidate

approach for predicting individual brain age in the future.
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INTRODUCTION

The trajectory of healthy brain aging is characterized by a
complex dynamic process with progressive and regressive
changes in brain structure and function (1–3). Previous group
level neuroimaging studies have identified potential relationships
between aging processes and regional characteristics of the
brain (2, 4–6) and suggested that these aging-related alterations
in the human brain may be associated with the incidence
of several neurodegenerative diseases (7, 8). Therefore,
the method of obtaining aging-related bio-signatures with
higher reliability based on different brain characteristics is of
particular importance.

In the last decade, the novel concept of “biological brain age”
has emerged and served as a candidate quantitative index for
assessing individual brain health throughout the entire lifespan
(6, 9). Several studies have estimated brain age using extensive
neuroimaging data from healthy participants with different
machine learning (ML) approaches (10, 11). Furthermore, several
public health-orientated studies have demonstrated the potential
interrelationships between individual brain age and mortality
risk, grip strength, and physical activity (9, 12). Several clinically
oriented studies have supported the clinical relevance of brain age
in several neurodevelopmental and neurodegenerative disorders,
including Alzheimer’s disease (10, 13), schizophrenia (14, 15),
and traumatic brain injury (11). Additionally, an individual’s
biological brain age has been proposed as a prognostic indicator
for treatments and interventions in several neurological diseases
(16–18). Although the concept of biological brain age has
been widely applied in neuroscience, public health, and clinical
research, the optimal approach to construct predictive models of
brain age with higher reliability and accuracy remains a challenge.

In addition to conventional ML approaches, several end-to-
end deep learning (DL) analytical frameworks have recently been
proposed as alternative approaches with significant potential for
predicting individual brain age and disease classification with
higher prediction accuracy (19, 20). Compared with previous
conventional ML-based brain age estimators, these end-to-end
DL approaches omit various image preprocessing steps and
feature extraction procedures which are highly dependent on
software package selection and image quality. Several DL-based
studies have demonstrated the superior predictive performance
of this approach using single imaging modalities as the input
feature set for estimating individual brain age with minimal
image preprocessing procedures and feature extraction steps
(19, 21, 22). However, different imaging modalities of brain
MRI are associated with distinct tissue properties and provide
rich information for the characterization of individual brain
changes across the entire lifespan (5, 23). Ensemble learning
is an effective general-purpose ML paradigm that combines
prediction of individual models to achieve better performance
(24, 25). Using the ensemble learning approach, different brain
MRI imaging modalities can be seamlessly unified into a single
predictive model while reducing overfitting and improving
predictive performance. Nevertheless, the optimal approach
to select and assemble appropriate input feature sets for DL
analytical frameworks remains to be determined.

In the Predictive Analytics Competition (PAC) 2019 which
aimed to develop the best predictive brain age model from
healthy subjects based on structural magnetic resonance imaging
(sMRI) data, we explored the possibility of an ensemble DL-
based framework for predicting individual brain age. The two
objectives of the competition were: (1) to accomplish the
smallest mean absolute error (MAE) for predicted brain age
and (2) to accomplish the smallest MAE while maintaining the
Spearman correlation between the predicted brain age difference
(calculated as predicted brain age minus chronological age) and
chronological age below 0.1. To achieve these two objectives,
we first investigated the potential contribution of different input
feature sets to predict individual brain age with two widely used
conventional ML approaches. This empirical evidence served as
a baseline comparison for the subsequent ensemble DL-based
predictive model. We subsequently constructed two distinct
ensemble DL-based brain age models with multiple input feature
sets and objective-specific regularization functions to obtain
acceptable simulation results in this timely competition.

METHODS

Structural MRI Data and General Image
Preprocessing
The dataset of the 2019 PAC contained original T1-weighted
structural MRI brain images from 2,640 subjects with correct age
labels (https://www.photon-ai.com/pac2019). All T1-weighted
brain scans were visually assessed for scan quality. Images
with apparent image artifacts or gross brain abnormalities
including trauma, tumors, and hemorrhagic or infarct lesions
were excluded by two experienced researchers. This quality
screening procedure excluded 157 participants from subsequent
image preprocessing. The final training data consisted of 2,483
participants that encompassed a wide age range from 17 to 90
years. To obtain an unbiased brain age estimator and evaluate
its generalizability, we randomly allocated the provided training
set (N = 2,483, age = 36.41 ± 16.37 years, age range = 17–
90 years, 1,150 males) into a training sample (N = 2,198, age
= 36.39 ± 16.33 years, age range = 17–90 years, 1,012 males)
and a hold-out validation sample (N = 285; age = 36.52 ±

16.74 years, age range = 18–90 years, 138 males). An additional
660 subjects without age labels formed an independent external
dataset for the final benchmarking. The results of this external
dataset determined the final challenge scores from two distinct
perspectives mentioned above.

To investigative the interrelationships between different
input feature sets and prediction performance of the brain
age estimator, we used the recently proposed enhanced
Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra voxel-based morphometry (DARTEL-VBM)
analytical pipeline to extract multiple input feature sets including
gray matter volume (GMV, modulated gray matter segments),
gray matter density (GMD, unmodulated gray matter segments),
white matter volume (WMV, modulated white matter segments),
and white matter density (WMD, unmodulated white matter
segments) information from original T1-weighted anatomical
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scans of each individual. This modified DARTEL-VBM approach
which integrated enhanced subcortical tissue probability maps
produced more accurate subcortical tissue segmentation results
when compared with the original VBM approach (26). The
detailed enhanced DARTEL-VBM analytical pipeline has been
documented in our previous clinical study (27). The entire
image processing pipeline was performed using Statistical
Parametric Mapping software (SPM12, version 7487, Wellcome
Institute of Neurology, University College London, UK) using
MATLAB (R2016a, Mathworks, Natick, MA). Finally, the
individual Montreal Neurological Institute (MNI) space GMV,
GMD, WMV, and WMD as well as native space and MNI space
T1-weightd images (only for ensemble DL framework) were
used as candidate input feature sets for subsequent brain age
prediction analysis.

Additional Feature Extraction Strategies
for Conventional Machine Learning
To reduce computation costs and avoiding overfitting, we used
two additional feature extraction strategies for ML-based brain
age prediction models. First, following previous parcel-wise
predictive analytical studies, we used a predefined composite
brain atlas to extract the average GMV and GMD of each region
of interest (ROI) from the preprocessed input features sets. This
composite brain atlas included 400 cortical regions based on
Schaefer’s functional parcellation (28) and 42 subcortical and
cerebellar structures from the Harvard-Oxford subcortical atlas
and spatially unbiased infratentorial template (29). This feature
extraction strategy yielded 442× 2= 884 structural features from
both GMV and GMD as input feature sets for the subsequent
ML-based predictive analyses of brain age.

In addition to the parcel-wise feature extraction strategy,
we applied multivariate spatial independent component analysis
(sICA) and spatial regression analysis as a secondary feature
extraction strategy to obtain corresponding input feature sets
across study participants. The details of the sICA-based feature
extraction procedure have been described in our previous work
(30, 31). Briefly, the preprocessedMNI space GMV, GMD,WMV,
and WMD maps of the training dataset were concatenated
as 4D datasets, respectively. For unbiased comparison with
the aforementioned parcel-wise approach, the Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components (MELODIC; FSL v5.0.9; http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/) tool was applied for each original input feature
set to decompose concatenated 4D dataset into 400 spatially
distinct components (voxel-by-component) with corresponding
weighted parameters (component-by-subject) in the training
sample. Subsequently, we applied spatial regression analysis
of the 4D GMV, GMD, WMV, and WMD datasets against
corresponding unthresholded 400 IC maps to calculate the final
integrity scores (beta weights) of each IC (32). This sICA-based
feature extraction strategy yielded 400 × 4 = 1,600 integrity
scores from both GM and WM as input feature sets for the
subsequent ML-based predictive analyses of brain age.

Construction of Brain Age Model From
Conventional Machine Learning and Deep
Learning Frameworks
Conventional Machine Learning Framework
Two widely used conventional ML algorithms, namely ridge
regression and support vector regression (SVR), were first
applied to investigate the interrelationships between different

FIGURE 1 | An illustration of the proposed 26-layer residual architecture for the competition. The proposed DL-based prediction model is composed of 12 residual

blocks followed by a global average pooling and a fully connected linear layer to map the latent space information to individual predictive brain age. Each residual

block includes two 3D convolutional layers and a residual shortcut. The stride 2 blocks reduce the output resolution of width, height, and depth to half of its inputs. An

additional 1 × 1 convolution is also deployed in the shortcut to match the behavior of stride 2 blocks. BatchNorm, batch normalization; Conv, convolutional;

Globalavgpool, global average pooling.
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input feature sets and predictive performance of the constructed
brain age estimators (33). Ridge regression is an L2-norm
regularization linear regression approach which penalizes the
magnitude of coefficients of input features and prevents
overfitting during model fitting (34). In contrast, SVR is a
kernel-based regression algorithm which transforms input data
from the original space into a high-dimensional space with a
specific kernel function (35, 36). In this study, we used the radial
basis function (RBF) kernel which is effective for modeling the
nonlinear relationship between input features across training
samples. Ridge regression and SVR were performed using the
scikit-learn library (37). In the training sample, we applied
a nested 10-fold cross-validation scheme to determine the
optimal regularization parameter (λ for ridge regression) and
hyperparameters (C and gamma parameter for SVR) of each ML
algorithm in the inner loop and then evaluated the predictive
performance of the constructed brain age estimators in the
outer loop (38, 39). Specifically, in the inner 10-fold cross-
validation loop, we selected the λ parameter from among five
values (0.001, 0.01, 1, 10, and 100) for ridge regression and
selected the C parameter and gamma parameter individually
from among seven values (0.001, 0.01, 0.1, 1, 10, 100, and 1,000)
for SVR to obtain the optimal parameter for each ML algorithm.
For each inner 10-fold cross-validation loop, the parameters
of each ML algorithm were optimized using GridSearchCV
function with the “neg_mean_absolute_error” scoring parameter
in the scikit-learning package (40). In the outer 10-fold cross-
validation loop, we constructed the brain age estimators with
the optimal parameters to estimate individual brain age. In the
proposed ML-based framework, we systematically evaluated the
predictive performance of the constructed brain age estimators
with different combinations ranging from two feature extraction
methods (parcel-wise and sICA), four input feature sets (GMV,
WMV, GMD, and WMD), and two ML algorithms (ridge
regression and SVR). After selecting the optimal parameters for
each potential combination for the training sample, the entire
training sample was used to construct the final ML-based brain
age estimators which were then applied to the hold-out validation
sample to evaluate the generalizability of the constructed ML-
based brain age predictive models. Notably, these regression-
based approaches were subject to the phenomenon of “regression
toward the mean” (41). To account for this phenomenon and
meet the criteria of Objective 2, we performed an additional
chronological age-brain age bias correction in the conventional
ML framework to adjust the predicted brain age of each
individual (9). These individual residualized brain ages were used
as inputs for Objective 2.

Ensemble Deep Learning Framework
We proposed the ensemble DL framework using 26 layers
of the 3D residual neural network (ResNet) composed of 3D
convolution blocks by stacking a 3 × 3 × 3 convolution
operation, ReLU activation function (42), batch normalization
layer (43), and dropout technique (44) to construct the brain
age predictive models (Figure 1). Previous studies have indicated
data augmentation approach might expand the diversity of
data properties and further improve the prediction performance

(45–47). Therefore, to achieve superior prediction performance
of the constructed ensemble DL model, we also generated
novel synthetic assisted T2-weighted fluid-attenuated inversion
recovery (FLAIR) images as an additional input feature set
for the proposed DL models. The assisted T2-weighted FLAIR
images were synthesized using an in-house U-Net generator
that was trained from the BraTS dataset (https://www.med.
upenn.edu/cbica/brats2019/data.html). The detailed methods
of the synthesized T2-weighted FLAIR images are presented
in Supplementary Methods. During this competition, the
pretrained generator was applied to synthetic assisted T2-
weighted FLAIR images from given raw T1-weighted images
of each individual. Furthermore, we applied two regularization
techniques as the loss function in the brain age model for two
objectives in the competition. For the first regularizationmethod,
we used covariance matrix minimization between the error of
predicted brain age Y′ to ground truth Y from chronological age:

Lcov =
1

N

N∑

i=1

(((Yi
′
− Y i)⊗ YT

i )
2) (1)

where Lcov is the covariance loss function; Y ′ ∈ RN is the N
dimensional column vector containing an individual predicted
brain age where N is the number of samples in the mini-batch;
Y ∈ RN is similar to Y ′ but contains individual chronological
age; ⊗ is the outer product; and T is the transpose operation on
the vector.

The second regularization method for the loss function
minimized the ranking relationship in each mini-batch, the
minimum correlation bias of predicted brain age Y′, and
chronological age Y:

Lrank =
1

N

N∑

i=1

(((Yi
′
⊗ Y ′T

i )− (Yi ⊗ YT
i ))

2
) (2)

where Lrank is the ranking relationship loss function; N , Y ′ , Y ,
and T follow the same definitions as those in Eq. (1).

Based on the systematic evaluation of the ML approaches, we
separately deployed two ensemble DL models for two objectives.
In the data preprocessing, individual raw T1-weighted images
and correspondingMNI space T1-weighted images were rescaled
to the intensity range with [0, 1] by dividing the maximum
value within the whole training data. All multi-modality brain
images were further reshaped into the image dimensions of 121
× 145 × 121 with voxel size of 1.5mm and stacked into a 4D
input structure by using full-image processing. Furthermore, the
DL-based brain age prediction models were constructed using
a stochastic gradient descent (SGD) (48) optimizer with the
following parameters: learning rate of 0.1, weight decay of 0.0005,
and momentum of 0.9. The learning rate decays by a factor of
10 at 50 and 75% of the training progress. All models served for
Objective 1 and 2 were trained in a total epoch of 300 and batch
size of 8.

For the ensemble DL model of Objective 1, we assembled
five different models including: (1) three channel inputs (raw
T1-weighted images, GMV, and WMV), (2) three channel
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inputs (raw T1-weighted images, GMV, and WMV) with
second regularization method, (3) three channel inputs (raw
T1-weighted images, GMV, and WMV) with additional sex
information, (4) three channel inputs (MNI space T1-weighted
images, GMD, WMD), and (5) four channel inputs (MNI space
T1-weighted images, GMD, WMD, and assisted T2-weighted
FLAIR images) on the last layer before the fully connected
regressor. We preserved the model by using the checkpoint with
the smallest MAE during training. The predicted brain age was
assembled by median aggregation from five distinct DL models.

For the ensemble DL model of Objective 2, the dropout rate
was applied in the DL model to obtain the relative unbiased
predictions. Consequently, the single 4D input structure features
(raw T1-weighted images, GMV, and WMV), three different
dropout rates (0.1, 0.15, and 0.2), and two different regularization
methods within 300 epochs were used to construct the DL-
based model. We further ranked the model from lowest
to highest according to the MAE (below 3.8 years) and
Spearman correlation (lower than 0.1) of 1800 checkpoints
(6 configurations × 300 epochs) and selected the top eight
models as the final set of predictive models for the competition.
Finally, the predicted brain age was assembled by median
aggregation from the eight DL models. The whole training
sample was used to construct these two DL-based brain age
estimators and subsequently applied to the hold-out validation
sample to evaluate the generalizability of the DL-based brain age
predictive models.

Assessment of Prediction Performance
For Objective 1, the predictive performance of the constructed
brain age models was evaluated using multiple quantitative
indices including mean absolute error (MAE), root mean square
error (RMSE), and coefficient of determination (R2) between
predicted brain age and chorological brain age of the hold-out
validation sample. The Kullback–Leibler divergence (KLD) was

calculated as a measure to quantify the difference between the
probability distributions of chronological age and predicted brain
age of the hold-out validation sample.

For Objective 2, the bias prediction was evaluated using
the Spearman rank correlation (Spearman’s rho) between the
predicted brain age difference and the chronological age of the
hold-out validation sample.

RESULTS

Predictive Performance of Brain Age
Estimators Using Conventional Machine
Learning Approaches in the Training
Sample
In the conventional ML frameworks, we first demonstrated that
the predictive performance of sICA-based brain age estimators
was generally superior to that of parcel-based brain age
estimators irrespective of tissue volume and density information
as input feature sets. This result suggested that a data-driven
feature extraction strategy was superior to a knowledge-driven
approach for predicting individual brain age. Within each
conventional ML framework, our results demonstrate that the
predictive performance of the constructed brain age estimator
combining multiple input feature sets outperformed those with
a single input feature set. When considering the single input
feature set for predicting individual brain age, the brain age
estimator which used individual GMD maps as the input feature
set achieved better predictive performance than the feature set of
the estimator using GMVmaps (Table 1). Using the sICA feature
extraction strategy with four distinct feature sets (GMV, WMV,
GMD, and WMD), the final constructed brain age estimator
exhibited the best performance for predicting individual brain
age in the training sample (ridge regression: MAE = 4.50 years,
R2 = 0.88; SVR: MAE = 4.20 years, R2 = 0.94). These empirical

TABLE 1 | Exploring the prediction accuracy of the cross-validation in the training sample using conventional machine learning frameworks.

FE Model Input data MAE (years) RMSE R2

Parcel-wise Ridge GMV 6.74 8.40 0.74

GMD 5.84 7.40 0.79

GMV + GMD 5.38 6.83 0.83

SVR GMV 5.95 7.73 0.78

GMD 5.36 6.98 0.82

GMV + GMD 5.04 6.56 0.84

sICA Ridge GMV 5.30 6.72 0.83

GMD 4.99 6.34 0.85

GMV + GMD 4.75 6.00 0.86

SVR GMV 5.10 6.52 0.84

GMD 4.93 6.35 0.85

GMV + GMD 4.58 5.83 0.87

sICA Ridge GMV + GMD + WMV + WMD 4.50 5.66 0.88

SVR GMV + GMD + WMV + WMD 4.20 5.38 0.89

FE, feature extraction; GMD, gray matter density; GMV, gray matter volume; MAE, mean absolute error; RMSE, root mean squared error; R2, coefficient of determination; sICA, spatial

independent component analysis; SVR, support vector regression; WMD, white matter density; WMV, white matter volume.
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results served as baseline conditions for comparing the results of
ensemble DL approaches.

Predictive Performance of Brain Age
Estimators Using Ensemble Deep Learning
Approaches in the Training Sample
Based on the results of the conventional ML-based brain
age estimators, we used multiple input feature sets to
construct five distinct DL-based brain age estimators with
different combinations. The final individual predicted brain age
ensembled using the outputs of five distinct DL-based brain age
estimators with the median aggregation approach. The predictive
performance of the proposed ensemble DLModel 1 was superior
to that of other sICA-based ML approaches (DL: MAE = 2.81
years, R2 = 0.94; Table 2).

Generalizability of Brain Age Estimators to
the Validation Sample
Compared with the results of conventional ML approaches that
used multiple input feature sets with sICA feature extraction
strategy (ridge regression: MAE = 4.51 years, R2 = 0.88; SVR:

TABLE 2 | Exploring the prediction accuracy of the cross-validation in the training

sample using deep learning frameworks.

Model Input data MAE (years) RMSE R2

Ensemble DL

Model 1

1. Raw T1 + GMV + WMV 2.81 4.01 0.94

2. Raw T1 + GMV + WMV +

Second regularization

method

3. Raw T1 + GMV + WMV +

Gender

4. MNI-T1 + GMD + WMD

5. MNI-T1 + GMD + WMD +

assisted T2-FLAIR

DL, deep learning; GMD, gray matter density; GMV, gray matter volume; MAE, mean

absolute error; RMSE, root mean squared error; R2, coefficient of determination, SVR,

support vector regression; WMD, white matter density; WMV, white matter volume.

MAE= 4.42 years, R2 = 0.88), the results in the validation sample
suggested that each single DL-based brain age estimator provided
more accurate predictions when compared with the conventional
ML approaches (Model 1–1, MAE= 3.42 years; Model 1–2, MAE
= 3.54 years; Model 1–3, MAE = 3.86 years; Model 1–4, MAE
= 3.38 years; Model 1–5, MAE = 3.38 years), and ensemble DL
Model 1 exhibited satisfactory generalizability to the validation
sample (MAE = 3.77 years and R2 = 0.90) (Figure 2). In
addition, using KLD as a measure for quantifying the distance
between the density distribution of individual predicted brain
age and chronological age, ensemble DL Model 1 produced
more precise one-to-one correspondence when compared with
conventional ML approaches (ensemble DL Model 1: KLD =

0.0125; ridge regression: KLD = 0.037; SVR: KLD = 0.034),
especially in the validation sample with limited middle-to-late
adulthood data (Figure 3).

Brain Age Bias of Different Brain Age
Estimators
The prediction accuracy of with/without bias-adjustment in the
validation sample is presented in Table 3. The predicted brain
age with Cole’s bias correction method weakened the association
between predicted brain age differences and chronological age
in conventional ML and DL approaches (ridge regression:
−0.0247; SVR:−0.049, ensemble DLModel 1:−0.057). However,
ensemble DL Model 2 which used the covariance loss function
and ranking relationship loss function as regularization methods
provided accurate predictive performance for minimizing
the correlation and achieving the smallest MAE (ensemble
DL Model 2:−0.01).

Application of Brain Age Estimators to an
External Testing Dataset
After systematic evaluations, we first trained two distinct
ensemble DL models which targeted two different objectives
of the 2019 PAC using the whole training dataset and
further applied the constructed brain age estimators to an
external testing dataset. For Objective 1 which aimed for the

FIGURE 2 | Prediction accuracy in validation sample for conventional machine learning and deep learning frameworks. Scatterplots depict the detailed data

distribution of predicted brain age and chronological age for the validation sample. DL, deep learning; MAE, mean absolute error; R2, coefficient of determination;

SVR, support vector regression.
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FIGURE 3 | The distribution of predicted age and chronological age. The raw data distribution of chronological age and three predicted ages is presented at the top.

Each bin shows the number of subjects. The overlapping distribution between chronological age and three predicted ages is presented at the bottom. DL, deep

learning; KLD, Kullback–Leibler divergence; SVR, support vector regression.

TABLE 3 | Bias correction in validation sample.

Without bias-adjustment With bias-adjustment

MAE Spearman’s rank

correlation

MAE Spearman’s rank

correlation

Ridge 4.51 −0.255 4.77 −0.027

SVR 4.42 −0.327 4.68 −0.049

Ensemble DL

Model 1

3.77 −0.378 3.94 −0.057

MAE Spearman’s rank correlation

Ensemble DL

Model 2

3.80 −0.01

DL, deep learning; MAE, mean absolute error; SVR, support vector regression.

smallest MAE between individual predicted brain age and
chronological age, the predictive performance of ensemble DL
Model 1 was a MAE of 3.33 years with Spearman’s rank
correlation of −0.39. For Objective 2 which aimed for the
smallest MAE while concurrently maintaining the Spearman
correlation below 0.1, the predictive performance of ensemble
DL Model 2 was a MAE of 3.94 years and Spearman’s rank
correlation of −0.013. In conclusion, we ranked the fourth
place from a total of 79 teams in both objectives in the
2019 PAC.

DISCUSSION

In this study, we first provided empirical evidence of the possible
relationship between different input feature sets and predictive
performance of brain age estimation under the conventional
ML-based framework. More specifically, we demonstrated that
an sICA feature extraction strategy that integrated multiple
features exhibited superior performance at predicting individual
brain age than the parcel-wise approach. On the other hand,
compared with conventional ML approaches, ensemble DL
frameworks which integrated with multiple input feature sets
and objective-specific regularization functions demonstrated
superior predictive performance while concurrently minimizing
the MAE and the correlation with chronological age in the same
analytical framework.

In general, the basic analytical steps of constructing brain
age estimation model included image preprocessing, feature
extraction, and algorithm selection. Each step may have
substantial influences on the predictive performance of the
constructed brain age estimator. For T1-weighted images,
multiple structural features, including tissue volume, tissue
density, deformation field, cortical thickness, and surface area
could be derived using different image preprocessing pipelines.
Although GMV and cortical thickness of the human brain
are the two most common input features for constructing
brain age prediction models (10, 11, 49), previous studies also
indicated that the changes in GMD play a specific role in
both the developmental and aging period (5, 50). This also
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implies that GMD could serve as a potential candidate feature
for predicting individual brain age. Our systematic evaluation
also demonstrated that the prediction performance of the brain
age prediction model using GMD was better than that using
GMV. On the other hand, different image modalities of the brain
MRI could capture the specific tissue properties of the human
brain further related to the aging-associated patterns (51–53).
In line with previous multimodal brain age studies, our results
also support the notion that the predictive performance of the
constructed brain age estimator which combined multiple input
feature sets could outperform those with a single input feature set
(53, 54).

Additionally, to reduce computation cost and overfitting
problem in the conventional ML-based predictive framework,
the feature extraction procedure was considered as an important
element in predictive individual brain age. The advantage
of the extracted features exerted a large impact on the
performance of the prediction model (55). Compared with
the use of a predefined atlas for feature extraction, the
use of data-driven methods such as ICA enabled us to
identify the large-scale network-wise structural covariance
pattern of the structural MRI across study participants.
The structural covariance is one way to measure large-scale
brain morphometrical coordination profiles by estimating the
similarity of tissue morphometrical features between different
brain regions across participants (56). This approach is based
on the notion that brain regions which interconnect with
each other tend to be synchronized in maturation in a
similar way, possibly due to shared neurotrophic and genetic
factors (57). Using this analytical approach, previous studies
also demonstrated that these identified large-scale structural
covariance patterns of the human brain are highly associated
with different neuropsychiatric disorders, neurodegenerative
diseases, and the healthy aging process (32, 58–60). In
line with previous brain age study which mainly focused
on middle-to-late adulthood (31), the current study also
demonstrated that the sICA-based feature extraction strategy
could identify meaningful large-scale structural covariance
patterns for estimating individual brain age with higher
prediction accuracy.

Although the selection of the ML algorithm may affect
the predictive performance of brain age estimation (51),
the improvement of prediction performance was limited
in this study. Potentially, the effective strategy of feature
extraction method and input multimodality feature could lead
to superior prediction performance, even using a relatively
simpler ML algorithm. To sum up, the optimal brain age
prediction, through the understanding of data characteristics
and selection of machine learning strategy, could improve
prediction ability. However, limitations of ML must be
considered. For nonuniformly distributed data with insufficient
data on middle-to-late adulthood, brain age estimation using
the conventional ML-based approaches failed to achieve
more accurate brain age prediction. Overcoming data bias
stemming from insufficient data is an important issue for
brain age estimation that should be addressed in the future.
Increasing size of datasets, modifying training strategies, or

using domain adaptation are possible strategies to resolve
this problem.

The conventional ML algorithms may experience difficulties
in engineering features to extract meaningful representations
as model inputs. This process often heavily leverages prior
knowledge from domain experts. However, even carefully
designed feature engineering, dimensional reduction, and the
loss of information may be hard to balance and are nontrivial
issues to consider when seeking the optimal solution. In contrast,
DL leverages the gradient descent algorithm to automatically
search for a series of nonlinear transformations for feature
extraction (61), which is more efficient and has the ability to
obtain the optimal representation from the least preprocessed
raw input data for a specific task. Additionally, in combination
with ensemble learning, DL-based brain age estimation achieved
superior predictive performance (62, 63). Our results also
demonstrate that with a well-trained brain age model, DL
could improve predictive accuracy and decrease prediction
bias. Furthermore, DL was efficient at handling large-scale
datasets because of the first-order gradient descent optimization
algorithm. Although we demonstrated that the ensemble DL
framework exhibited superior predictive performance when
compared with the ML-based framework, the design of
the DL framework has scope for further refinements. The
model design space is extensive, and DL experts typically
design based on their own experience. A recent AutoML
pipeline (64) may reduce the required effort and automatically
determine the optimal model. The framework of DL in brain
age prediction or other neuroimaging analyses requires the
concerted effort and collaborations of neuroscientists and
data scientists.

CONCLUSION

In summary, ensemble DL-based brain age prediction models
which combinedmultiple input feature sets and objective-specific
regularization functions provide more accurate predictive
performance, decrease the bias of chronological age, and
maintain correspondence even with insufficient data. Our
study provides valuable insight into ML approaches and DL
frameworks in brain age prediction. Our findings may facilitate
the development of training strategies for brain age prediction
models in the future.

DATA AVAILABILITY STATEMENT

Requests to access the datasets should be directed to
Tim Hahn (hahnt@wwu.de) and Ramona Leenings
(leenings@uni-muenster.de).

AUTHOR CONTRIBUTIONS

C-YK, T-MT, P-LL, C-WT, C-YC, L-KC, C-KL, K-HC, SS, and C-
PL contributed to the conception, design, and interpretation of
data. C-YK, P-LL, and K-HC performed the image preprocessing
and conventional machine learning approaches. T-MT, C-WT,

Frontiers in Psychiatry | www.frontiersin.org 8 March 2021 | Volume 12 | Article 626677

mailto:hahnt@wwu.de
mailto:leenings@uni-muenster.de
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kuo et al. Brain-Age Prediction Using Deep Learning

C-YC, and C-KL performed the deep learning approaches. C-
YK and P-LL contributed to the creation of the figures. C-
YK, T-MT, P-LL, C-KL, and K-HC participated in drafting the
manuscript. All authors have read and approve of the final
version of the manuscript.

FUNDING

This work was supported by the Aging and Health Research
Center at National Yang Ming University, Taiwan (MOST
110-2634-F-010-001); Center for Geriatrics and Gerontology
of Taipei Veterans General Hospital of Taiwan (MOST 108-
2321-B-010-013-MY2); Ministry of Science and Technology,
Taiwan (MOST 107-2221-E-010-010-MY3; MOST 108-2420-H-
010-001; MOST 108-2321-B-010-010-MY2; MOST 110-2321-B-
010-004); The Brain Center at National Yang-Ming University,
Taiwan (109BRC-B501); Veterans General Hospitals University
System of Taiwan (VGHUST109-V1-3-3); The Brain Research
Center, National Yang-Ming University from The Featured Areas

Research Center Program within the framework of the Higher
Education Sprout Project by the Ministry of Education (MOE),
Taipei, Taiwan.

ACKNOWLEDGMENTS

We thank all the partners who participated in this study. The
author would like to thank NVIDIA AI Technology Center
(NVAITC) for discussing and training deep learning approaches.
We acknowledge support from the Open Access Publication
Fund of Aging and Health Research Center, National Yang-Ming
University, Taipei, Taiwan.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyt.
2021.626677/full#supplementary-material

REFERENCES

1. Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased

segregation of brain systems across the healthy adult lifespan. Proc

Natl Acad Sci U S A. (2014) 111:E4997–5006. doi: 10.1073/pnas.14151

22111

2. Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-

Lindenberg A, Weinberger DR, et al. Normal age-related brain

morphometric changes: nonuniformity across cortical thickness,

surface area and gray matter volume? Neurobiol Aging. (2012)

33:617.e1–9. doi: 10.1016/j.neurobiolaging.2010.07.013

3. Sala-Llonch R, Bartres-Faz D, Junque C. Reorganization of brain networks

in aging: a review of functional connectivity studies. Front Psychol. (2015)

6:663. doi: 10.3389/fpsyg.2015.00663

4. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward

discovery science of human brain function. Proc Natl Acad Sci U S A. (2010)

107:4734–9. doi: 10.1073/pnas.0911855107

5. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga

AW. Mapping cortical change across the human life span. Nat Neurosci.

(2003) 6:309–15. doi: 10.1038/nn1008

6. Westlye LT, Walhovd KB, Dale AM, Bjornerud A, Due-Tonnessen P,

Engvig A, et al. Life-span changes of the human brain white matter:

diffusion tensor imaging (DTI) and volumetry. Cereb Cortex. (2010) 20:2055–

68. doi: 10.1093/cercor/bhp280

7. Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M, et al. Longitudinal

pattern of regional brain volume change differentiates normal aging fromMCI

Neurol. (2009) 72:1906–13. doi: 10.1212/WNL.0b013e3181a82634

8. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I,

et al. Alzheimer disease neuroimaging: critical ages in the life course of the

adult brain: nonlinear subcortical aging. Neurobiol Aging. (2013) 34:2239–

47. doi: 10.1016/j.neurobiolaging.2013.04.006

9. Cole JH, Ritchie SJ, Bastin ME, Valdes Hernandez MC, Munoz Maniega S,

Royle N, et al. Brain age predicts mortality. Mol Psychiatry. (2018) 23:1385–

92. doi: 10.1038/mp.2017.62

10. Franke K, Ziegler G, Kloppel S, Gaser C, Alzheimer’s disease neuroimaging

Initiative. Estimating the age of healthy subjects from T1-weighted

MRI scans using kernel methods: exploring the influence of various

parameters. Neuroimage. (2010) 50:883–92. doi: 10.1016/j.neuroimage.2010.

01.005

11. Cole JH, Leech R, Sharp DJ, Alzheimer’s Disease Neuroimaging Initiative.

Prediction of brain age suggests accelerated atrophy after traumatic brain

injury. Ann Neurol. (2015) 77:571–81. doi: 10.1002/ana.24367

12. Steffener J, Habeck C, O’Shea D, Razlighi Q, Bherer L, Stern Y.

Differences between chronological and brain age are related to education

and self-reported physical activity. Neurobiol Aging. (2016) 40:138–

44. doi: 10.1016/j.neurobiolaging.2016.01.014

13. Gaser C, Franke K, Kloppel S, Koutsouleris N, Sauer H, Alzheimer’s

Disease Neuroimaging Initiative. BrainAGE in mild cognitive impaired

patients: predicting the conversion to Alzheimer’s disease. PLoS One. (2013)

8:e67346. doi: 10.1371/journal.pone.0067346

14. Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Bottlender R,

Frodl T, et al. Accelerated brain aging in schizophrenia and beyond: a

neuroanatomical marker of psychiatric disorders. Schizophr Bull. (2014)

40:1140–53. doi: 10.1093/schbul/sbt142

15. Schnack HG, van Haren NE, Nieuwenhuis M, Hulshoff Pol HE,

Cahn W, Kahn RS. Accelerated brain aging in schizophrenia: a

longitudinal pattern Recognition Study. Am J Psychiatry. (2016)

173:607–16. doi: 10.1176/appi.ajp.2015.15070922

16. Kolenic M, Franke K, Hlinka J, Matejka M, Capkova J, Pausova Z, et al.

Obesity, dyslipidemia and brain age in first-episode psychosis. J Psychiatr Res.

(2018) 99:151–8. doi: 10.1016/j.jpsychires.2018.02.012

17. Franke K, Hagemann G, Schleussner E, Gaser C. Changes of individual

BrainAGE during the course of the menstrual cycle. Neuroimage. (2015)

115:1–6. doi: 10.1016/j.neuroimage.2015.04.036

18. Le TT, Kuplicki R, Yeh HW, Aupperle RL, Khalsa SS, Simmons WK, et al.

Effect of ibuprofen on BrainAGE: a randomized, placebo-controlled, dose-

response exploratory study. Biol Psychiatry Cogn Neurosci Neuroimaging.

(2018) 3:836–43. doi: 10.1016/j.bpsc.2018.05.002

19. Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector

TD. Predicting brain age with deep learning from raw imaging data

results in a reliable and heritable biomarker. Neuroimage. (2017) 163:115–

24. doi: 10.1016/j.neuroimage.2017.07.059

20. Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate

the neuroimaging correlates of psychiatric and neurological disorders:

methods and applications. Neurosci Biobehav Rev. (2017) 74(Pt A):58–

75. doi: 10.1016/j.neubiorev.2017.01.002

21. Jiang H, Lu N, Chen K, Yao L, Li K, Zhang J, Guo X. Predicting brain age of

healthy adults based on structural MRI parcellation using convolutional

Frontiers in Psychiatry | www.frontiersin.org 9 March 2021 | Volume 12 | Article 626677

https://www.frontiersin.org/articles/10.3389/fpsyt.2021.626677/full#supplementary-material
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1016/j.neurobiolaging.2010.07.013
https://doi.org/10.3389/fpsyg.2015.00663
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1038/nn1008
https://doi.org/10.1093/cercor/bhp280
https://doi.org/10.1212/WNL.0b013e3181a82634
https://doi.org/10.1016/j.neurobiolaging.2013.04.006
https://doi.org/10.1038/mp.2017.62
https://doi.org/10.1016/j.neuroimage.2010.01.005
https://doi.org/10.1002/ana.24367
https://doi.org/10.1016/j.neurobiolaging.2016.01.014
https://doi.org/10.1371/journal.pone.0067346
https://doi.org/10.1093/schbul/sbt142
https://doi.org/10.1176/appi.ajp.2015.15070922
https://doi.org/10.1016/j.jpsychires.2018.02.012
https://doi.org/10.1016/j.neuroimage.2015.04.036
https://doi.org/10.1016/j.bpsc.2018.05.002
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kuo et al. Brain-Age Prediction Using Deep Learning

neural networks. Front Neurol. (2019) 10:1346. doi: 10.3389/fneur.

2019.01346

22. Feng X, Lipton ZC, Yang J, Small SA, Provenzano FA, Alzheimer’s

Disease Neuroimaging Initiative, et al. Estimating brain age

based on a uniform healthy population with deep learning and

structural magnetic resonance imaging. Neurobiol Aging. (2020)

91:15–25. doi: 10.1016/j.neurobiolaging.2020.02.009

23. Yeatman JD, Wandell BA, Mezer AA. Lifespan maturation and

degeneration of human brain white matter. Nat Commun. (2014)

5:4932. doi: 10.1038/ncomms5932

24. Pan I, Thodberg HH, Halabi SS, Kalpathy-Cramer J, Larson

BD. Improving automated pediatric bone age estimation using

ensembles of models from the 2017 RSNA machine learning

challenge. Radiol Artif Intell. (2019) 1:e190053. doi: 10.1148/ryai.20191

90053

25. Engemann DA, Kozynets O, Sabbagh D, Lemaitre G, Varoquaux G,

Liem F, Gramfort A. Combining magnetoencephalography with magnetic

resonance imaging enhances learning of surrogate-biomarkers. Elife. (2020)

9:e54055. doi: 10.7554/eLife.54055

26. Lorio S, Fresard S, Adaszewski S, Kherif F, Chowdhury R, Frackowiak

RS, et al. New tissue priors for improved automated classification

of subcortical brain structures on MRI. Neuroimage. (2016) 130:157–

66. doi: 10.1016/j.neuroimage.2016.01.062

27. Liu HY, Lee PL, Chou KH, Lai KL, Wang YF, Chen SP, et al. The

cerebellum is associated with 2-year prognosis in patients with high-

frequency migraine. J Headache Pain. (2020) 21:29. doi: 10.1186/s10194-020-

01096-4

28. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes

AJ, et al. Local-global parcellation of the human cerebral cortex from

intrinsic functional connectivity MRI. Cereb Cortex. (2018) 28:3095–

114. doi: 10.1093/cercor/bhx179

29. Diedrichsen J. A spatially unbiased atlas template of the human

cerebellum. Neuroimage. (2006) 33:127–38. doi: 10.1016/j.neuroimage.2006.

05.056

30. Lee PL, Chou KH, Lu CH, Chen HL, Tsai NW, Hsu AL, et al.

Extraction of large-scale structural covariance networks from grey matter

volume for Parkinson’s disease classification. Eur Radiol. (2018) 28:3296–

305. doi: 10.1007/s00330-018-5342-1

31. Kuo CY, Lee PL, Hung SC, Liu LK, Lee WJ, Chung CP, et al.

Large-scale structural covariance networks predict age in middle-to-late

adulthood: a novel brain aging biomarker. Cereb Cortex. (2020) 30:5844–

62. doi: 10.1093/cercor/bhaa161

32. Hafkemeijer A, Moller C, Dopper EG, Jiskoot LC, van den Berg-

Huysmans AA, van Swieten JC, et al. Differences in structural covariance

brain networks between behavioral variant frontotemporal dementia and

Alzheimer’s disease. Hum Brain Mapp. (2016) 37:978–88. doi: 10.1002/hbm.

23081

33. Niu X, Zhang F, Kounios J, Liang H. Improved prediction of brain age

using multimodal neuroimaging data. Hum Brain Mapp. (2020) 41:1626–

43. doi: 10.1002/hbm.24899

34. Hoerl AE, Kennard RW. Ridge regression: biased estimation

for nonorthogonal problems. Technometrics. (1970) 12:55–

67. doi: 10.1080/00401706.1970.10488634

35. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput.

(2004) 14:199–222. doi: 10.1023/B:STCO.0000035301.49549.88

36. Bennett KP, Campbell C. Support vector machines: hype or

hallelujah? SIGKDD Explor. (2003) 2:1–13. doi: 10.1145/380995.

380999

37. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O.

Scikit-learn: machine learning in python. J Mach Learn Res. (2011) 12:2

825–30.

38. Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of

microarray gene-expression data. Proc Natl Acad Sci U S A. (2002) 99:6562–

6. doi: 10.1073/pnas.102102699

39. Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A,

Schwartz Y, Thirion B. Assessing and tuning brain decoders: cross-

validation, caveats, and guidelines. Neuroimage. (2017) 145(Pt

B):166–79. doi: 10.1016/j.neuroimage.2016.10.038

40. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al.

Machine learning for neuroimaging with scikit-learn. Front Neuroinform.

(2014) 8:14. doi: 10.3389/fninf.2014.00014

41. Galton F. Regression towards mediocrity in hereditary stature. J Anthropol

Inst G B Irel. (1886) 15:246–63. doi: 10.2307/2841583

42. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. (2015) 521:436–

44. doi: 10.1038/nature14539

43. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training

by reducing internal covariate shift. Int Conf Mach Learn. (2015) 37:4

48–56.

44. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:

a simple way to prevent neural networks from overfitting. J Mach Learn Res.

(2014) 15:1929–58.

45. Ravi D, Alexander DC, Oxtoby NP. Degenerative Adversarial Neuroimage

Nets: Generating Images That Mimic Disease Progression. Cham: Springer

International Publishing (2019).

46. Shin H-C, Tenenholtz NA, Rogers JK, Schwarz CG, Senjem ML, Gunter JL,

et al. Medical Image Synthesis for Data Augmentation and Anonymization

Using Generative Adversarial Networks. Cham: Springer International

Publishing (2018).

47. Li Q, Yu Z, Wang Y, Zheng H. TumorGAN: a multi-modal data

augmentation framework for brain tumor segmentation. Sensors (Basel).

(2020) 20:4203. doi: 10.3390/s20154203

48. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization

and momentum in deep learning. Int Conf Mach Learn. (2013).

49. Khundrakpam BS, Tohka J, Evans AC, Brain Development

Cooperative Group. Prediction of brain maturity based on cortical

thickness at different spatial resolutions. Neuroimage. (2015)

111:350–9. doi: 10.1016/j.neuroimage.2015.02.046

50. Gennatas ED, Avants BB, Wolf DH, Satterthwaite TD, Ruparel K,

Ciric R, et al. Age-related effects and sex differences in gray matter

density, volume, mass, and cortical thickness from childhood to young

adulthood. J Neurosci. (2017) 37:5065–73. doi: 10.1523/JNEUROSCI.3550-

16.2017

51. Valizadeh SA, Hanggi J, Merillat S, Jancke L. Age prediction on the

basis of brain anatomical measures. Hum Brain Mapp. (2017) 38:997–

1008. doi: 10.1002/hbm.23434

52. Liem F, Varoquaux G, Kynast J, Beyer F, Kharabian Masouleh

S, Huntenburg JM, et al. Predicting brain-age from multimodal

imaging data captures cognitive impairment. Neuroimage. (2017)

148:179–88. doi: 10.1016/j.neuroimage.2016.11.005

53. Brown TT, Kuperman JM, Chung Y, Erhart M, McCabe C, Hagler DJ,

et al. Neuroanatomical assessment of biological maturity. Curr Biol. (2012)

22:1693–8. doi: 10.1016/j.cub.2012.07.002

54. Cole JH. Multimodality neuroimaging brain-age in UK biobank: relationship

to biomedical, lifestyle, cognitive factors. Neurobiol Aging. (2020) 92:34–

42. doi: 10.1016/j.neurobiolaging.2020.03.014

55. Domingos P. A few useful things to know about machine learning. Commun.

ACM. (2012) 55:78–87. doi: 10.1145/2347736.2347755

56. Mechelli A, Friston KJ, Frackowiak RS, Price JC. Structural

covariance in the human cortex. J Neurosci. (2005) 25:8303–

10. doi: 10.1523/JNEUROSCI.0357-05.2005

57. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-

variance between human brain regions. Nat Rev Neurosci. (2013) 14:322–

36. doi: 10.1038/nrn3465

58. Hafkemeijer A, Altmann-Schneider I, de Craen AJ, Slagboom PE, van der

Grond J, Rombouts SA. Associations between age and gray matter volume in

anatomical brain networks in middle-aged to older adults. Aging Cell. (2014)

13:1068–74. doi: 10.1111/acel.12271

59. Gupta CN, Calhoun VD, Rachakonda S, Chen J, Patel V, Liu J, et al. Patterns

of gray matter abnormalities in schizophrenia based on an international

mega-analysis. Schizophr Bull. (2015) 41:1133–42. doi: 10.1093/schbul/

sbu177

60. Li M, Li X, Das TK, Deng W, Li Y, Zhao L, et al. Prognostic utility

of multivariate morphometry in schizophrenia. Front Psychiatry. (2019)

10:245. doi: 10.3389/fpsyt.2019.00245

61. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT

Press. (2016).

Frontiers in Psychiatry | www.frontiersin.org 10 March 2021 | Volume 12 | Article 626677

https://doi.org/10.3389/fneur.2019.01346
https://doi.org/10.1016/j.neurobiolaging.2020.02.009
https://doi.org/10.1038/ncomms5932
https://doi.org/10.1148/ryai.2019190053
https://doi.org/10.7554/eLife.54055
https://doi.org/10.1016/j.neuroimage.2016.01.062
https://doi.org/10.1186/s10194-020-01096-4
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1016/j.neuroimage.2006.05.056
https://doi.org/10.1007/s00330-018-5342-1
https://doi.org/10.1093/cercor/bhaa161
https://doi.org/10.1002/hbm.23081
https://doi.org/10.1002/hbm.24899
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1145/380995.380999
https://doi.org/10.1073/pnas.102102699
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.2307/2841583
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/s20154203
https://doi.org/10.1016/j.neuroimage.2015.02.046
https://doi.org/10.1523/JNEUROSCI.3550-16.2017
https://doi.org/10.1002/hbm.23434
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1016/j.cub.2012.07.002
https://doi.org/10.1016/j.neurobiolaging.2020.03.014
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1523/JNEUROSCI.0357-05.2005
https://doi.org/10.1038/nrn3465
https://doi.org/10.1111/acel.12271
https://doi.org/10.1093/schbul/sbu177
https://doi.org/10.3389/fpsyt.2019.00245
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kuo et al. Brain-Age Prediction Using Deep Learning

62. Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM. Accurate brain age

prediction with lightweight deep neural networks. Med Image Anal. (2021)

68:101871. doi: 10.1016/j.media.2020.101871

63. Couvy-Duchesne B, Faouzi J, Martin B, Thibeau-Sutre E, Wild A, Ansart

M, et al. Ensemble learning of convolutional neural network, support

vector machine, and best linear unbiased predictor for brain age prediction:

ARAMIS Contribution to the Predictive Analytics Competition 2019

Challenge. Front Psychiatry. (2020) 11:593336. doi: 10.3389/fpsyt.2020.

593336

64. Zoph B, Le Q. Neural architecture search with reinforcement learning. arXiv

[Preprint] arXiv:1611.01578 (2016).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Kuo, Tai, Lee, Tseng, Chen, Chen, Lee, Chou, See and Lin. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Psychiatry | www.frontiersin.org 11 March 2021 | Volume 12 | Article 626677

https://doi.org/10.1016/j.media.2020.101871
https://doi.org/10.3389/fpsyt.2020.593336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles

	Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework
	Introduction
	Methods
	Structural MRI Data and General Image Preprocessing
	Additional Feature Extraction Strategies for Conventional Machine Learning
	Construction of Brain Age Model From Conventional Machine Learning and Deep Learning Frameworks
	Conventional Machine Learning Framework
	Ensemble Deep Learning Framework

	Assessment of Prediction Performance

	Results
	Predictive Performance of Brain Age Estimators Using Conventional Machine Learning Approaches in the Training Sample
	Predictive Performance of Brain Age Estimators Using Ensemble Deep Learning Approaches in the Training Sample
	Generalizability of Brain Age Estimators to the Validation Sample
	Brain Age Bias of Different Brain Age Estimators
	Application of Brain Age Estimators to an External Testing Dataset

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


