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Abstract: Despite advances in assisted reproductive technology, treatment for deficient endometrial
receptivity is a major clinical unmet need. In our previous study, the water extract of Paeonia lactiflora
Pall. enhanced endometrial receptivity in vitro and in vivo via induction of leukemia inhibitory
factor (LIF), an interleukin (IL)-6 family cytokine. In the present study, we found that paeoniflorin,
a monoterpene glycoside, is the major active compound of P. lactiflora. Paeoniflorin significantly
improved the embryo implantation rate in a murine model of mifepristone (RU486)-induced implan-
tation failure. In addition, paeoniflorin increased the adhesion of human trophectoderm-derived
JAr cells to endometrial Ishikawa cells through the expression of LIF in vitro. Moreover, using the
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database of
the human endometrium, we confirmed that LIF signaling is a key regulator for improving human
endometrial receptivity. Therefore, these results suggest that paeoniflorin might be a potent drug
candidate for the treatment of endometrial implantation failure by enhancing endometrial receptivity.

Keywords: paeoniflorin; endometrial receptivity; embryo implantation; leukemia inhibitory factor

1. Introduction

A receptive endometrium is a crucial factor for successful pregnancy [1]. Despite
advances in assisted reproductive technology (ART), the implantation success rates of trans-
ferred embryo have not sufficiently improved [2]. To evaluate and improve endometrial
receptivity, vigorous studies, including on endometrial receptivity array and intentional
endometrial injury, have been conducted [3,4]. However, there are very limited clinical
options for improving endometrial receptivity [5]. Thus, more precise, comprehensive, and
novel approaches for enhancing endometrial receptivity are needed.

Endometrial receptivity is regulated by diverse factors such as hormones, cytokines,
and growth factors [1,3]. Among these factors, leukemia inhibitory factor (LIF), a cytokine
belonging to the interleukin (IL)-6 family, has been regarded as a key player regulating
uterine receptivity [6,7]. LIF exhibits a multifaceted action by activating many pathways,
including epithelial–mesenchymal transition, angiogenesis, stromal cell decidualization,
cell growth, and integrin signaling [6]. Previous studies have demonstrated that LIF
enhances endometrial receptivity by activating Arg–Gly–Asp (RGD)-binding integrins
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such as integrin αV, β3, and β5 [8–10]. Thus, in this study, we aimed to identify novel
agents that improve endometrial receptivity by inducing LIF expression [11–14].

In our previous study, the root of Paeonia lactiflora Pall. enhanced endometrial via
induction of LIF [12]. P. lactiflora is widely used for the treatment of gynaecological
problems, pain, cramp, and giddiness in traditional Chinese medicine [15]. It has also been
studied for its effects on diverse diseases including tumors, hepatitis, diabetes, arthritis,
and colitis [16,17]. According to previous reports, paeoniflorin, a major ingredient of
P. lactiflora, has anti-inflammatory effects on various inflammatory disorders including
inflammatory bowel disease, rheumatoid arthritis, asthma, and psoriasis [18]. In addition,
paeoniflorin has been reported to suppress epithelial–mesenchymal transition in mouse
pulmonary fibrosis [19] and attenuate insulin resistance and hepatic steatosis [20]. Although
the effect of P. lactiflora on endometrial receptivity was previously demonstrated by the
authors [12,21], no study has reported the effect of paeoniflorin on embryo implantation.

In this study, we demonstrated that paeoniflorin increased embryo implantation in
both in vitro and in vivo models. In addition, we found that the expression of LIF played
an important role in paeoniflorin-stimulated adhesion of trophoblasts to the endometrium.
Therefore, our findings present evidence showing that paeoniflorin could be a potent agent
for improving endometrial receptivity.

2. Materials and Methods
2.1. Materials

Paeoniflorin (≥98% purity using high-performance liquid chromatography (HPLC)),
gallic acid (≥99% purity, HPLC), (±)-catechin (≥96% purity, HPLC), (+)-catechin hydrate
(≥98% purity, HPLC), methyl gallate (≥90% purity, HPLC), paeonol (≥98% purity, HPLC),
mifepristone (RU486; RU, progesterone receptor antagonist), 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT), and anti-β-actin antibody were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Antibodies against LIF were supplied by Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA).

2.2. Traditional Chinese Medicine Systems Pharmacology (TCMSP) Analysis

The Traditional Chinese Medicine Systems Pharmacology TCMSP (https://tcmspw.
com/ (accessed on 15 March 2021)) database is useful for evaluating the absorption, distri-
bution, metabolism, and excretion (ADME) processes of compounds. To screen P. lactiflora
for potential candidate components, we selected compounds with an oral bioavailability
(OB) ≥30% and drug likeness (DL) ≥0.18.

2.3. Animals

Male and female C57BL/6 mice (7–8 weeks old, weighing 20–22 g) inbred in a specific
pathogen-free facility were purchased from Orient Bio, Co. (Seongnam, Korea). They were
housed separately and had free access to water and a standard diet on a 12 h light/dark
cycle. All experimental procedures were reviewed and approved by the Animal Research
Ethics Committee of Pusan University of Korea (no. PNU-2017-1606).

2.4. Animal Models and Treatment

The experiment using the embryo implantation failure model was performed as previ-
ously described [12]. Briefly, 40 female mice were randomly divided into four groups: con-
trol, RU, paeoniflorin + RU, and paeoniflorin groups. Female mice in the paeoniflorin + RU
and paeoniflorin groups were orally administered paeoniflorin (8 mg·kg−1·day−1) using
oral gavage needles. Seven days after paeoniflorin treatment, all the female mice were
caged with males (ratio, 1:1) at 6:00 p.m., and day 1 of pregnancy was defined by the pres-
ence of vaginal plugs the following morning. Female mice in the RU and paeoniflorin + RU
groups were injected subcutaneously with 0.08 mg/0.1 mL RU solution on day 4–7 of
pregnancy at 9:00 a.m.. Seven days after RU treatment, all mice were euthanized, and both
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uterine horns were excised to determine the number of implantation sites. The embryos
implanted on each uterine site were counted.

2.5. Cell Culture

Human endometrial Ishikawa cells provided by Dr. Jacques Simard (CHUL Research
Center, Quebec City, QC, Canada) and trophoblastic JAr cells purchased from the Korean
Cell Line Bank (Seoul, Korea) were incubated with 10% heat-inactivated fetal bovine
serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA) in Dulbecco’s modified Eagle’s
medium (DMEM; Welgene, Daegu, Korea) and Roswell Park Memorial Institute (RPMI)
1640 (Welgene), respectively. The cultures were maintained at 37 ◦C in a humidified
incubator containing 5% carbon dioxide (CO2).

2.6. Cell Viability Assay

The MTT assay was performed to measure the in vitro cytotoxicity of paeoniflorin on
Ishikawa cells [22]. The cells were cultured in 24-well plates, treated with the indicated
concentrations of paeoniflorin for 24 h, and washed three times with phosphate-buffered
saline (PBS); then, MTT solution (0.5 mg/mL) was added to each well. After a 4 h incuba-
tion, the cells were dissolved in a solution of dimethyl sulfoxide (DMSO)/ethanol (EtOH,
1:1) and the absorbance was measured at 540 nm using a microplate reader (SpectraMax
M2; Molecular Devices, San Jose, CA, USA). The proportion of live cells was determined
and expressed as a percentage.

2.7. Western Blot Analysis

Western blot assays were performed as described previously [23]. Ishikawa cells
were collected by scraping in 1% NP-40 lysis buffer and incubated for 1 h at 4 ◦C. The
cell lysates were clarified by centrifuge at 15,000 rpm for 30 min, followed by protein
quantification with Bradford assay (Bio-Rad, # 5000006). The extracted proteins (20 µg) were
separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred onto nitrocellulose membranes (Amersham Protran, 10600003). After
preincubation with blocking solution (5% skim-milk/Tris-buffered saline plus Tween (TBS-
T)) for 1 h, the membranes were incubated with specific primary antibodies, which were
diluted to 1:1000 in TBS-T, at 4 ◦C overnight. Then, the membranes were incubated with
horseradish peroxidase-conjugated secondary antibodies (1:1000 in TBS-T), and the signals
were visualized using an enhanced chemiluminescence (ECL) system (GE Healthcare,
Chicago, IL, USA).

2.8. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA from each sample was isolated using RiboExTM (GeneAll, Seoul, Korea)
and then reverse-transcribed using oligo-dT primers with M-MLV reverse transcriptase
(Enzynomics, Daejeon, Korea). The complementary DNA (cDNA) was amplified by
PCR using AccuPower® PCR PreMix (Bioneer Co., Daejeon, Korea). The primers used
were as follows: LIF forward, 5′–GGCCCGGACACCCATAGACG–3′ and LIF reverse, 5′–
CCACGCGCCATCCAGGTAAA–3′; β-actin forward, 5′–CAAGAGATGGCCACGGCTGCT–
3′ and β-actin reverse, 5′–TCCTTCTGCATCCTGTCGGCA–3′.

2.9. Cell Adhesion Assay

Cell adhesion assays were performed as described previously with minor modifica-
tion [24]. Ishikawa, pLKO.1, and siLIF-transfected cells were cultured in six-well plates
for 24 h and then treated with paeoniflorin for 48 h. The JAr cells were labeled with
5-chloromethylfluoresceindiacetate (CMFDA) fluorescence dye (CellTracker Green; Life
Technologies) for 15 min at 37 ◦C. The labeled JAr cells were then washed three times with
PBS and gently added to Ishikawa cell monolayers. After gentle shaking at 40 rpm for 30
min at 37 ◦C, the cells were washed three times to remove non-adherent JAr cells. The
number of attached JAr cells was visualized using a fluorescent microscope (Axio Imager
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M1, Zeiss, Oberkochen, Germany) and calculated using the ImageJ software (National
Institutes of Health (NIH), Bethesda, MD, USA).

2.10. Knockdown of LIF Expression

To temporally reduce the expression of LIF, we purchased two different small in-
terfering RNAs (siRNAs, Bioneer Co.) and tested the efficiency of knockdown of hu-
man LIF expression. The siRNA sequences used in this study were as follows: siLIF#1
sense, 5′–CAGAUGUUCCUGCCUUAGA–3′ and siLIF#1 antisense, 5′–UCUAAGGCA
GGAACAUCUG–3′; siLIF#2 sense, 5′–CCUCCGACAAGAUGAUGGU–3′ and siLIF#2 an-
tisense, 5′–ACCAUCAUCUUGUCGGAGG–3′. Two siRNAs (0.8 nM) were transfected into
Ishikawa cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). After 6 h, the
medium was changed to complete growth medium. A non-targeting siRNA (SN-1001-CFG;
Bioneer Co.), with low homology to human genomic DNA was used as a negative control.
The efficiency of the siRNAs was evaluated using RT-PCR.

2.11. Bioinformatic Analysis

Publicly available microarray data were used for transcript expression analysis [25–27].
Transcriptomic data for the human endometrium obtained from patients with recurrent
implantation failure (RIF) and fertile women (accession number GSE71835, GSE92324, and
GSE26787) and data for normal tissue from various phases of the menstrual cycle (accession
number GSE4888) were analyzed using the Hallmark and gene set enrichment analysis
(GSEA) [28].

2.12. Protein–Protein Physical Interaction Network Analysis

The networks were created using GeneMANIA (https://genemania.org (accessed on
15 March 2021)), and the physical interaction between two proteins was represented using
an edge [29].

2.13. Statistical Analysis

The intensity of the bands obtained from RT-PCR were quantified with ImageJ software.
The results were statistically analyzed using the Student’s t-test and a one-way analysis of
variance (ANOVA) with Tukey’s post hoc test using the GraphPad Prism (GraphPad Software,
San Diego, CA, USA). Values are expressed as means ± standard error of the mean (SEM).
The minimum significance level was set at a p-value = 0.05. All experiments, except for the
animal studies, were independently performed at least three times.

3. Results
3.1. Effects of Compounds from P. lactiflora on LIF Expression and In Silico ADME Properties

First, we tested six major compounds from P. lactiflora [12], and their molecular struc-
tures are presented in Figure 1A. Ishikawa cells were treated with these six compounds.
To evaluate their potential enhancement of endometrial receptivity, we compared the ex-
pression levels of LIF. Our results showed that methyl gallate, paeoniflorin, and paeonol
increased LIF protein expression levels (Figure 1B). Second, we investigated the pharma-
cokinetic parameters of P. lactiflora on the basis of the network pharmacology using TCMSP.

Twenty-nine compounds satisfied both the OB ≥30% and the DL ≥0.18 criteria,
and, among the previously reported six components of P. lactiflora, only (+)-catechin and
paeoniflorin and its nine derivative compounds satisfied these conditions (Table 1 and
Figure S1, Supplementary Materials). In particular, gallic acid, methyl gallate, and paeonol
did not satisfy the OB and DL screening criteria (Table S1, Supplementary Materials). In
addition, (−)-catechin and (+)-catechin hydrate were not included in the list obtained
from the TCMSP analysis. According to the data from TCMSP-based in silico ADME and
Western blot analysis, paeoniflorin might be an active component of P. lactiflora.

https://genemania.org
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Figure 1. Paeoniflorin is the most active component of Paeonia lactiflora in improving endometrial
receptivity. (A) Structures of major components of P. lactiflora. (B) Ishikawa cells were treated with
indicated six compounds for 24 h and then harvested for Western blot analysis. The expression level
of leukemia inhibitory factor (LIF) was used for screening.

Table 1. Twenty-nine components of Paeonia lactiflora satisfied oral bioavailability (OB) ≥30% and drug likeness (DL) ≥0.18
obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP).

Molecule Name MW OB (%) DL AlogP Hdon Hacc Caco-2

Paeoniflorgenone * 318.35 87.59 0.37 0.79 1 6 −0.09
Paeoniflorin_qt * 318.35 68.18 0.4 0.46 2 6 −0.34

Paeoniflorigenone * 318.35 65.33 0.37 0.79 1 6 −0.13
1-O-β-D-Glucopyranosylpaeonisuffrone_qt 332.38 65.08 0.35 0.51 1 6 −0.05

Evofolin B 318.35 64.74 0.22 2.07 3 6 0
9-Ethyl-neo-paeoniaflorin A_qt * 334.4 64.42 0.3 1.48 1 6 −0.01

(2R,3R)-4-Methoxyl-distylin 318.3 59.98 0.3 1.89 4 7 0.17
4-Ethyl-paeoniflorin_qt * 332.38 56.87 0.44 1.02 1 6 −0.17

4-O-Methyl-paeoniflorin_qt * 332.38 56.7 0.43 0.87 1 6 0.4
(+)-Catechin 290.29 54.83 0.24 1.92 5 6 −0.03

Paeoniflorin * 480.51 53.87 0.79 −1.28 5 11 −1.47
Lactiflorin 462.49 49.12 0.8 −0.57 3 10 −1.13

Albiflorin_qt 318.35 48.7 0.33 0.42 2 6 −0.38
Stigmasterol 412.77 43.83 0.76 7.64 1 1 1.44
Ellagic acid 302.2 43.06 0.43 1.48 4 8 −0.44
Spinasterol 412.77 42.98 0.76 7.64 1 1 1.44

Baicalin 446.39 40.12 0.75 0.64 6 11 −0.85
Campest-5-en-3β-ol 400.76 37.58 0.71 7.63 1 1 1.32
Stigmast-7-en-3-ol 414.79 37.42 0.75 8.08 1 1 1.32

β-Sitosterol 414.79 36.91 0.75 8.08 1 1 1.32
Sitosterol 414.79 36.91 0.75 8.08 1 1 1.32

1-O-β-D-Glucopyranosyl-8-O-benzoylpaeonisuffrone_qt * 302.35 36.01 0.3 0.44 1 5 −0.03
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Table 1. Cont.

Molecule Name MW OB (%) DL AlogP Hdon Hacc Caco-2

Baicalein 270.25 33.52 0.21 2.33 3 5 0.63
Ethyl oleate (NF) 310.58 32.4 0.19 7.44 0 2 1.4

8-Debenzoylpaeonidanin 390.43 31.74 0.45 −3.28 5 10 −1.56
Benzoyl paeoniflorin * 584.62 31.14 0.54 0.76 4 12 −1.35

Isobenzoylpaeoniflorin * 584.62 31.14 0.54 0.76 4 12 −0.85
Albiflorin 480.51 30.25 0.77 −1.33 5 11 −1.52

(1S,2S,4R)-trans-2-Hydroxy-1,8-cineole-β-D-glucopyranoside 332.44 30.25 0.27 −0.57 4 7 −0.77

Note: * paeoniflorin and its derivatives. MW, molecular weight; OB, oral bioavailability; DL, drug likeness; AlogP, octanol–water partition
coefficient log P; Hdon, hydrogen donor; Hacc, hydrogen bond acceptor; Caco-2, Caco-2 permeability.

3.2. Effect of Paeoniflorin on Endometrial Receptivity of Implantation-Depleted Mouse Model

The previously reported RU-induced implantation depletion model [12,30] was used
to evaluate the in vivo effect of paeoniflorin on embryo implantation (Figure 2A). The
results showed that the number of implanted embryos in the paeoniflorin + RU group
(8.17 ± 2.99) was significantly higher than that in the RU group (0.17 ± 0.41). Although
the number of embryos in the paeoniflorin (8.50 ± 0.84) and paeoniflorin + RU groups
were slightly higher than those in the control group (7.50 ± 1.38), there were no statis-
tically significant differences (Figure 2B,C). The histological observations showed that
there were no fetal regression sites in the paeoniflorin-treated groups. In addition, the
dose of paeoniflorin used in the animal study did not induce any toxicities on liver or
kidney functions according to the analysis of the aspartate transaminase (AST), alanine
transaminase (ALT), and BUN (blood urea ni-trogen) levels (Figure S2, Supplementary
Materials). These findings indicated that paeoniflorin prevented the implantation defect
induced by RU treatment.

Figure 2. Cont.
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Figure 2. Paeoniflorin enhanced embryo implantation in mifepristone (RU486)-induced implantation
failure mouse model. (A) Female mice were administered paeoniflorin (8 mg·kg−1·day−1) for 17 days.
Seven days after paeoniflorin administration, female mice were mated with males. On day 4 from
pregnancy, evidenced by vaginal plugs, female mice were daily treated with RU (4 mg·kg−1·day−1)
by subcutaneous injection for 4 days. (B) Seven days after RU injections, mice were euthanized and
the uteri were excised. Representative image of an embryo-implanted uterus is shown. Uterine
tissue sections were stained with hematoxylin and eosin (H&E) and histologically analyzed. (C) The
number of embryo implantation sites was counted and is expressed as the mean ± standard error of
the mean (SEM); *** p < 0.001 compared to other groups; ns, no significance.

3.3. Effect of Paeoniflorin on Adhesion between Trophoblast and Endometrial Cells

In this study, paeoniflorin did not show significant cytotoxicity on endometrial
Ishikawa cells at concentrations up to 500 µM (Figure 3A). To evaluate the effect of
paeoniflorin on endometrial receptivity, adhesion assays were performed with endometrial
Ishikawa and fluorescently labeled trophoblastic JAr cells. Ishikawa cells treated with
paeoniflorin (50 µM) attached more markedly to JAr cells than the untreated control cells
(2.32 ± 0.23-fold, Figure 3B,C).

Figure 3. Cytotoxicity and effect of paeoniflorin on adhesion between endometrium and trophoblast.
(A) Ishikawa cells were treated with 0, 1, 10, 50, 100, and 500 µM paeoniflorin for 24 h. Viable
cells were stained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the
produced formazan was measured. Data were calculated as a percentage of control and are shown
as the mean ± standard error of the mean (SEM). (B) Endometrial Ishikawa cells were treated with
50 µM paeoniflorin for 48 h. Fluorescently labeled trophoblastic JAr cells were added to confluent
Ishikawa cells. After incubation and washing, images of attached JAr cells were randomly captured,
and representative images are shown. (C) The number of attached JAr cells was counted and
calculated as a fold-change compared to control, and the results are shown as the mean ± standard
error of the mean (SEM); ** p < 0.01 compared with control.
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3.4. Role of LIF Expression on Paeoniflorin-Stimulated Cell–Cell Adhesion

We next evaluated the effect of LIF on paeoniflorin-stimulated adhesion between
endometrial cells and trophoblasts. The results demonstrated that paeoniflorin increased
the expression of both messenger RNA (mRNA) and protein expression levels of LIF
in a dose-dependent manner (Figure 4A). In addition, to elucidate whether LIF medi-
ates paeoniflorin-stimulated adhesion between the endometrium and trophoblast, LIF
expression was depleted using siRNA. When the expression of LIF was abolished, a sig-
nificantly lower number of JAr cells attached to the paeoniflorin-treated Ishikawa cells
(1 ± 0.12-fold) than to the paeoniflorin-treated control cells (1.81 ± 0.21-fold, Figure 4B,C).
These results suggest that LIF is a crucial mediator of paeoniflorin-stimulated endometrium–
trophoblast interaction.

Figure 4. Paeoniflorin enhanced endometrial receptivity through expression of leukemia inhibitory
factor (LIF). (A) Ishikawa cells were treated with 0, 10, 30, and 50 µM paeoniflorin for 24 h. LIF
expression was determined using reverse transcription polymerase chain reaction (RT-PCR) and
Western blot analysis. β-Actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were
internal controls. Relative mRNA and protein levels of LIF are shown as the mean ± standard error
of the mean (SEM); * p < 0.1 and *** p < 0.001 compared to control (0 µM). (B) Ishikawa cells were
treated with carrier only (mock), negative control small interfering RNA (siRNA, N/C), and siRNA
against LIF. After 24 h incubation, LIF expression was determined using RT-PCR. The relative mRNA
level of LIF is shown as the mean ± standard error of the mean (SEM); *** p < 0.001 compared to
mock. (C) Ishikawa cells were transfected with N/C or siRNA against LIF. These cells were treated
with or whithout 50 µM paeoniflorin for 48 h (labelled with +, -). Fluorescently labeled JAr cells were
added to confluent Ishikawa cells. After incubation and washing, the number of attached JAr cells
was counted and calculated as a fold-change compared to control, and the results are shown as the
mean ± standard error of the mean (SEM); * p < 0.01 compared to each group.
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3.5. Validation of LIF as a Target for Human Endometrial Receptivity

To confirm that LIF is critical in human implantation, we analyzed transcriptomic data
obtained from the human endometrium (GSE71835 + GSE92324, GSE26787, and GSE4888).
We performed gene set enrichment analysis using the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) database. According to the Hallmark
gene sets, the expression of genes involved in allograft rejection and interleukin (IL)-
6/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling
was upregulated more in the normal endometrium than in the endometrium from RIF
patients (GSE71835 + GSE92324, and GSE26787). Furthermore, the levels were more
upregulated in the mid-secretory phase than they were in the proliferative phase (GSE4888,
Figure 5A–C).

Figure 5. Gene expression profiles in human endometrium according to Hallmark gene sets. (A–C)
Dot-plot graph showing ranked gene sets using normalized enrichment score (NES). Allograft rejection
and interleukin-6/Janus kinase/signal transducer and activator of transcription 3 (IL-6-JAK-STAT3)
signaling gene sets had NES >1.5 in normal (GSE71835 + GSE92324 and GSE26787) and secretory
(GSE4888) human endometrium. (D,E) Venn diagram shows number of common genes among three
transcriptomes in allograft rejection or IL-6/JAK/STAT3 signaling gene set. Five genes were in the
overlapping region of each gene set. (F,G) Protein-protein interaction network of overlapping genes.
Overlapping genes are located in center of a circular network. The line indicates a physical interaction
between connected proteins.
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To identify the key factors among each gene set, we determined the genes that were
common among the three transcriptomes. There were five genes in the overlapping region
of each allograft rejection (LIF, CD247, TGFB2, C2, and INHBB) and the IL-6/JAK/STAT3
signaling (OSMR, PLA2G2A, CSF2RA, PIM1, and SOCS3) gene set (Figure 5D,E). These
common genes were used to perform the protein–protein physical interaction network
analysis. As shown in Figure 5F,G, allograft rejection and the IL-6/JAK/STAT3 signaling
gene set were merged using IL-6 signal transducer (IL6ST) and Oncosatin M (OSM). This
result suggests that the LIF and OSM pathways could be key targets in the regulation of
human endometrial receptivity.

4. Discussion

Unexplained recurrent implantation failure is a major clinical unmet need in the
treatment of female infertility, especially in the embryo transferring technique [31]. Thus, to
improve the receptivity of the endometrium, many researchers have attempted to identify
novel effective drugs or technologies such as intentional injury of the local endometrium [4],
melatonin [32], prostaglandins [33,34], growth factors [35,36], and chemical drugs [37,38].
Several herbal drugs or their constituents have also been studied as potent candidates
for the treatment of implantation failure [38–42]. Furthermore, we also reported that
several herbal medicines and natural products enhance embryo implantation through an
LIF-mediated mechanism [11–14].

Although the effect of P. lactiflora on embryo implantation was examined in our
previous study [12], the precise active component mediating its endometrial receptivity-
enhancing effects was not elucidated. This study aimed to identify the active compound
in P. lactiflora. Paeoniflorin increased LIF expression and the attachment of trophoblasts
to the endometrium in the cell adhesion assay at nontoxic concentrations. Paeoniflorin
improved the embryo implantation rate in the RU-induced murine implantation failure
model. In addition, paeoniflorin satisfied the screening criteria for the examination of
ADME processes. Although paeonol and methyl gallate induced LIF expression, they
did not satisfy both the OB ≥30% and the DL ≥0.18 requirements for in silico ADME
analysis. Additionally, paeonol was reported to exhibit contraceptive activity in mice [43]
and, therefore, we suggest that paeoniflorin is a major active compound mediating the
improved endometrial receptivity.

LIF has been generally accepted to play a key role in regulating uterine receptivity.
However, a controversial report suggests that LIF alone is not sufficient for assessing the
implantation potential in humans [44]. LIF gene mutation does not frequently occur in
infertile women [45], and recombinant human LIF did not improve implantation rates
after in vitro fertilization (IVF) [46]. On the other hand, recent mRNA sequencing studies
revealed that LIF/STAT3 signaling is reduced in the endometrium of RIF patients [47].
However, the female volunteers who provided endometrial tissues were all Korean.

To estimate the correlation between LIF and endometrial receptivity in humans, we
analyzed several NCBI GEO data of human endometrial tissues obtained from diverse
countries including India, France, and the United States of America (USA) (GSE71835 +
GSE92324, GSE26787, and GSE4888). According to the GSEA, the genes involved in allo-
graft rejection and IL-6/JAK/STAT3 signaling were related to high endometrial receptivity
in the three NCBI GEO datasets. The allograft rejection pathway is the adaptive immune
response for allotransplantation, which is the transplantation of a tissue or organ into an
individual from a genetically different donor of the same species [48], and it is mediated by
diverse cytokines [49].

Among the IL-6 family of cytokines, IL-6, LIF, and OSM are regarded as critical
regulators [50]. Their receptors consist of two subunits containing at least one gp130
molecule, which is also known as IL6ST [51]. Therefore, all IL-6 family cytokines can trigger
the IL-6/JAK/STAT3 signal through the gp130 subunit of their receptors [52]. This indicates
that allograft rejection and IL-6/JAK/STAT3 signaling are closely related. Our GSEA
results showed that these two gene sets were upregulated in the normal endometrium,
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suggesting that the LIF/IL6ST/JAK/STAT3 signaling axis might be critical for human
endometrial receptivity.

Although we demonstrated that paeoniflorin enhanced endometrial receptivity in vivo
and in vitro by expressing LIF, the detailed molecular mechanisms were not fully examined.
First, the mechanism via which paeoniflorin induces LIF expression was not established
in this study. LIF is regulated by diverse pathways, such as p53, estrogen receptor α,
JAK/STAT3, protein kinase B (AKT), extracellular signal-regulated kinase 1

2 (ERK1/2), and
mammalian target of rapamycin (mTOR) signaling [7,53,54]. To elucidate the mechanism,
the precise molecular target of paeoniflorin mediating LIF induction should be identified.
Several previous studies revealed the molecular targets of paeoniflorin, such as adenosine
A1 receptor, liver X receptor, N-methyl-D-aspartate receptor, and cannabinoid receptor
2 [55–57]. However, no previous study revealed the involvement of these molecular targets
in LIF expression. Therefore, further investigations into which targets are related to LIF in-
duction are required. Second, a previous study showed that adhesion molecules, especially
integrins, such as integrin α1, α4, αV, β1, and β5, mediate the attachment between the
embryo and endometrium [58]. The expression of integrins has also been reported to be
diminished in the endometrium of infertile patients [59] and affected by LIF [8–10,12]. In
addition, OSM, which is significantly upregulated in normal endometrial transcriptomes,
has also been reported to promote embryo implantation in mice, and its expression is
affected by LIF [60]. Thus, to precisely understand the mechanism via which paeoniflorin
enhances endometrial receptivity, further extensive studies of these molecular targets are
needed, including OSM and adhesion molecules.

To the best of our knowledge, there is no previous report on the toxicity or safety of
paeoniflorin, especially its genotoxicity or reproductive toxicity. Several previous studies
have shown that paeoniflorin reduced the growth of various tumor cell lines through
cell-cycle arrest [61–65]. However, many studies have reported the preventive effects
of paeoniflorin against renal injury [66], neurotoxicity [67], and hepatotoxicity [68]. In
this study, paeoniflorin did not show cytotoxicity against human endometrial adenoma
Ishikawa cells. An in vivo study also showed that paeoniflorin does not significantly affect
liver and kidney functions. In addition, histological examinations showed no significant
evidence of fetal regression in the paeoniflorin-treated groups. These results collectively
suggest that paeoniflorin did not exhibit severe toxicity on the embryo or maternal mice at
the dose used in this study.

5. Conclusions

In conclusion, we showed that paeoniflorin, a major component of P. lactiflora, enhanced
endometrial receptivity in both in vitro and in vivo models through the expression of LIF.
Although the clinical efficacy and safety of paeoniflorin should be confirmed by further exten-
sive experiments, we suggest that paeoniflorin is a potent, potential candidate for improving
the receptivity of the endometrium and, consequently, treating implantation failure.
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