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Abstract

Evidence implicating differential gene expression as a significant driver of evolutionary novelty continues to accumulate,
but our understanding of the underlying sources of variation in expression, both environmental and genetic, is wanting.
Heritability in particular may be underestimated when inferred from genetic mapping studies, the predominant
“genetical genomics” approach to the study of expression variation. Such uncertainty represents a fundamental limita-
tion to testing for adaptive evolution at the transcriptomic level. By studying the inheritance of expression levels in 10,495
genes (10,527 splice variants) in a threespine stickleback pedigree consisting of 563 individuals, half of which were
subjected to a thermal treatment, we show that 74–98% of transcripts exhibit significant additive genetic variance.
Dominance variance is also prevalent (41–99% of transcripts), and genetic sources of variation seem to play a more
significant role in expression variance in the liver than a key environmental variable, temperature. Among-population
comparisons suggest that the majority of differential expression in the liver is likely due to neutral divergence; however,
we also show that signatures of directional selection may be more prevalent than those of stabilizing selection. This
predominantly aligns with the neutral model of evolution for gene expression but also suggests that natural selection may
still act on transcriptional variation in the wild. As genetic variation both within- and among-populations ultimately
defines adaptive potential, these results indicate that broad adaptive potential may be found within the transcriptome.
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Introduction
Recent research indicates that sequence variants linked to
phenotypic differences are predominantly found in noncod-
ing, regulatory regions of the genome (Flint and Mackay 2009;
Hindorff et al. 2009; Ku et al. 2010; Wray 2013). Similarly, there
is mounting evidence that gene regulatory networks, and
differential patterns of expression in genes may be a signifi-
cant cause of phenotypic novelty (Erwin and Davidson 2009;
Davidson and Erwin 2010), suggesting that variation in gene
expression is likely an important source of evolutionary po-
tential. Given the relative ease and large scale at which it can
be quantified, transcription is commonly used as a proxy for
gene expression (Schena et al. 1995; Lockhart and Winzeler
2000). Although transcription represents only the first of
many steps leading to an ultimate/functional gene product,
even small variation in mRNA abundance can have a signif-
icant impact on the amount of protein (Kaern et al. 2005; Bar-
Even et al. 2006; Ghazalpour et al. 2011), with 12–78% of
variation in protein abundance explained by transcriptional
variation, depending upon taxa, cellular location, and protein

type (Greenbaum et al. 2003). Moreover, transcriptional var-
iation can underlie complex phenotypic variation (Ayroles
et al. 2009; Liao et al. 2010; Hines et al. 2012; Richards et al.
2012). Thus, despite its “proxy” status with respect to gene
expression, transcriptional variation itself is also a likely source
of evolutionary potential.

Transcriptional variation can also be viewed as a pheno-
type (Houle et al. 2010), and as with any phenotype, it is
subject to varying degrees of genetic and environmental con-
trol, and its inherent variation may be shaped by natural
selection (Whitehead and Crawford 2006b). It is generally
held that transcriptional variation is additive, with an under-
lying polygenic architecture (Gilad et al. 2008; Kim and Gibson
2010). Indeed, results emerging from association studies in
humans are consistent with the view that a large fraction of
transcriptomic variation is heritable (Dixon et al. 2007; Powell
et al. 2013). Line cross analyses of both cereal crops (Swanson-
Wagner et al. 2006; Chelaifa et al. 2013) and diverse animal
taxa (Rottscheidt and Harr 2007; Wayne et al. 2007; Debes et
al. 2012; Gao et al. 2013) are also suggestive of widespread
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genetic variance for transcription, though few report esti-
mates of variance and/or heritability (but see Wayne et al.
2004). In comparison, transcriptome-wide variance compo-
nents analyses and/or pedigree-based studies into the quan-
titative genetics of transcriptional variance in model
organisms have been limited to mice (Cui et al. 2006), yeast
(Brem et al. 2002), Caenorhabditis elegans (Li et al. 2006), and
Drosophila (Ayroles et al. 2009). For wild, outbred popula-
tions, potential for heritable variation in transcription has
been inferred on the basis of high levels of within-population
variance, but precise estimates of genetic variance are rarely
available, and when attempted, most suffer from low statis-
tical power due to small sample sizes (Whitehead and
Crawford 2006b). Moreover, there may be considerable plas-
ticity in patterns of expression (Aubin-Horth and Renn 2009),
which if left uncontrolled, can equally lead to biased estimates
of heritability by confounding environmental and additive
genetic sources of variation (Visscher et al. 2008). This
represents a fundamentally important problem in elucidating
the evolutionary potential of transcriptomic variation as
our ability to predict a response to changing selective
pressures—a particularly compelling challenge in an age of
rapid habitat/environmental change—is dependent upon
the degree to which we can disentangle heritable and
environmental contributions to trait variation (Gienapp
et al. 2008; Hoffmann and Willi 2008; Hoffmann and Sgr�o
2011). Clearly a more controlled experimental evaluation is
required.

Our understanding of how selective processes have shaped
transcriptional variation also remains a point of contention.
To date the literature is dominated by two competing view-
points, both empirically derived from comparative analyses
across broad taxonomic groups. One posits that gene expres-
sion differences are effectively neutral (Oleksiak et al. 2002;
Khaitovich et al. 2004, 2006; Whitehead and Crawford 2006a).
The other suggests that stabilizing selection is the dominant
force shaping the evolution of gene expression (Rifkin et al.
2003, 2005; Lemos et al. 2005; Gilad, Oshlack, and Rifkin 2006;
Bedford and Hartl 2009), based on assumptions that energetic
costs of transcription should favor an optimal level of expres-
sion (Wagner 2005, 2007), and that purifying selection should
act to conserve transcript function (Brawand et al. 2011).
Mutation accumulation experiments offer support for both
views, demonstrating that significant expression divergence
can emerge by random processes, but that purifying and/or
stabilizing selection also acts upon expression variation in
animals (Denver et al. 2005; Rifkin et al. 2005). However, a
detailed analysis of mutation accumulation lines has revealed
that not all genes are equally mutable, depending to a large
extent on their regulatory properties and the transmutational
target size (Landry et al. 2007). Similarly, it has been shown
that genes expressed in multiple tissues—likely to be faculta-
tive, housekeeping genes—tend to be less divergent among
species than tissue-specific genes (Khaitovich et al. 2005;
Gilad, Oshlack, and Rifkin 2006). Moreover, divergence in
cis-regulated expression may frequently be under positive se-
lection (Emerson et al. 2010). Thus, although the debate re-
garding the predominant mode of evolution continues, it is

becoming increasingly clear that other nonneutral evolution-
ary dynamics are at work on the transcriptome.

Complicating the study of transcriptomic evolution is the
lack of a consensus model of its neutral evolution, stemming
from discrepancies in data and assumptions regarding the
rate of change in expression divergence (Khaitovich et al.
2004; Ogasawara and Okubo 2009). Equally problematic is
the contradictory nature of its mutational variance:
Transcription has been associated with both increased and
decreased mutation rate—transcription-associated mutagen-
esis and transcription-coupled repair, respectively—and there
is conflicting evidence as to whether levels of gene expression
are positively or negatively correlated with mutation rate
(Hanawalt and Spivak 2008; Kim and Jinks-Robertson 2012;
Martincorena et al. 2012; Park et al. 2012). In the absence of a
reliable/validated neutral model, comparison against a distri-
bution of putative neutral divergence provides an expedient
and informative alternative approach. This is the rationale
underlying a well-studied quantitative approach to the prob-
lem of trait divergence (Spitze 1993; Leinonen et al. 2013), yet
surprisingly few studies to date have actually applied this to
transcriptional data (Roberge et al. 2007; Kohn et al. 2008).

In this article, we undertake a quantitative genetics ap-
proach to study the inheritance and evolution of transcrip-
tional variation, addressing a number of issues earlier
highlighted as central for resolving this topic (Gibson and
Weir 2005; Gibson 2008). We do so in a model teleost fish,
the threespine stickleback (Gasterosteus aculeatus). Teleosts
such as the stickleback represent ideal candidates to decom-
pose phenotypic variation into its genetic and environmental
components. Almost all are obligate ectotherms; thus, meta-
bolic/transcriptional variation may be induced by thermal
treatment (Nikinmaa et al. 2013). Moreover, relatively large
clutch sizes and external fertilization facilitate the creation of
complex breeding designs with multiple related individuals
which permit an accurate estimation of genetic variance com-
ponents for focal traits.

The threespine stickleback is also a particularly interesting
model to address many outstanding questions related to
transcriptional variation and its role in the adaptive evolu-
tionary process given that adaptive morphological variation
associated with the species’ expansion into novel habitats has
been tied to differential expression of candidate genes and
putative regulatory elements in its genome (Chan et al. 2010;
Kitano et al. 2010; Jones et al. 2012). Adaptive divergence has
also been linked to transcriptional differences in candidate
genes for osmoregulation (McCairns and Bernatchez 2010),
and in pigmentation differences between freshwater and
marine populations (Greenwood et al. 2012). Moreover, ex-
amples are beginning to accumulate in which trends in tran-
scription profiles are corroborated by functional assays. For
example, differential expression of thyroid-stimulating hor-
mone mRNA between stream-resident and marine stickle-
backs reflects differences in lower plasma levels of thyroid
hormone and reduced metabolic rate, hypothesized to un-
derlie part of the physiological adaptation to permanent
freshwater residency (Kitano et al. 2010). Additionally, tran-
script expression accurately reflects a functional reaction for
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some components of hypoxia response (Leveelahti et al.
2011), and is reasonably predictive of gene expression/activity
with respect to an oxidative stress response in steady-state
systems (Nikinmaa et al. 2013).

Specifically, we address the three following questions: 1)
How heritable is transcriptional variation; 2) to what extent
does environmental variation affect transcript abundance,
and are there genetically based differences in this plasticity
of expression; and 3) to what extent has transcriptional var-
iation been shaped by natural selection? To this end, we apply
rigorous and statistically powerful quantitative genetic
approaches to mRNA profiles of lab-reared threespine stick-
lebacks originally derived from wild source populations. To
address the question of heritable variation in transcript ex-
pression—a critical element in evaluating the adaptive poten-
tial of any phenotype—we employ a half-sib breeding design
of first generation fish (n = 563) representative of the putative
ancestral, marine population, and quantify mRNA expression
using an oligo microarray featuring approximately 15,000
transcripts. The experiment also includes an environmental
manipulation (an acute rapid temperature increase) in order
to facilitate an evaluation of plasticity in expression, as well as
family-based variation in environmental sensitivity, a proxy
for genotype–environment interaction (G�E). To test for
signatures of selection on the transcriptome, we use the
index of quantitative trait divergence (QST) to compare ex-
pression variation within and among three discrete popula-
tions representing a range of diverse environmental/habitat
conditions: One marine and two lakes of differing size and
community complexity with pronounced latitudinal differ-
ence (supplementary fig. S1A, Supplementary Material
online).

Results

Partitioning of Transcriptional Variance

The vast majority (10,384) of the 10,527 transcripts detected
above background levels exhibited significant additive genetic
variance (VA; estimates presented in supplementary table S1,
Supplementary Material online). Significant dominance vari-
ance (VD) was also found in 10,499 transcripts. After correct-
ing for potential “false positives” (i.e., Type I errors), estimated
through phenotypic simulation (supplementary figs. S2A and
B and appendix S1, Supplementary Material online), this
would suggest significant genetic variation underlying the
expression of at least 7,813 transcripts (74.2%)—heritability
estimates for 8,593 transcripts (81.6%) exceeded the mean of
possible false positive estimates (h2 4 0.094). The propor-
tion of total phenotypic variance explained by either additive
genetic or dominance variance was quite similar: The mean
estimate of narrow-sense heritability (h2) for transcript abun-
dance was 0.226 (0.070–0.596, 95% confidence intervals [CIs];
fig. 1A), whereas the mean proportion of variance explained
by dominance variance (d2) was 0.161 (0.078–0.361, 95% CIs;
fig. 1B). Posterior density interval estimates overlapped for
10,155 transcripts, suggesting approximately equal contribu-
tions of dominance and additive genetic variance for most
transcripts. In contrast, additive genetic effects were

significantly greater than dominance variance for 229 tran-
scripts (fig. 1C); and for 115 transcripts, significant dominance
variance was detected in the absence of significant additive
genetic variance (fig. 1D).

Environmental (i.e., temperature) effects were less preva-
lent than genetic variance, irrespective of estimation method.
When assessed as simple fixed effects, model coefficients de-
scribing average differences between temperature treatments
were deemed significant for 4,253 transcripts (fig. 2A), follow-
ing false discovery rate (FDR) correction for multiple compar-
isons (5,550 uncorrected). Note that in the two environment
case, the coefficient describing this effect (bEnv) represents the
mean difference in log2 transcript abundance between 17 and
23 �C treatments; thus, the mean fold change. Incorporation
of variation among families when modeling temperature ef-
fects (random slopes; family� temperature) suggested 4,221
transcripts in which thermal environmental effects are likely
mediated through G�E (fig. 2C). Comparing temperature-
specific estimates of total phenotypic variance revealed
1,578 transcripts with significantly different estimates of VP

(i.e., nonoverlapping posterior density intervals [PDIs]) in each
thermal environment (�VP; fig. 2C). In total, 66.4% of tran-
scripts showed at least one signal of thermal sensitivity, sig-
nificantly less than the 74.2% (FDR corrected) with additive
genetic variation for expression (�2

[1] = 154.8; P< 0.001).
Moreover, in only 47 cases (0.4%) did the absolute range of
�VP exceed the PDI estimates of either VA or VD (fig. 2D).
Finally, for all transcripts with a significant response to the
temperature treatment, absolute values of bEnv were signifi-
cantly correlated with �VP (r = 0.347; P< 0.001; fig. 2B).

Signatures of Selection on the Transcriptome

For 84.2% of transcripts, PDIs for the index of quantitative
divergence (QST) overlapped with those of neutral expecta-
tion. Estimates of neutrality were significantly higher based on
the rate of divergence (�) of gene expression: 99.2% of tran-
scripts (�2

[1] = 1,319; P< 0.001). Signatures of directional se-
lection—QST estimates significantly greater than neutral
expectation (fig. 3)—were inferred for 1,411 transcripts
(15.8%). In contrast, estimation of � suggested only 71 tran-
scripts (0.8%) under directional selection: 58 of these were
also inferred to be under selection in the QST-based analysis,
but 13 were inferred neutral by QST. Neither analysis detected
a signal of stabilizing selection: Zero transcripts displayed an
upper PDI or CI less than the lower ranges defining neutral
expectation.

The per chromosome proportion of transcripts showing
signals of selection differed significantly across the 21 linkage
groups (�2

[20] = 68.8; P< 0.001), ranging from 10.1% on chro-
mosome VIII to 25.5% on chromosome XIX. 17.1% (156/912)
of transcripts on unlinked scaffolds exhibited signals of selec-
tive divergence, a proportion not significantly different from
that on known linkage groups (�2

[1] = 1.07; P = 0.302). None
of the ten mitochondrial transcripts present in the analysis
showed signatures of selection.

We detected four putative peaks of high selective diver-
gence, excluding those located on unlinked scaffolds (fig. 3).
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FIG. 1. Proportion of phenotypic variance explained by additive genetic and dominance variance. (A) Frequency distribution of narrow-sense heritability
(h2) estimates for all 10,527 transcripts. Nonsignificant estimates are represented in the black fraction, whereas statistically significant estimates are
plotted in gray (green online). (B) Distribution of estimates for the dominance proportion of total phenotypic variance (d2). Significant estimates are
plotted in gray (red online), nonsignificant in black. (C) Chromosomal location of the 229 transcripts for which h2 is significantly greater than d2. Point
estimates of h2 are plotted as “+” (green online); d2 are squares (red online). Vertical lines denote 95% PDIs. Mitochondria and unlinked scaffold are
combined in the region to the right of chromosome XXI. (D) Chromosomal location of the 115 transcripts with putatively significant d2 and
nonsignificant h2 estimates—note that these may represent “false positive” estimates on the basis of phenotypic simulations (d2

� 0.144). Symbols
and chromosomal arrangement as in (C).
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FIG. 2. Significant temperature effects on transcript expression. (A) Distribution of fixed-effects coefficients describing the effect of thermal treatment
on mean transcript expression (bEnv). The gray fraction (colored online) denotes statistically significant values. (B) Relationship between bEnv and
�VP, the difference in total phenotypic variance estimated in the two temperature treatments. In total, 6,987 transcripts with a temperature response
are plotted. (C) Union of transcripts based on their significance with respect to various indicators of environmental effects. Indicators include bEnv,
differences in temperature-specific estimates of additive genetic variance (�VA), G�E, and �VP. Overlapping regions denote multiple significant
effects. The open circle represents the proportion of nonsignificant transcripts. (D) Chromosomal location of the 47 transcripts for which the magnitude
of �VP exceeded interval estimates of both VA and VD. For clarity, only point estimates are provided for VA (+) and VD (squares); circles represent
point estimates of �VP, bounded by 95% PDIs (vertical lines). Chromosomal arrangement as in figure 1.
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Three peaks were located on chromosome XIX: A 460-kb
window 7.9 Mb from the beginning of the chromosome, a
500-kb window around position 9 Mb, and a 390-kb window
at 10.7 Mb (supplementary fig. S3A, Supplementary Material
online). The remaining peak mapped to a 485-kb window
around position 6.5 Mb of chromosome XXI (supplementary
fig. S3B, Supplementary Material online).

Discussion
Our results raise two interesting observations relevant to the
evolution of transcriptional variation, namely: 1) The vast
majority of transcripts exhibit significant genetic variance in
expression, indicating that within-population transcriptional
variation is heritable and thus potentially responsive to selec-
tion; and 2) although the majority of differences in transcript
expression among populations are likely neutral, directional
selection is also evident. Although observations here regard-
ing the relative fraction of selected transcripts may be species
and/or population specific, inferential discrepancies arising
from different analytical frameworks may help bring new per-
spective on the broader debate regarding the roles of neutral
evolution and stabilizing selection in transcriptomic
evolution.

Pervasive Heritability—Evidence for Broad Adaptive
Potential in the Transcriptome

Whether one considers all transcripts with evidence of signif-
icant VA, or a more conservative FDR corrected number, re-
sults indicate that a majority of transcripts active in
stickleback liver tissue exhibit heritable variation in expres-
sion. If the behavior of these transcripts is representative of all
29,245 splice variants in the stickleback genome, this would
suggest that at least 74% of the stickleback transcriptome—
perhaps as high as 98%—may have heritable variation under-
lying patterns of expression. This is substantially greater than
initial expectations: In the first known synthesis of available

data, Gibson and Weir (2005) concluded that irrespective of
tissue or organism, 10–50% of transcripts would likely vary
due to heritable differences. The reason for this discrepancy
may lie in the fact that much of the work describing herita-
bility of transcriptional variance is dominated by quantitative
trait locus (QTL)-based estimation. For example, early eQTL
studies of human lymphoblastoid cell lines suggested that
only 31% of transcripts display heritable variation in expres-
sion (Monks et al. 2004), with similar results (28% of tran-
scripts) observed in a an independent genome-wide
association study (GWAS; Dixon et al. 2007). Although QTL
and related GWAS approaches may provide significant in-
sights into the genetic architecture underlying expression var-
iation, associated estimates of heritability may suffer from
both overestimating the proportion of variance explained
by individual loci, and a failure to capture all additive genetic
variance due to the statistical exclusion of minor-effect loci
(Petretto et al. 2006; Manolio et al. 2009). Yet in the context of
transcriptional variation, an additional “missing heritability”
problem may be an inability to correctly identify the number
of transcripts with heritable variation. In a recent study of
gene expression in whole blood, Powell et al. (2013) demon-
strate a marked reduction in the number of heritable tran-
scripts when estimated based on an eQTL approach (21%)
compared with a pedigree-based analysis of same data
(64%)—in fact QTL could be mapped to only 30% of the
probes for which VA was judged significant under a robust
pedigree and analytical framework.

Our findings with respect to the number of transcripts
with heritable variation in expression are, however, compara-
ble with those from similar pedigree-based analyses. Heritable
variation has been reported in 60% of transcripts expressed in
the livers of inbred mouse strains (Cui et al. 2006), and for 42%
and 63–82% of transcripts for human adipose tissue and
blood, respectively (Price et al. 2011; Powell et al. 2013).
And though constraints imposed by their study system pre-
clude the estimation of additive genetic variance, Ayroles et al.

FIG. 3. Among-population divergence in transcript abundance, plotted as a function of genomic location. Loess smoothing (5-kb intervals) of lower 95%
posterior density interval values indicate putative genomic regions rich in adaptive expression divergence. Triangles denote QST point estimates for
transcripts which significantly exceed a baseline of neutral divergence, as defined by 17 microsatellite markers (range defined by horizontal lines; see
Materials and Methods for details). For clarity, probes whose levels of expression divergence fell within the range of neutral differentiation are not shown.
Chromosomal arrangement as in figures 1 and 2.
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(2009) nevertheless reveal broad-sense heritability for 68% of
transcripts expressed during development in inbred
Drosophila lines. Together, these results suggest that it is
likely the majority fraction of the transcriptome for which
patterns of differential expression have some genetic basis.

Although it is generally held that transcriptional variation
is additive (Gilad et al. 2008; Kim and Gibson 2010), nonad-
ditive sources of genetic variance have been somewhat ne-
glected in the empirical literature. Plant-based research is one
exception to this trend, perhaps because these systems are
more amenable to the types of complex breeding designs
which facilitate estimation of nonadditive effects and/or the
viability of mixed-ploidy hybrids (Riddle et al. 2010). For exam-
ple, line cross analyses between inbred strains of maize have
revealed an abundance of transcripts exhibiting dominance
variance for expression, though results are equivocal as to
whether VA or VD is more prevalent: examples can be
found supporting equal proportions of transcripts with
both (Pea et al. 2008; Li et al. 2009), as well as only a minority
fraction (10–30%) exhibiting VD (Swanson-Wagner et al.
2006; Stupar et al. 2007). Similar analyses of inter-specific
wheat hybrids suggest that significantly fewer transcripts exhi-
bit VD compared to those with significant VA (Qi et al. 2012;
Chelaifa et al. 2013). Although low numbers of significant
estimates imply a potential limitation of statistical power,
one study of Arabidopsis nevertheless reveals 3% of tran-
scripts with dominance variance in expression, compared
with 8% with VA (Zhang et al. 2008). For vertebrates, we
are aware of only four studies reporting the presence of VD

for transcription. A line cross analysis of inter-specific
Takifugu hybrids suggests the occurrence of VD, though
details are insufficient to comment on its prevalence (Gao
et al. 2013). Similarly, a cross between wild and domesticated
Atlantic salmon revealed that a third of differentially
expressed transcripts may have significant VD, compared to
66% with significant VA (Debes et al. 2012). Dominance var-
iance is also far less prevalent than VA in mice, irrespective
of tissue type (Rottscheidt and Harr 2007), and in one
human study, only 5–32% of probes expressed in whole
blood show significant dominance variance (Powell et al.
2013). That up to 99% of stickleback transcripts show evi-
dence of significant VD is surprising, and likely indicative of
abundant false positive estimates. Unlike for VA, we are
unable to simulate phenotypes with “known” VD using the
experimental pedigree; thus, a formal power analysis cannot
be performed. However, we attempted to estimate the FDR
by simulating over a range of known h2, with d2 (VD) implicitly
zero. Deviance Information Criterion (DIC)-based selection
favored a model including VD in nearly all (1,009) 1,100 sim-
ulations, and mean d2 of these false estimates was 0.144 (sup-
plementary fig. S2D, Supplementary Material online). This
would suggest that any “significant” VD estimate for which
d2
� 0.144 should be regarded as suspect. Only 4,323 tran-

scripts with putatively significant VD exceed this threshold
(41.1%), suggesting a far more conservative estimate for the
proportion of the transcriptome with dominance variance for
expression.

The Genetic Basis of Transcriptional Variance
The range of heritability estimates observed for stickleback
liver transcripts is remarkably similar to that reported in di-
verse study systems: A mean of point estimates of 0.226 (me-
dian = 0.169; fig. 1A). Cui et al. (2006) report a median
transcript heritability of 0.22 in mouse liver, with 75% of tran-
scripts having a heritability greater than 0.01. In stickleback
liver, the minimum point estimate for all transcripts with
significant heritability was 0.041, with a minimum lower
95%PDI estimate of 0.018—although based on phenotypic
simulations, estimates less than 0.094 should be viewed
with some skepticism. A median heritability of 0.35 for tran-
script expression has been reported for human lymphoblas-
toid cell lines, though this estimate may be upwardly biased
given that heritability was estimated only for differentially
expressed transcripts (Monks et al. 2004). Other human stud-
ies show that average transcript heritability differs across tis-
sues: 0.37 in blood and only 0.24 in adipose (Price et al.
2011)—95% quantiles of nonzero estimates from this study
overlap (blood = 0.018–0.497; adipose = 0.042–0.539), both
with each other and with those reported here for stickleback
liver transcripts (0.070–0.596).

Surprisingly, the proportion of variance described by dom-
inance variance (d2) was similar to h2. When the same probes
in human blood exhibit both significant VA and VD, the dom-
inance fraction of phenotypic variance is much less than h2

(Powell et al. 2013). In contrast, less than 3% of stickleback
liver transcripts had heritability significantly larger than the
dominance fraction (fig. 1C), although this is significantly
greater than the fraction of probes with only dominance
variance (fig. 1D; �2

[1] = 37.7; P< 0.001). This may be due to
a possible conflation of maternal effects and dominance var-
iance in half-sib breeding designs (Lynch and Walsh 1998), or
perhaps more likely due to the wide/conservative parameter
ranges described by the 95%PDIs of the estimates. If only
point estimates are considered, 906 stickleback transcripts
(8.6%) exhibit h2 4 0.5, a significantly larger fraction than
the 213 transcripts (2.0%) for which d2 is greater than 0.5
(�2

[1] = 451; P< 0.001). This may be indicative of a greater
role for cis-regulation of gene expression (Lemos et al. 2008),
although this remains to be confirmed at the genomic level. It
is interesting to note, however, that transcripts with only
dominance variance, thus putatively under trans-regulatory
control, are largely categorized by genes involved in cellular
organization and function, whereas transcripts with h2 signif-
icantly greater than d2 seem to represent genes of relatively
higher function (supplementary table S2, Supplementary
Material online). This is a pattern consistent with the view
of cis-regulatory sequences contributing important genetic
variation for adaptation through their influence on morphol-
ogy, physiology, and behavior (Wray 2007). We reiterate, how-
ever, that at present this conjecture is speculative, though we
suggest that it certainly warrants future consideration.

Although the majority of transcripts appear to have ge-
netic variation for expression, less than 50% of the total phe-
notypic variation is typically explained by additive effects, and
h2 exceeds 0.5 for only 8.6% of transcripts. Our estimates are
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not substantially different than those derived from human
studies which estimate that only 5% of the transcriptome
exhibits h2 4 0.5 (Gilad et al. 2008). Dominance variance
does not appear to capture the remaining unexplained phe-
notypic variance. Cumulatively, h2 and d2 explain on average
only 38.3% of total phenotypic variance (0.154–0.778, 95% CIs;
supplementary fig. S4A, Supplementary Material online).
Although the PDIs of the combined estimates are also quite
wide, even the upper limit only rarely captures 100% of the
phenotypic variance (0.830 on average; supplementary fig.
S4C, Supplementary Material online), suggesting that at
least 17% of expression variance remains unexplained for
most transcripts. Other nonadditive genetic effects (e.g., ge-
netic maternal effects, epistasis) may contribute significantly
to transcriptional variation. Maternal effects may be a less
likely source of variance as they generally diminish over
time, having their greatest influence on traits early in life
(Roff 1997). Epistasis, however, is a frequently overlooked
effect potentially leading to bias in estimates of transcriptional
heritability (Haig 2010; MacLean 2010; Zuk et al. 2012).
However, highly specialized breeding designs are required to
accurately quantify these nonadditive genetic effects (Rosa
et al. 2006). Constraints imposed by female fecundity neces-
sitated use of a half-sib design for this study which precludes
our ability to address these issues reliably, though we strongly
encourage future research in this direction.

Environmental Variance
Environmental effects are also a likely candidate to explain
residual variance, and the ability to explicitly model critical
environmental factors, in this case temperature, is a major
advantage of experimental systems. In stickleback livers, 66.4%
of transcripts showed some evidence of significant tempera-
ture sensitivity over a wide range of indicators. Moreover,
60.4% of these 6,987 transcripts exhibited evidence of G� E
(n = 4,221; fig. 2C), suggesting a large potential influence of
genotype-specific sensitivity to environmental effects. It is
noteworthy that the among-family variation in the response
to the type of temperature effects studied here is also sug-
gestive of broad-sense heritable variation in plasticity for tran-
script abundance, a phenomenon reported in another model
ectotherm, C. elegans (Li et al. 2006).

With only two treatments, we cannot explicitly estimate
the phenotypic variance component due to temperature.
However, our measure of phenotypic differences between
environments, �VP, may be a useful proxy in this regard: It
correlates reasonably well with model coefficients describing
temperature effects (fig. 2B), but has the advantage of being
measured in units of variance. Moreover, when expressed as a
ratio relative to total phenotypic variance, we observe the
expected, albeit weak, negative correlation with the cumula-
tive genetic proportion of phenotypic variance (r =�0.087;
P< 0.001; supplementary fig. S4B, Supplementary Material
online). Furthermore, when �VP relative to total VP is mod-
eled as a function of genomic position, chromosomal “valleys”
of low broad-sense genetic variance appear to coincide with
many “peaks” of our proxy “VE(temp)” metric (supplementary
fig. S4D, Supplementary Material online). However, the grand

cumulative proportion of phenotypic variance, combining
relative genetic and �VP values, explains only a 0.496
proportion of total phenotypic variance in expression
for an average transcript (supplementary fig. S4D,
Supplementary Material online)—based on the CIs of all
estimates (0.206–0.905), nearly 10% of expression variance
remains unexplained.

Although reasonable to expect temperature to be a major
contributor to expression variance in an ectotherm, this does
not rule out other environmental factors. For example, in
yeast lines transcription appears to exhibit greater environ-
mental variation than that of genetic effects in response to
varying nutritional inputs (Landry et al. 2006), and in Daphnia
pulex, 72–85% of the transcriptome is differentially expressed
in response to abiotic environmental stressors (Colbourne
et al. 2011). Manipulating other environmental variables
would undoubtedly also induce some degree of expression
variance, though we are hard-pressed to suggest one which
would likely produce greater effects than temperature, given
its direct effects on the metabolism and rate of transcription
in ectotherms. Thus, in this context, it is striking that genetic
effects appear to capture a significantly greater proportion of
expression variance.

Neutrality and Directional Selection Reconsidered

Both QST results and divergence rate estimates (�) reveal
that for the majority of transcripts, among-population differ-
ences in expression are reflective of neutral processes.
Moreover, neither analysis could detect a significant signal
of stabilizing selection. Together, these observations provide
a case which challenges the view of stabilizing and/or purify-
ing selection as the predominant mode of evolution of the
transcriptome, and aligns with a neutral model of transcrip-
tome evolution.

To some extent, the failure to detect stabilizing selection
may be related to the tendency for dominance variance to
upwardly bias estimates of QST, potentially leading to false
signals of neutrality (reviewed in Leinonen et al. 2013).
However, the same metric (�; Lemos et al. 2005) used
to infer a majority fraction of transcripts under stabilizing
selection across a diverse collection of taxa also points to
neutral divergence between focal stickleback populations.
This in turn points to a problem frequently encountered in
studies employing metrics of the rate of evolution: A ne-
glect to consider uncertainty in parameter estimates
(Hendry and Kinnison 1999). In our application, we
employ a simple bootstrapping procedure to express un-
certainty in terms of CIs, and explicitly use this uncertainty
when inferring significance of neutrality or selection. Others
argue that selection of “conservative” estimates for param-
eters defining neutrality is sufficient (Lemos et al. 2005; Fay
and Wittkopp 2008); however, if the magnitude of differ-
ences between upper and lower CIs exceeds that of the
neutral region, point estimates may have a high probability
of providing false signals. This certainly appears to be the
case with these data, wherein the CIs for point estimates of
� indicative of stabilizing selection range from
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approximately 30 to 100 times greater than the neutral
range (supplementary fig. S5C, Supplementary Material
online). Moreover, many transcripts identified to be
under stabilizing selection by the average value of �
have QST values well above neutrality (supplementary fig.
S5B and D, Supplementary Material online), values ex-
tremely unlikely for a trait under stabilizing selection.

It is perhaps noteworthy that most empirical studies which
conclude that stabilizing and/or purifying selection is the pre-
dominant mode of transcriptional evolution are based on
interspecific comparisons (Lemos et al. 2005; Gilad, Oshlack,
Smyth, et al. 2006; Bedford and Hartl 2009; Brawand et al.
2011), though see Nuzhdin et al. (2004) who demonstrate
substantial adaptive/selected variation between Drosophila
simulans and D. melanogaster. Yet simulations—the results
of which closely match those of observed data—suggest that
gene expression divergence is not a simple linear function of
generation time: Initially it occurs rapidly, but tends toward
an asymptote (Ogasawara and Okubo 2009). Paradoxically
then, the rate of change of gene expression divergence
when compared among extremely phylogenetically distant
taxa would be less than that among more recently diverged
groups. To some extent this is reflected by comparing trends
between intra- and interspecific contrasts, the former typified
by greater rates of drift and directional selection, though the
largest fraction of transcripts show signatures of stabilizing
selection (Lemos et al. 2005). The implications of this are 2-
fold: 1) Comparisons across broader taxonomic groups may
be most likely to reveal signatures of stabilizing selection; and
2) the generations immediately following—perhaps even
during—divergence, may represent a dynamic phase when
mutation, drift, and selection may have the most profound
effects on expression divergence.

Adaptive differentiation between populations of the same
species would certainly fit the description of a dynamic phase
in a taxon’s history. The populations used in this study show
adaptive phenotypic and genetic divergence typical for this
species (Cano et al. 2006). Moreover, divergence has occurred
relatively recently, likely within the past approximately 8,000
years following retreat of Pleistocene ice sheets (M€akinen and
Meril€a 2008). And although the majority of transcriptional
divergence is neutral, a relatively high proportion of tran-
scripts (15.8%) show signatures consistent with divergent se-
lection. Irrespective of the actual mechanisms and selection
pressures which underlie this divergence, it is clear that some
degree of adaptive differentiation has occurred at the level of
the transcriptome.

It should be noted, however, that transcript abundance
differs among tissues, and that tissue-specific (i.e., specialized)
expression patterns are more likely to be subject to positive
selection (Brawand et al. 2011). Whether liver tissue repre-
sents a potentially biased sample—either over- or underrep-
resentative of potential adaptive differences among habitats
sampled—remains open for debate. However, killifish popu-
lations adapted to a natural temperature cline also show
expression divergence in the liver, but in these populations,
the majority of transcripts showing signatures of natural se-
lection are under stabilizing selection (Whitehead and

Crawford 2006a). This, and the multifaceted functional role
of the liver, leads us to believe tissue-related bias should be
minimal.

Another potential source of concern is the discrepancy
between QST and � in the number of transcripts showing
signals of directional selection. This is unlikely due to the use
of only two populations in the rate divergence analysis: Our
previous work clearly shows that among-population differ-
ences in both expression and enzymatic activity are largely
driven by the Lake V€attern population (Nikinmaa et al. 2013),
a population which was included in the analysis due to its
unambiguous evolutionary relationship with the Baltic Sea
population. Rather, we would suggest that differences be-
tween methods may be reflective of difficulties in analysis
of variance (ANOVA)-based comparisons which do not
correct for nonindependent phylogenetic associations:
Simulations show that failure to reject neutrality, even
under strong selective pressures may be common for such
tests (Eng et al. 2009). We would argue that QST-based anal-
yses implicitly include a phylogenetic correction in that neu-
trality is inferred from the same types of genetic data which
would be used to generate the phylogenetic covariance ma-
trices in admixture modeling (Eng et al. 2009). Moreover, the
wide PDIs bounding QST estimates represent a conservative
comparison against neutral parameter space (supplementary
fig. S5D, Supplementary Material online). Consequently, we
are confident that results of QST are truly reflective of recent
evolutionary history in this system.

Further support for our inference of selection can be
gleaned from its genomic locations, and the nature of its
putative functional significance. For example, we show a
peak of high selective divergence mapping to a 485-kb
window around position 6.5 Mb of chromosome XXI (fig. 3
and supplementary fig. S3B, Supplementary Material online).
This also corresponds to a chromosomal inversion associated
with global patterns of marine–freshwater divergence in the
species (Jones et al. 2012). Additionally, we show several peaks
on chromosome XIX (fig. 3 and supplementary fig. S3B,
Supplementary Material online), the stickleback sex chromo-
some. Interestingly, sex differentiation is one of the higher-
ranked functional clusters identified in an enrichment analysis
of putatively selected transcripts. On their own, such analyses
are merely suggestive of further avenues of research, and are
not confirmatory of functional significance. Nevertheless,
they form one line of evidence which is consistent with
selection on transcriptional variation playing a role in the
process of adaptive differentiation in this system.

Finally, we do not wish to espouse a pan-selectionist
view of transcriptional divergence—far from it given that
neutral divergence was predominant. Nevertheless, our re-
sults show that a relatively larger-than-expected proportion
of the transcriptome has diverged in response to direc-
tional selection. Taken together, evidence of within popu-
lation heritable variation and selective variation among
populations provide convincing supporting for the conten-
tion of broad adaptive potential within the stickleback
transcriptome.
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Materials and Methods

Broodstock and Husbandry
Crosses for among-Population Comparisons
Broodstock were obtained by sampling mature sticklebacks
from three wild, Fennoscandian populations: Lake Pulmanki
(Pulmankij€arvi; PUL) in Finnish Lapland; the Baltic Sea in the
vicinity of Helsinki, Finland (HEL); and Lake V€attern (VAT)
from south-central Sweden (supplementary fig. S1A,
Supplementary Material online). Full-sib F1 families were cre-
ated by crossing parental fish at the sampling sites. Fertilized
eggs were transported to the laboratory at the University of
Helsinki. Offspring were initially maintained at 17� 1 �C, with
a photoperiod of 18 h light and 6 h darkness. Six months after
hatching, environmental conditions were gradually changed
to simulate wintering conditions (24 h darkness; water tem-
perature 9� 1 �C). After 5 months, fish were stimulated into
breeding condition by gradually reverting environmental
conditions to an 18:6 h light/dark photoperiod, and water
temperature to 17� 1 �C.

Mating pairs were chosen randomly, and new crosses were
made to obtain F2 offspring from within each population. At
the time of the experiments, F2 offspring were approximately
20 months old. Although sexually mature, all experimental
fish were reproductively inactive. Twelve F2 fish from each
population (N = 36) were randomly selected and assigned to
separate, screened containers in one of two identical tanks
(six fish per population per tank). Fish were acclimated over-
night. One tank was maintained as a control at 17 �C. At the
beginning of the next photoperiod, water in the second tank
was heated approximately 1 �C per hour for 6 h to a final
temperature of 23 �C. After 1 h at final temperature, each
fish was euthanized in a lethal concentration of MS-222 in
water, and its liver removed and immediately frozen in liquid
nitrogen for storage at �80 �C.

Crosses for Quantitative Genetics
Thirty mature males and 60 gravid females were collected
from the Baltic Sea for use as broodstock in a paternal, half-
sib design (HEL; supplementary fig. S1B, Supplementary
Material online). A more detailed description of crossing pro-
tocols has been described elsewhere (Leinonen et al. 2011),
but in brief, each male was artificially crossed (in vitro, Barber
and Arnott 2000) with two separate females, producing
30 unique half-sib blocks (supplementary fig. S1B,
Supplementary Material online), 60 families in total. Groups
of 15 individuals from each of the 60 families were randomly
assigned to separate 10-l tanks. Fish were reared for 6 months
at 17� 1 �C and 12:12 h light/dark photoperiod.

After 6 months, two individuals from each family were
randomly selected and arbitrarily assigned to control or treat-
ment. Fish were placed in the tanks in the evening and al-
lowed to acclimate overnight. The treatment fish were
subjected to the same temperature treatment as described
above and sampled. This was conducted for five consecutive
days, so that five treated and five control fish were sampled
for each of the 60 families (N = 563, see Sample Preparation).
Analysis of power and bias was performed by simulating

phenotypic data, based on the final pedigree and over a
range of known heritabilities (Morrissey et al. 2007), and iter-
ative estimation with the same analytical method used on
experimental data (supplementary fig. S2 and appendix S1,
Supplementary Material online).

Sample Preparation

Total RNA was isolated from liver tissue by means of Tri
Reagent (Sigma, St Louis, MO and Ambion, Austin, TX), fol-
lowing manufacturer’s protocols. RNA was treated with
DNase (Promega, Madison, WI) and reisolated using Tri
Reagent. RNA concentration was quantified using a
Nanodrop ND-1000 (Thermo Scientific, Waltham, MA), and
RNA quality was assessed using an Experion automated elec-
trophoresis system (Bio-Rad, Hercules, CA). RNA was ex-
tracted from 35 of 36 individuals used for population
comparison (one PUL control missing), and all 600 individuals
of known pedigree comprising the quantitative genetics data
set. RNA labeling, hybridizations, and scanning were per-
formed by Agilent certified commercial service providers:
The Finnish Microarray and Sequencing Centre (Turku,
Finland; array 1), and the University Health Network
Microarray Centre (Toronto, Canada; array 2). Thirty-seven
individuals were removed from the quantitative genetic anal-
yses due to either missing tissue, bad quality RNA, or bad
array hybridization. The final data set contained 563 individ-
uals in total, 283 controls (158 females and 125 males) and
280 thermally treated (152 females and 128 males).

Microarray Design and Data Normalization

Two microarrays, based on user-defined 60-bp oligonucleo-
tide probes, were designed using the custom gene expression
platform from Agilent (Santa Clara, CA). The first—used for
among-population comparisons (i.e., QST estimation)—was a
4� 44K array consisting of 43,605 probes representing 19,274
unique genes, including most known splice-variants (27,723
transcripts; Leder et al. 2009), with most transcripts replicated
at least twice. Full technical details are provided in previously
published work (Leder et al. 2009, 2010), but in brief, total
RNA (400 ng) was amplified and Cy3 labeled. cRNA was ex-
amined with the Nanodrop ND-1000 and the Experion
Automated Electrophoresis System to assess the concentra-
tion and quality of labeling. Each sample (1.65mg) was hybrid-
ized to its array at 65 �C overnight (17 h). Arrays were scanned
with Agilent Technologies Scanner (model G2505B). Spot in-
tensities and other quality control features were extracted
with Agilent’s Feature Extraction Software (v9.5.3.1), and
array quality was assessed through the use of Agilent control
features, as well as spike-in controls.

For the second array, the probe set was reduced by remov-
ing several replicate probes, as well as many of the probes that
did not appear to hybridize to liver RNA in the first experi-
ment, in order to fit on the newer 8� 15K array format. RNA
quality was determined using the Agilent Bioanalyzer 2100,
and only RNA with integrity numbers greater than 7.0 were
used for labeling. RNA (500mg) was labeled (Cy3 or Cy5) using
the Agilent QuickAmp Kit for two-color microarray-based
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gene expression analysis. Equal numbers of individuals within
family groups (control and temperature-treated; males and
females) were assigned to each dye, and alternately labeled.
Control and treated individuals were selected at random for
hybridization to a given array (Agilent Hi-RPM kit). Images of
the arrays were acquired using a G2565BA DNA Scanner, and
image analysis was performed using Agilent’s Feature
Extraction Software (v9.5; protocol GE2-v5_95_Feb07 with
default settings).

Postprocessed signals were standardized across arrays
using a supervised normalization approach, implemented in
the package “snm” for R/Bioconductor (Mecham et al. 2010),
which has been shown to remove technical artifacts without
altering the underlying variance structure of expression data
(Qin et al. 2013)—the latter being essential for variance com-
ponents analysis, as undertaken in this study (for an expanded
explanation of the normalization procedure, see supplemen-
tary appendix S1, Supplementary Material online). For esti-
mating quantitative genetic parameters, the entire second
data set (i.e., all probes present on the second microarray)
was normalized across arrays/slides: “Biological variables” in-
cluded sex, family, and temperature treatment; “adjustment
variables” included dye, array, and batch (i.e., slide). Following
normalization, data were screened for potential outliers.
Individual intensity values more than 2 SDs from their
family-by-treatment mean were flagged and removed. Any
probes with missing values for an entire family, or for more
than 56 individuals (i.e., 10% of data), were removed from the
final data sets. For transcripts with two or more replicate
probes, we calculated pairwise correlations between probe
sets. Replicate probes with a correlation coefficient less than
0.9 were discarded, and replicates which remained were av-
eraged by transcript for each individual. Raw and normalized
data, in addition to R scripts describing the normalization
procedure, are available in the ArrayExpress database (www.
ebi.ac.uk/arrayexpress) under accession number E-MTAB-
3098.

For among-population comparisons, nonnormalized tran-
scripts common to both arrays were merged into a single data
set for a broader normalization across studies/array designs,
thereby providing standardized data sufficient for estimating
both within- and among-population components of genetic
variance for inferring selection (see Final Data and Analyses
and/or supplementary appendix S1, Supplementary Material
online). Biological variables included population, family, and
temperature treatment; adjustment variables included dye,
array, batch (i.e., slide), and array design; previously identified
outliers were removed from the final data set. Data and R
scripts are also archived on ArrayExpress (accession E-MTAB-
3099).

Microsatellite Data

Details of genotyping are outlined elsewhere (Cano et al. 2006,
2008). Briefly, DNA was extracted from pectoral fin tissue
using fine silica 96-well filter plates. Seventeen putatively neu-
tral microsatellite loci, that is, markers approximately 3 cM or
more from a mapped QTL region, were genotyped for 28

individuals in each of the three populations (HEL, VAT, and
PUL); see Cano et al. (2006) for a list of loci. Forward primers
were labeled with fluorescent dyes (FAM, TET, and HEX), and
a GTTT-tail was added to the 50-end of the reverse primers to
enhance 30-adenylation (Brownstein et al. 1996). Polymerase
chain reaction products were diluted (1:50), mixed with ROX
size standard, and run on a MegaBACE 1000 capillary
sequencer. Fragment Profiler (v1.2) was used to score geno-
types, with manual corrections as needed.

We evaluated the data set through outlier analysis to
ensure that all markers fell within a simulated range of neutral
expectation (Antao et al. 2008). As the index of quantitative
divergence (QST) has been shown to behave similarly to a
single-locus estimate of FST, it should be compared against
a distribution of single-locus estimates, rather than the CI of
mean FST (Whitlock 2008). We defined a conservative param-
eter space indicating neutral differentiation based on the full
range (minimum and maximum) of FST values observed in all
17 neutral markers.

Final Data and Analyses
Quantitative Genetics
Expression levels for 10,527 transcripts (approximately 36% of
the stickleback transcriptome), comprising 10,495 predicted/
projected genes (Ensembl Stickleback Genome version 65.1,
updated May 2010), were retained for analysis after normal-
ization and quality control checks. We decomposed expres-
sion variation into additive genetic (VA) and dominance (VD)
variance using a linear mixed-effects model (i.e., the “animal
model”). Fixed effects included dye (Cy3 or Cy5), sex, temper-
ature treatment (17 or 23 �C), and their interaction terms;
random effects were assigned by the relationship matrix (i.e.,
pedigree) for the estimation of VA and VD. We employed a
Bayesian implementation of the animal model in the R pack-
ages “MCMCglmm” and “nadiv” (Hadfield 2010; Wolak 2012).
Variance components were estimated by MCMC (Markov
chain Monte Carlo) sampling of their posterior distributions,
after first removing effects of fixed model terms (temperature,
sex, and dye), with parameter estimates based on the poste-
rior mode, and bounded by 95% PDIs. We ran a series of three
nested models to test the posterior significance of both VA

and VD: A simple “null” model included only fixed effects; a
second model included random variation attributable to the
individual (i.e., “animal”) level weighted by the half-sib pedi-
gree structure (VA); and a final model also including domi-
nance, obtained by inversion of the pedigree matrix to obtain
a “fraternity matrix” from which VD can be estimated
(Ovaskainen et al. 2008)—matrix inversion was implemented
using the “nadiv” package (Wolak 2012). Models were run
with an initial burn-in of 50,000 iterations, followed by an
additional 200,000 iterations from which each 200th point
on the Markov Chain were sampled. We used the DIC to
infer significance of a given variance component by compar-
ing the more “complex” model containing the term with a
simpler model without: Significance of VA was determined by
comparison with the “null” model, and a “maximal” model
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(VA and VD) was evaluated against both the VA only model
and the null model.

Within our analytical framework, likelihood ratio testing
and associated p-values for the significance of random effects
(i.e. variance estimates) are not possible. Nor can we conduct
probability-based significance testing by profiling their
posterior distributions, since variance estimates are con-
strained to be positive. This precludes the use of standard
adjustments for multiple comparisons (e.g., FDR correction).
Consequently, we used phenotypic simulations to determine
the reliability of estimates through an evaluation of “local”
false discoveries. We simulated 1,000 trait values with no ad-
ditive genetic variance using the package “pedantics”
(Morrissey et al. 2007), and compared the animal model
DIC to a null model—selection of the animal model indicated
a false positive results. We then calculated the mean herita-
bility estimate for all false positives (0.094; n = 247) to define a
threshold value indicative of a reliable estimate. Likewise, we
simulated data under the assumption of no dominance var-
iance over a range of known heritabilities (h2 = 0–1 in 0.1
intervals; 100 simulations each). As with the transcriptional
data, models including VD estimates were compared with
both a simpler animal model and a null model. For all false
positives, we calculated the mean estimate of d2 to define the
significant threshold value (0.144; n = 1,009).

As only two temperature treatments were employed, we
could not directly estimate environmental variance associ-
ated with thermal effects (herein simplified as VE(temp)) as a
random effect. However, we attempted to discern the relative
contributions of environmental effects on phenotypic vari-
ance in a number of ways. First, we estimated both total
phenotypic variance (VP) and VA separately in each “environ-
ment” (i.e., thermal treatment): We reasoned that if VP was
significantly different between environments, this could be
attributable to a G�E and/or to nongenetic effects—given
the thermal treatment imposed on an ectothermic organism,
it stands to reason that an environmental effect associated
with temperature (VE(temp)) would be a likely source of this
nongenetic variation. We estimated the relative magnitude of
this effect as the difference between parameter estimates (i.e.,
1,000 sampling points from the Markov Chains) in each ther-
mal treatment. Significant differences in phenotypic (�VP)
and/or additive variance (�VA) were assigned if the 95% PDIs
of the difference profiles excluded zero. To simplify compar-
isons with estimates of VA and VP, we converted �VP esti-
mates to their absolute values, reversing lower and upper PDIs
for negative estimates, and assuming a lower estimate of zero
for nonsignificant differences. Finally, we evaluated the poten-
tial for G�E by testing for broad-sense genetic variation in
expression reaction norms (family� temperature). We ran an
additional series of mixed-effects models (dye, sex, and tem-
perature as fixed effects): A minimal model included random
variation among families only in the intercept, and a second
model which also included random variation among families
in the coefficient describing temperature (i.e., environmental)
effects (random slopes; family� temperature). Significance of
G�E was evaluated by comparison of model DICs. Relative
effect sizes of temperature, sex, and their interaction were

estimated from the posterior distributions of their coeffi-
cients; P values were also profiled from the posterior distri-
butions. Correction for multiple comparisons was performed
using a local FDR procedure implemented in the R package
“fdrtool” (Strimmer 2008).

Comparison among Populations
Following normalization and quality control 8,904 transcripts,
representing 8,882 predicted/projected genes (Ensembl
Stickleback Genome version 65.1, updated May 2010)
common to both microarrays were retained for analysis. To
infer whether among-population differences were best ex-
plained by neutral or putative selective processes, we con-
trasted an index of quantitative genetic differentiation (QST)
for each probe with that of neutral genetic divergence (Spitze
1993; Leinonen et al. 2013). In this approach, an estimate of
within population variation equivalent to VA is required for
robust inference. By combining array data (i.e., pooling and
normalizing probes / transcripts common to both arrays), we
were able to include a broader range of pedigrees, thereby
permitting a more accurate and analytically comparable esti-
mate of VA for calculating QST. Variance components (i.e., QST

parameters) were estimated through mixed-model analysis
using MCMCglmm: Temperature and dye effects were parti-
tioned out as fixed model terms, with variance among (�2

GB)
and within populations (�2

GW; VA) estimated as random ef-
fects. Confidence intervals (95% PDIs) were obtained by sam-
pling the posterior distribution of 1,000 QST estimates
sampled from the Markov chain. Significance of QST was in-
ferred for those estimates with PDIs that did not overlap with
the region of neutral differentiation, as defined by FST of neu-
tral microsatellites. Additionally, we attempted to identify
potential genomic regions of high selective divergence by
modeling lower interval estimates (PDI0.05) as a function of
transcript position within the stickleback genome with loess
regression over 5-kb intervals.

Finally, we contrasted inference from QST-based analyses
with that obtained by estimating rate of expression diver-
gence. We used the divergence parameter (�) proposed by
Lynch (1990) and adapted by Lemos et al. (2005) for applica-
tion to mRNA expression data: Under this framework a pa-
rameter space between 10�4 and 10�2 represents neutral
evolution, based on assumed rates of mutational variance.
Estimates of � above and below neutrality are indicative of
directional and stabilizing selection, respectively. As this
metric requires an estimation of generation time between
groups, we focused analyses on the two populations with
the least ambiguous colonization histories: Baltic Sea and
Lake V€attern (supplementary fig. S1, Supplementary
Material online)—their stickleback populations share a
recent genetic origin (M€akinen et al. 2006), and the water-
bodies themselves share a geological history. Following glacial
retreat of the Fennoscandian peninsula, the area currently
occupied by Lake V€attern was a bay of the Baltic Sea during
its Yoldia Sea stage (approximately 10 ka BP), but by the end
of the Ancylus Lake stage (approximately 8 ka BP), Lake
V€attern was no longer contiguous with the Baltic (Stålberg
1939; Bj€orck 1995). As sticklebacks breed only once per year,
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with new recruits added annually, these dates were used to
bound estimates of the numbers of generations since diver-
gence. We generated five balanced replicate blocks within
each population–temperature treatment by stratified boot-
strapping to estimate standard mean-square error within and
between populations in a nested ANOVA. Generation time
was sampled from a uniform distribution of integers between
8,000 and 10,000. Confidence intervals of � were profiled by
bootstrapping the entire estimation procedure 1,000 times.
Selection was inferred on the basis of CI exclusion from the
parameter space defining neutral evolution (10�4 to 10�2).

Functional Annotation Analysis
A complete functional enrichment analysis is beyond the
main scope of this article. Nevertheless, such analyses may
provide preliminary interpretive value of current results, and
more importantly, may be of utility for other researchers. As
such, they are included as supplementary material,
Supplementary Material online. We used the Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) to determine whether candidate transcript sets
were significantly overrepresented by genes of particular func-
tional categories (Huang et al. 2007). Although DAVID will
accept several probe identifiers, Entrez Gene identifiers gen-
erally produce the most comprehensive annotation data
(Maglott et al. 2005; Sherman et al. 2007). Thus, to facilitate
analyses, stickleback genes were assigned an Entrez GeneID
based on their human orthologs, determined using BioMart
(Durinck et al. 2005; Smedley et al. 2009) and BLAST search.
Of the 10,527 transcripts detected above background, 92%
(9,661) were assigned an Entrez GeneID. Input for analysis
consisted of a list of candidate transcripts contrasted with a
customized “background” set including only those transcripts
represented on the custom array and detected above back-
ground. Though DAVID can integrate nonredundant func-
tional annotations across multiple databases, we focused on
Gene Ontology (GO) annotations at the levels of “biological
process” and “molecular function” (Harris et al. 2004). We
further restricted output by grouping enriched terms into
functional annotation clusters, using default settings
(Huang et al. 2009). Finally, we excluded those clusters with
an overall enrichment score less than 0.5, and for which the
mean fold enrichment of constituent GO terms was signifi-
cantly less than 1.

Supplementary Material
Supplementary appendix S1, figures S1–S5, and tables S1–S3
are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).

Acknowledgments

The authors thank Hannu M€akinen, Linda Uoti, and numer-
ous others who helped in obtaining broodstock and main-
taining the fish used in this study. This work was principally
funded by the Academy of Finland (grant no. 129662),
through the Centre of Excellence in Evolutionary Genetics
and Physiology (2006–2011). Additional support was pro-
vided by the Academy of Finland to J.M. (grant nos. 134728,

250435, and 265211), C.P. (grant nos. 133875 and 141231),
and E.L. (grant no. 136464). Computing resources were pro-
vided by the Finnish Centre for Scientific Computing.
Research was conducted under an ethical license from the
University of Helsinki (HY 121-06). The authors declare no
conflict of interest.

References
Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G. 2008. LOSITAN: a

workbench to detect molecular adaptation based on a FST-outlier
method. BMC Bioinformatics 9:323.

Aubin-Horth N, Renn SCP. 2009. Genomic reaction norms: using inte-
grative biology to understand molecular mechanisms of phenotypic
plasticity. Mol Ecol. 18:3763–3780.

Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM,
Rollmann SM, Duncan LH, Lawrence F, Anholt RRH, et al. 2009.
Systems genetics of complex traits in Drosophila melanogaster.
Nat Genet. 41:299–307.

Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y, Barkai
N. 2006. Noise in protein expression scales with natural protein
abundance. Nat Genet. 38:636–643.

Barber I, Arnott SA. 2000. Split-clutch IVF: a technique to examine
indirect fitness consequences of mate preferences in sticklebacks.
Behaviour 137:1129–1140.

Bedford T, Hartl DL. 2009. Optimization of gene expression by natural
selection. Proc Natl Acad Sci U S A. 106:1133–1138.

Bj€orck S. 1995. A review of the history of the Baltic Sea, 13.0-8.0 ka BP.
Quat Int. 27:19–40.

Brawand D, Soumillon M, Necsulea A, Julien P, Cs�ardi G, Harrigan P,
Weier M, Liechti A, Aximu-Petri A, Kircher M, et al. 2011. The evo-
lution of gene expression levels in mammalian organs. Nature 478:
343–348.

Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of
transcriptional regulation in budding yeast. Science 296:752–755.

Brownstein MJ, Carpten JD, Smith JR. 1996. Modulation of non-
templated nucleotide addition by tag DNA polymerase: primer
modifications that facilitate genotyping. Biotechniques 20:
1004–1006.

Cano JM, M€akinen HS, Leinonen T, Freyhof J, Meril€a J. 2008. Extreme
neutral genetic and morphological divergence supports classifica-
tion of Adriatic three-spined stickleback (Gasterosteus aculeatus)
populations as distinct conservation units. Biol Conserv. 141:
1055–1066.

Cano JM, Matsuba C, M€akinen H, Meril€a J. 2006. The utility of QTL-
Linked markers to detect selective sweeps in natural populations: a
case study of the EDA gene and a linked marker in threespine
stickleback. Mol Ecol. 15:4613–4621.

Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, Brady SD,
Southwick AM, Absher DM, Grimwood J, Schmutz J, et al. 2010.
Adaptive evolution of pelvic reduction in sticklebacks by recurrent
deletion of a Pitx1 enhancer. Science 327:302–305.

Chelaifa H, Chagu�e V, Chalabi S, Mestiri I, Arnaud D, Deffains D, Lu YH,
Belcram H, Huteau V, Chiquet J, et al. 2013. Prevalence of gene
expression additivity in genetically stable wheat allohexaploids.
New Phytol. 197:730–736.

Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley
TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, et al. 2011. The
ecoresponsive genome of Daphnia pulex. Science 331:555–561.

Cui XQ, Affourtit J, Shockley KR, Woo Y, Churchill GA. 2006. Inheritance
patterns of transcript levels in F1 hybrid mice. Genetics 174:627–637.

Davidson EH, Erwin DH. 2010. Evolutionary innovation and stability in
animal gene networks. J Exp Zool B Mol Dev Evol. 314B:182–186.

Debes PV, Normandeau E, Fraser DJ, Bernatchez L, Hutchings JA. 2012.
Differences in transcription levels among wild, domesticated, and
hybrid Atlantic salmon (Salmo salar) from two environments. Mol
Ecol. 21:2574–2587.

686

Leder et al. . doi:10.1093/molbev/msu328 MBE

-
-
-
paper
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu328/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu328/-/DC1
if 
-
ue
`
'
-
`
'
`
'
<
one
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu328/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu328/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu328/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, Thomas WK.
2005. The transcriptional consequences of mutation and natural
selection in Caenorhabditis elegans. Nat Genet. 37:544–548.

Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KCC, Taylor J,
Burnett E, Gut I, Farrall M, et al. 2007. A genome-wide association
study of global gene expression. Nat Genet. 39:1202–1207.

Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber
W. 2005. BioMart and Bioconductor: a powerful link between bio-
logical databases and microarray data analysis. Bioinformatics 21:
3439–3440.

Emerson JJ, Hsieh LC, Sung HM, Wang TY, Huang CJ, Lu HHS, Lu MYJ,
Wu SH, Li WH. 2010. Natural selection on cis and trans regulation in
yeasts. Genome Res. 20:826–836.

Eng KH, Bravo HC, Keles S. 2009. A phylogenetic mixture model for the
evolution of gene expression. Mol Biol Evol. 26:2363–2372.

Erwin DH, Davidson EH. 2009. The evolution of hierarchical gene regu-
latory networks. Nat Rev Genet. 10:141–148.

Fay JC, Wittkopp PJ. 2008. Evaluating the role of natural selection in the
evolution of gene regulation. Heredity 100:191–199.

Flint J, Mackay TFC. 2009. Genetic architecture of quantitative traits in
mice, flies, and humans. Genome Res. 19:723–733.

Gao Y, Zhang H, Gao Q, Wang LL, Zhang FC, Siva VS, Zhou Z, Song LS,
Zhang SC. 2013. Transcriptome analysis of artificial hybrid pufferfish
Jiyan-1 and its parental species: implications for pufferfish heterosis.
PLoS One 8:e58453.

Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue
IN, Farber CR, Sinsheimer J, Kang HM, Furlotte N, et al. 2011.
Comparative analysis of proteome and transcriptome variation in
mouse. PLoS Genet. 7:e1001393.

Gibson G. 2008. The environmental contribution to gene expression
profiles. Nat Rev Genet. 9:575–581.

Gibson G, Weir B. 2005. The quantitative genetics of transcription.
Trends Genet. 21:616–623.

Gienapp P, Teplitsky C, Alho JS, Mills JA, Meril€a J. 2008. Climate change
and evolution: disentangling environmental and genetic responses.
Mol Ecol. 17:167–178.

Gilad Y, Oshlack A, Rifkin SA. 2006. Natural selection on gene expression.
Trends Genet. 22:456–461.

Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP. 2006. Expression
profiling in primates reveals a rapid evolution of human transcrip-
tion factors. Nature 440:242–245.

Gilad Y, Rifkin SA, Pritchard JK. 2008. Revealing the architecture of gene
regulation: the promise of eQTL studies. Trends Genet. 24:408–415.

Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing
protein abundance and mRNA expression levels on a genomic scale.
Genome Biol. 4:117.

Greenwood AK, Cech JN, Peichel CL. 2012. Molecular and developmen-
tal contributions to divergent pigment patterns in marine and fresh-
water sticklebacks. Evol Dev. 14:351–362.

Hadfield JD. 2010. MCMC methods for multi-response generalized linear
mixed models: the MCMCglmm R package. J Stat Softw. 33:1–22.

Haig D. 2010. Does heritability hide in epistasis between linked SNPs? Eur
J Hum Genet. 19:123.

Hanawalt PC, Spivak G. 2008. Transcription-coupled DNA repair:
two decades of progress and surprises. Nat Rev Mol Cell Biol. 9:
958–970.

Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K,
Lewis S, Marshall B, Mungall C, et al. 2004. The Gene Ontology (GO)
database and informatics resource. Nucleic Acids Res. 32:D258–D261.

Hendry AP, Kinnison MT. 1999. The pace of modern life: measuring
rates of contemporary microevolution. Evolution 53:1637–1653.

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manolio TA. 2009. Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proc
Natl Acad Sci U S A. 106:9362–9367.

Hines HM, Papa R, Ruiz M, Papanicolaou A, Wang C, Nijhout HF,
McMillan WO, Reed RD. 2012. Transcriptome analysis reveals
novel patterning and pigmentation genes underlying Heliconius
butterfly wing pattern variation. BMC Genomics 13:288.

Hoffmann AA, Sgr�o CM. 2011. Climate change and evolutionary adap-
tation. Nature 470:479–485.

Hoffmann AA, Willi Y. 2008. Detecting genetic responses to environ-
mental change. Nat Rev Genet. 9:421–432.

Houle D, Govindaraju DR, Omholt S. 2010. Phenomics: the next chal-
lenge. Nat Rev Genet. 11:855–866.

Huang DW, Sherman BT, Lempicki RA. 2009. Bioinformatics enrichment
tools: paths toward the comprehensive functional analysis of large
gene lists. Nucleic Acids Res. 37:1–13.

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J,
Stephens R, Baseler MW, Lane HC, Lempicki RA. 2007. The
DAVID gene functional classification tool: a novel biological
module-centric algorithm to functionally analyze large gene lists.
Genome Biol. 8:R183.

Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J,
Swofford R, Pirun M, Zody MC, White S, et al. 2012. The genomic
basis of adaptive evolution in threespine sticklebacks. Nature 484:
55–61.

Kaern M, Elston TC, Blake WJ, Collins JJ. 2005. Stochasticity in gene
expression: from theories to phenotypes. Nat Rev Genet. 6:451–464.

Khaitovich P, Enard W, Lachmann M, P€a€abo S. 2006. Evolution of pri-
mate gene expression. Nat Rev Genet. 7:693–702.

Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H,
Weiss G, Lachmann M, P€a€abo S. 2005. Parallel patterns of evolution
in the genomes and transcriptomes of humans and chimpanzees.
Science 309:1850–1854.

Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, Muetzel B,
Wirkner U, Ansorge W, Paabo S. 2004. A neutral model of tran-
scriptome evolution. PLoS Biol. 2:682–689.

Kim J, Gibson G. 2010. Insights from GWAS into the quantitative ge-
netics of transcription in humans. Genet Res. 92:361–369.

Kim N, Jinks-Robertson S. 2012. Transcription as a source of genome
instability. Nat Rev Genet. 13:204–214.

Kitano J, Lema SC, Luckenbach JA, Mori S, Kawagishi Y, Kusakabe M,
Swanson P, Peichel CL. 2010. Adaptive divergence in the thyroid
hormone signaling pathway in the stickleback radiation. Curr Biol.
20:2124–2130.

Kohn MH, Shapiro J, Wu CI. 2008. Decoupled differentiation of gene
expression and coding sequence among Drosophila populations.
Genes Genet Syst. 83:265–273.

Ku CS, Loy EY, Pawitan Y, Chia KS. 2010. The pursuit of genome-wide
association studies: where are we now? J Hum Genet. 55:195–206.

Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL. 2007. Genetic
properties influencing the evolvability of gene expression. Science
317:118–121.

Landry CR, Oh J, Hartl DL, Cavalieri D. 2006. Genome-wide scan reveals
that genetic variation for transcriptional plasticity in yeast is biased
towards multi-copy and dispensable genes. Gene 366:343–351.

Leder EH, Cano JM, Leinonen T, O’Hara RB, Nikinmaa M, Primmer CR,
Meril€a J. 2010. Female-biased expression on the X chromosome as a
key step in sex chromosome evolution in threespine sticklebacks.
Mol Biol Evol. 27:1495–1503.

Leder EH, Meril€a J, Primmer CR. 2009. A flexible whole-genome micro-
array for transcriptomics in three-spine stickleback (Gasterosteus
aculeatus). BMC Genomics 10:426.

Leinonen T, Cano JM, Meril€a J. 2011. Genetics of body shape and armour
variation in threespine sticklebacks. J Evol Biol. 24:206–218.

Leinonen T, McCairns RJS, O’Hara RB, Meril€a J. 2013. QST-FST compar-
isons: evolutionary and ecological insights from genomic heteroge-
neity. Nat Rev Genet. 14:179–190.

Lemos B, Araripe LO, Fontanillas P, Hartl DL. 2008. Dominance and the
evolutionary accumulation of cis- and trans-effects on gene expres-
sion. Proc Natl Acad Sci U S A. 105:14471–14476.

Lemos B, Meiklejohn CD, C�aceres M, Hartl DL. 2005. Rates of divergence
in gene expression profiles of primates, mice, and flies: stabilizing
selection and variability among functional categories. Evolution 59:
126–137.

Leveelahti L, Leskinen P, Leder EH, Waser W, Nikinmaa M. 2011.
Responses of threespine stickleback (Gasterosteus aculeatus, L)

687

Transcriptional Variation in Sticklebacks . doi:10.1093/molbev/msu328 MBE



transcriptome to hypoxia. Comp Biochem Physiol Part D Genomics
Proteomics. 6:370–381.

Li Y, Lvarez OAA, Gutteling EW, Tijsterman M, Fu JJ, Riksen JAG,
Hazendonk E, Prins P, Plasterk RHA, Jansen RC, et al. 2006.
Mapping determinants of gene expression plasticity by genetical
genomics in C. elegans. PLoS Genet. 2:2155–2161.

Li B, Zhang DF, Jia GQ, Dai JR, Wang SC. 2009. Genome-wide compar-
isons of gene expression for yield heterosis in maize. Plant Mol Biol
Rep. 27:162–176.

Liao BY, Weng MP, Zhang JZ. 2010. Contrasting genetic paths to mor-
phological and physiological evolution. Proc Natl Acad Sci U S A. 107:
7353–7358.

Lockhart DJ, Winzeler EA. 2000. Genomics, gene expression and DNA
arrays. Nature 405:827–836.

Lynch M. 1990. The rate of morphological evolution in mammals from
the standpoint of the neutral expectation. Am Nat. 136:727–741.

Lynch M, Walsh B. 1998. Genetics and analysis of quantitative traits.
Sunderland (MA): Sinauer.

MacLean RC. 2010. Predicting epistasis: an experimental test of meta-
bolic control theory with bacterial transcription and translation. J
Evol Biol. 23:488–493.

Maglott D, Ostell J, Pruitt KD, Tatusova T. 2005. Entrez Gene: gene-
centered information at NCBI. Nucleic Acids Res. 33:D54–D58.

M€akinen HS, Cano JM, Meril€a J. 2006. Genetic relationships among
marine and freshwater populations of the European threespined
stickleback (Gasterosteus aculeatus) revealed by microsatellites.
Mol Ecol. 15:1519–1534.

M€akinen HS, Meril€a J. 2008. Mitochondrial DNA phylogeography of
the three-spined stickleback (Gasterosteus aculeatus) in Europe: ev-
idence for multiple glacial refugia. Mol Phylogenet Evol. 46:167–182.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ,
McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009.
Finding the missing heritability of complex diseases. Nature 461:
747–753.

Martincorena I, Seshasayee ASN, Luscombe NM. 2012. Evidence of non-
random mutation rates suggests an evolutionary risk management
strategy. Nature 485:95–98.

McCairns RJS, Bernatchez L. 2010. Adaptive divergence between fresh-
water and marine sticklebacks: insights into the role of phenotypic
plasticity from an integrated analysis of candidate gene expression.
Evolution 64:1029–1047.

Mecham BH, Nelson PS, Storey JD. 2010. Supervised normalization of
microarrays. Bioinformatics 26:1308–1315.

Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S,
Phillips JW, Sachs A, Schadt EE. 2004. Genetic inheritance of gene
expression in human cell lines. Am J Hum Genet. 75:1094–1105.

Morrissey MB, Wilson AJ, Pemberton JM, Ferguson MM. 2007. A frame-
work for power and sensitivity analyses for quantitative genetic
studies of natural populations, and case studies in Soay sheep
(Ovis aries). J Evol Biol. 20:2309–2321.

Nikinmaa M, McCairns RJS, Nikinmaa MW, Vuori KA, Kanerva M,
Leinonen T, Primmer CR, Meril€a J, Leder EH. 2013. Transcription
and redox enzyme activities: comparison of equilibrium and disequi-
librium levels in the three-spined stickleback. Proc R Soc B Lond Biol
Sci. 280:20122974.

Nuzhdin SV, Wayne ML, Harmon KL, McIntyre LM. 2004. Common
pattern of evolution of gene expression level and protein sequence
in Drosophila. Mol Biol Evol. 21:1308–1317.

Ogasawara O, Okubo K. 2009. On theoretical models of gene expression
evolution with random genetic drift and natural selection. PLoS One
4:e7943.

Oleksiak MF, Churchill GA, Crawford DL. 2002. Variation in gene ex-
pression within and among natural populations. Nat Genet. 32:
261–266.

Ovaskainen O, Cano JM, Meril€a J. 2008. A Bayesian framework for com-
parative quantitative genetics. Proc R Soc Lond B Biol Sci. 275:
669–678.

Park C, Qian WF, Zhang JZ. 2012. Genomic evidence for elevated mu-
tation rates in highly expressed genes. EMBO Rep. 13:1123–1129.

Pea G, Ferron S, Gianfranceschi L, Krajewski P, Pè ME. 2008. Gene
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